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Abstract

Background: We aimed to monitor the phenotypic changes in mac-
rophages and their polarization in patients with acute viral respira-
tory diseases, including coronavirus disease diagnosis, focusing on 
the variations in the percentages of macrophages and monocytes and 
their sub-populations in those patients compared to healthy control. 
Moreover, we defined the correlation between macrophage subtypes 
and some inflammatory indices.

Methods: Twenty-seven patients with clinical and radiologic diagno-
sis of acute viral respiratory infection admitted in Al-Azhar and Assiut 
University hospitals were recruited. Fresh peripheral blood samples 
were collected from all patients and healthy controls for flow cytometric 
analysis using BD FACSCanto II analyzer equipped with three lasers.

Results: Compared to healthy controls, accumulation of cluster 
of differentiation (CD)11B+CD68+ macrophages (M) (P = 0.018), 
CD274+ M1 (P = 0.01), CD274+ M2 (P < 0.001), and CD80-CD206+ 
M2 (P = 0.001) was more evident in patients. Moreover, CD273+ M2 
(P = 0.03), CD80+CD206- M1 (P = 0.002), and CD80+CD86+ M1 (P 
= 0.002) were highly expressed in controls compared with patients.

Conclusion: The examination of clinical specimens obtained from 
patients with signs of acute respiratory viral infection showed the 
role of the macrophage in the immune response. Dysfunction in 
macrophages results in heightened immune activity and inflamma-
tion, which plays a role in the progression of viral diseases and the 
emergence of accompanying health issues. This malfunction in mac-
rophages is a common characteristic seen in various viruses, making 
it a promising focus for antiviral therapies with broad applicability. 
The immune checkpoint could be a target for immune modulation in 
patients with severe symptoms.

Keywords: Macrophages; CD274+ M1; CD274+ M2; CD273+ M1; 
CD273+ M2; Acute respiratory viral infection

Introduction

In healthy individuals, the innate immune system serves as 
the initial defense against most infectious signals. It achieves 
this by orchestrating a protective inflammatory response that 
evolves through various stages, starting from initiation and 
full-blown inflammation to resolution and the restoration of 
tissue integrity [1]. Within the fully active immune system, 
macrophages, which originate from monocytes, act as phago-
cytic cells. They are responsible for targeting and eliminating 
foreign substances while also regulating the activation and re-
cruitment of lymphocytes. Importantly, macrophages can as-
sume a variety of different phenotypic states [2].

While the activation spectrum of macrophages is intricate, 
it can be broadly categorized into two main types: classically 
activated pro-inflammatory macrophages (M1) and alterna-
tively activated anti-inflammatory macrophages (M2). When 
exposed to factors like interferon-gamma (IFN-γ), tumor ne-
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crosis factor-alpha (TNF-α), and lipopolysaccharide (LPS), 
macrophages can polarize into the M1 phenotype. This phe-
notype is characterized by the expression of specific markers 
like CD68, CD86, and CD80 and the secretion of cytokines 
and chemokines such as interleukin-12 (IL-12), C-X-C motif 
chemokine ligand 9 (CXCL9), CXCL10, TNF-α, and IL-1β, 
which promote a pro-inflammatory T-helper 1 (Th1) response. 
Conversely, when exposed to IL-4 and IL-13, macrophages 
adopt the M2 phenotype, expressing markers like CD163, 
CD204, and CD206. These M2 macrophages exert immu-
nomodulatory effects and play a crucial role in dampening 
endogenous antitumor immune responses [3]. While M2 mac-
rophages have a critical role in normal immune function and 
homeostasis, such as stimulating Th2 responses, eliminating 
parasites, immunoregulation, wound healing, and tissue regen-
eration, certain subsets of M2 macrophages also play a critical 
role in promoting tumor progression.

The dysregulation of macrophages in the context of viral 
pathogenesis is an area ripe for exploration in terms of tar-
geting and drug development. This is because it represents 
a broad target and is a pathogenic trait shared by numerous 
viruses [4]. In recent times, the pivotal role of monocytes/
macrophages has been elucidated in the persistence or dis-
semination of more than 35 different viruses spanning 13 dis-
tinct families. Among these viruses are single-stranded RNA 
and double-stranded DNA agents, which present multiple 
challenges in terms of disease management [5, 6]. Follow-
ing microbial infections, tissue-resident macrophages release 
cytokines like TNF-α, CXCL1/2, IL-1α, and monocyte che-
moattractant protein-1 (MCP-1) to attract neutrophils to the 
infection site. These neutrophils subsequently produce az-
urocidin, which upregulates the expression of molecules like 
E-selectin and vascular cell adhesion molecule-1 (VCAM-
1) on endothelial cells, further facilitating the recruitment 
of monocytes. Additionally, infiltrating neutrophils secrete 
cytokines such as IL-6, IL-12, and IFN-γ, which contribute 
to the activation of pro-inflammatory macrophages and the 
differentiation of T-helper cells [7, 8]. Following the resolu-
tion of inflammation, pro-inflammatory macrophages bind to 
neutrophils via TNF, triggering apoptosis and the clearance 
of apoptotic neutrophils [9, 10].

Many chronic viral infections result in T-cell exhaustion, 
which is the main source of host difficulty in eliminating such 
infections [3, 4]. Immune checkpoint molecules are negative 
regulatory receptors expressed on immune cells. These mol-
ecules have been shown to participate in the mechanism of 
immune escape by causing T-cell dysfunction in a variety of 
diseases, such as cancer and infection. As a negative regula-
tory signal for the activation and proliferation of T cells, the 
immune checkpoint pathway is involved in the immune escape 
of many viruses [5, 6].

In general, however, M1 are defined by expression of 
CD68, CD80 and CD86 and secretion of pro-inflammatory 
cytokines such as TNF-α, IL-1α, IL-1β, IL-6, IL-12, IL-18, 
and IL-23 as well as nitric oxide (NO) synthase that contribute 
to eliminating tumor cells [11-13]. On the contrary, M2 ex-
press CD163 and CD206 [14] and secrete IL-10, transforming 
growth factor-beta (TGF-β), CCL2, CCL5 [11, 12] and IL-13 
that maintain the immune-suppressive environment [5].

Regarding specific checkpoint molecules in the patho-
physiology of these infections, PD-1 “PD-1 interacts with 
the ligands PD-L1 (CD274; also called B7-H1) and PD-L2 
(CD273; also called B7-DC)” and Tim-3 are already shown 
to inhibit production of inflammatory IL-12 on monocytes 
and macrophages. Consequently, increased levels of anti-in-
flammatory cytokines such as IL-10 further contribute to the 
“pro-disease” M2 immune profile, ultimately facilitating viral 
persistence.

In this research, our objective was to observe the altera-
tions in the characteristics of macrophages and their shift in 
patients who have been diagnosed with viral respiratory ill-
nesses, including those with a coronavirus disease (COVID) 
diagnosis. Our main emphasis was on examining the differ-
ences in the proportions of macrophages and their specific 
subgroups in these patients when compared to a group of in-
dividuals who appeared to be in good health. Furthermore, we 
sought to establish a connection between the various types of 
macrophages and certain markers of inflammation.

Materials and Methods

Participants

This case-control study was conducted in a sample of 27 hos-
pitalized adults and 27 age- and sex-matched healthy con-
trols. All patients fulfilled the criteria for acute lower respira-
tory tract infection [15] with no other chronic diseases. The 
patients included in the study met specific clinical criteria for 
pneumonia diagnosis, including: 1) detection of a new infil-
trating shadow in the lungs via chest radiograph or computed 
tomography (CT) scan (a mandatory criterion); 2) presence 
of newly developed or aggravated cough symptoms; and 3) 
fever (temperature > 37.0 °C) or low body temperature (tem-
perature < 35.6 °C). Additionally, patients diagnosed with vi-
ral pneumonia by clinicians exhibited at least one of the fol-
lowing symptoms within 7 days: fever, cough with or without 
sputum, chest pain, shortness of breath, or nasal congestion. 
We excluded any patient with other chronic diseases or im-
mune diseases. All participants in the healthy control group 
exhibited no signs of disease or infection based on their med-
ical history, clinical examination, and complete blood count 
(CBC).

Methods

Samples were taken at the time of hospital admission to detect 
viral etiologies by real-time polymerase chain reaction (RT-
PCR).

Radiologic diagnosis

Viruses are a common cause of acute respiratory infections, and 
the causative agents of lower respiratory tract infections vary 
depending on the patient’s age and immunity. Viral pneumonia 
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often presents as bilateral multifocal ground-glass opacities with 
patchy consolidations on CT scans, while bacterial pneumonia 
typically manifests as a diffuse airspace pattern. Adenovirus 
can cause multifocal consolidation or ground-glass opacities, 
and diffuse airspace patterns are more frequently seen in bacte-
rial infections. CT patterns of viral pneumonia can be related to 
the pathogenesis of pulmonary viral infection, and diagnostic 
tests, including radiologic studies and blood or serologic tests, 
can help establish the cause of pneumonia, reduce unnecessary 
antibiotic use, and improve clinical outcomes [16, 17] (Supple-
mentary Material 1, www.jocmr.org).

Flow cytometric detection of macrophage subtypes

1) Specimens

Fresh (0 to 48 h post-collection) peripheral blood samples 
were collected.

2) Instruments and software

Flow cytometry data were collected using a BD FACSCanto II 
analyzer equipped with three lasers. We configured the instru-
ment using BD Cytometer Setup and Tracking (CS & T) beads. 
For data acquisition and analysis, we utilized BD FACSDi-
va™ software (version 6.1.3). We fine-tuned the photomulti-
plier tube (PMT) voltages by configuring application settings 
to optimize the cytometer’s performance.

3) Sample staining

The antibody reagent specified in Table 1 was employed for 
this purpose. A volume of 100 µL of the sample was added 
to each tube, and these tubes were then incubated in the dark 
at room temperature for 20 min. To lyse the red blood cells 

(RBCs), 1 mL of 1X BD Pharm Lyse lysing buffer was added 
to each tube, followed by an additional incubation of 10 min 
in the dark at room temperature. Subsequently, the samples 
were placed on ice and analyzed within 1 h after the lysis 
step. The acquisition and analysis of data were performed 
using FACS Canto flow cytometry from Becton Dickinson 
Biosciences, located in San Jose, CA. We analyzed a total 
of 100,000 events, and for each sample, an isotype-matched 
negative control was utilized.

4) Data analysis

Following the removal of doublets and debris, we conducted 
our analysis using a sequential gating approach. Table 2 [18-
21] shows all markers utilized to recognize macrophages based 
on their general phenotypic features and to delineate their 
functional characteristics. First, gating was based on high side 
scatter (SSC) to identify macrophages and monocytes. The 
characterization of macrophages depended on the cell subset 
where CD68+11b+ was used as a general phenotypic marker. 
Sequentially, cell populations were gated with CD80+CD206- 
followed by CD80+CD86+ for the characterization of M1 and 
CD80-CD206+ followed by CD206+CD163+ for the charac-
terization of M2 population. Eventually, the determination of 
two immune checkpoints, CD273 (PD-L2, also known as B7-
DC) and CD274 (PD-L1, also known as B7-H1), concerned 
the predetermined M1 and M2 subsets. The gating populations 
are illustrated in Table 2 and Figure 1.

Statistical analysis

All data were analyzed using IBM-SPSS ver. 26, and after run-
ning the Shapiro-Wilk test, all hematologic indices were nor-
mally distributed (P > 0.05) and analyzed by independent sam-
ple t-test. However, all macrophage subtypes with the studied 
markers were not normally distributed (P = 0.02 to < 0.001), 

Table 1.  Antibody Reagent

Marker Fluorochrome Volume used (µL)
General phenotypic markers
  CD11b PE 10
  CD68 PE-CY7 10
M1 macrophage markers
  CD80 V500 10
  CD86 FITC 10
M2 macrophage markers
  CD206 V450 10
  CD163 PerCP-CY5-5 10
Immune checkpoint markers
  CD273 (PD-L2, B7-DC) APC 10
  CD274 (PD-L1, B7-H1) APC-H7 10
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so they were compared and analyzed by Mann-Whitney U-test 
between patients and controls and between each other, Spear-
man rho test was used for correlation, data were expressed as 
mean and standard error (SE), and all information created were 
considered significant at P < 0.05.

Ethics approval

This study received approval from the ethical committees of 
both the Faculty of Medicine and the Faculty of Science at Al-
Azhar University in Assiut (ID: 6/2021). The study was con-
ducted in compliance with the ethical standards of the respon-
sible institution on human subjects as well as with the Helsinki 
Declaration.

Results

Table 3 shows all clinical and demographic data of all par-

ticipants.

Peripheral hemogram characteristics of patients compared 
to controls

Twenty-seven patients with viral chest infection were found 
to have significantly reduced hemoglobin (Hb), neutrophilic 
counts, platelet counts (PCs), and mean platelet volume 
(MPV) compared to 27 healthy controls. Likewise, neutrophil/
lymphocyte ratio (NLR) and PC/MPV ratio were significantly 
lower in patients compared to controls (Table 4).

Differences in the total macrophage percentages between 
patients and controls

CD11B+CD68+ macrophages (gated from low forward scat-
ter (FSC) high SSC monocytic region) were significantly in-
creased (depending on percent expression ratio of the gated 

Table 2.  Gating Populations

Cells Markers References
General macrophages’ phenotypic markers CD68+CD11b+ [18-21]
M1 macrophage CD68+CD11b+CD80+CD86+

M2 macrophage CD68+CD11b+CD206+CD163+

CD274 (PD-L1, B7-H1) immune checkpoint of M1 CD68+CD11b+CD80+CD86+CD274+

CD274 (PD-L1, B7-H1) immune checkpoint of M2 CD68+CD11b+CD206+CD163+CD274+

CD273 (PD-L2, B7-DC) immune checkpoint of M1 CD68+CD11b+CD80+CD86+CD273+

CD273 (PD-L2, B7-DC) immune checkpoint of M2 CD68+CD11b+CD206+CD163+CD273+

Figure 1. Flow cytometric detection of macrophages subtypes. First blot: FSC and SSC were gating on monocyte and mac-
rophage region (high FSC, low SSC). Second blot: gating on macrophage/monocytes (coexpression of CD68+CD11b+). Third 
blot: subclassification of the (CD68+CD11b+) into M1 (CD80+CD206-) and M2 (CD80-CD206+). Fourth blot: further characteriza-
tion of M1 as (CD80+CD86+). Fifth blot: further characterization of M2 as (CD206+CD163+). Sixth blot: expression of the PD-L1 
(CD274) on M1 (CD80+CD86+CD274+). Seventh blot: expression of the PD-L2 (CD273) on M1 (CD80+CD86+CD273+). Eighth 
blot: expression of the PD-L1 (CD274) on M2 (CD206+CD163+CD274+). Ninth blot: expression of the PD-L2 (CD273) on M2 
(CD206+CD163+CD273+). FSC: forward scatter; SSC: side scatter.
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cells) in infected patients compared to healthy controls (mean 
± SE: 59.8 ± 3.9 vs. 45.4 ± 3.8, P = 0.018) (Fig. 2).

Differential expression of CD273 and CD274 on M1 and 
M2 subtypes between patients and controls

We detected significantly higher levels of the mean percent-
ages of CD274+ M1 and CD274+ M2 in patients compared 
with controls (mean ± SE: 37.8 ± 4.4 vs. 22.9 ± 2.3, P = 
0.01 and 46.95 ± 3.8 vs. 23.3 ± 2.2, P < 0.001 for M1 and 
M2, respectively). Conversely, there was an accumulation of 
CD273+ M2 in controls compared to patients with mean ± SE 
of 23.3 ± 3.3 vs. 13.1 ± 1.7 (P = 0.03), while no significant 
differences between patients and controls regarding CD273+ 
M1 with mean ± SE of 17.7 ± 1.5 vs. 15.9 ± 0.9 (P = 0.4) 
(Fig. 3).

Differential expression of CD80, CD86, and CD206 on M1 
bewteen patients and controls

As expected, M1 macrophages are resident macrophages re-
sponsible for tissue homeostasis and scavenging of dead cells 
with subsequent immune surveillance. Furthermore, they ex-
hibited high plasticity when switching from classically pro-
inflammatory type M1 to actively anti-inflammatory type M2. 
This phenomenon was clearly defined in the current results 
with significant accumulations of CD80+CD86+ M1 cells and 
CD80+CD206- M1 cells in controls compared to patients with 
mean ± SE of 93.2 ± 0.5 vs. 89.5 ± 1.03 (P = 0.002) and 11.1 ± 
1.1 vs. 6.2 ± 1.0 (P = 0.002), respectively (Fig. 4).

Differential expression of CD80-CD206+ M2 and 
CD206+CD163+ M2 between patients and controls

M2 macrophages activate suppressor T cells reducing tissue 
inflammation caused by viral infection and promoting their 
healing and repair, for that CD80-CD206+ M2 were highly ex-
pressed in patients compared with controls with mean ± SE of 
17.3 ± 2.01 vs. 8.9 ± 1.2 (P = 0.001), respectively; on the other 
side, there was no significant differences in the mean percent-
ages of CD206+CD163+ M2 between patients and controls 
with mean ± SE of 83.2 ± 3.04 vs. 89.2 ± 1.8 (P = 0.3) (Fig. 5).

Correlations between inflammatory indices and mac-
rophages

The results elicited significant positive correlations between 
the PC/MPV ratio and CD80+CD86+ M1 (r = 0.31, P = 0.04). 
At the same time, there was a significant negative correlation 

Table 3.  Clinical and Demographic Data of All Participants

Item Patients 
(n = 27)

Controls 
(n = 27)

Sex, n (%)
  Female 12 (44.5%) 12 (44.5%)
  Male 15 (53.5%) 15 (53.5%)
Age, years, mean ± SD 35 ± 13 37 ± 10
Smoking, n (%) 14 (52%) 12 (44.5%)
Type of viral infections, n (%)
  H1N1 5 (18.5%) -
  H3N2 1 (3.7%) -
  Influenza A no subtype 5 (18.5%) -
  Influenza B 4 (14.8%) -
  COVID-19 12 (44.5%) -
Cough, n (%) 27 (100%) -
Fever, n (%) 25 (93%) -
Myalgia, n (%) 25 (93%) -
Dyspnea, n (%) 24 (89%) -
Oxygen saturation < 93%, n (%) 22 (81%) -

Table 4.  Blood Characteristics of Patients and Controls

Blood elements Groups Mean ± SE P-value
RBCs (× 1012/L) Patients 3.4 ± 0.14 < 0.001

Controls 4.9 ± 0.2
Hb (g/L) Patients 9.8 ± 0.4 < 0.001

Controls 13.1 ± 0.5
Neutrophils (× 109/L) Patients 3.7 ± 0.5 < 0.001

Controls 9.2 ± 1.0
Lymphocytes (× 109/L) Patients 1.1 ± 0.2 0.4

Controls 1.3 ± 0.2
Monocytes (× 109/L) Patients 0.72 ±0.09 0.8

Controls 0.61 ± 0.08
Eosinophils (× 109/L) Patients 0.05 ±0.02 0.6

Controls 0.07 ± 0.03
Basophils (× 109/L) Patients 0.03 ± 0.005 0.3

Controls 0.04 ± 0.01
PC (× 109/µL) Patients 114.0 ± 9.12 < 0.001

Controls 259.3 ± 23.1
MPV (fL) Patients 6.5 ± 0.1 0.001

Controls 10.91 ± 0.2
NLR Patients 4.7 ± 1.0 0.002

Controls 10.2 ± 1.4
LMR Patients 2.5 ± 0.6 0.9

Controls 2.6 ± 0.7
PC/MPV ratio Patients 17.5 ± 1.5 0.006

Controls 25.3 ± 2.3

Data expressed as mean ± SE and analyzed by independent sample t-
test. Hb: hemoglobin; LMR: lymphocyte-to-monocyte ratio; MPV: mean 
platelet volume; NLR: neutrophil/lymphocyte ratio; PC: platelet count; 
RBC: red blood cell; SE: standard error.
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Figure 2. Differences in the mean percentages of macrophage (characterized by CD11B+CD68+ phenotype) between patients 
and controls. Data are expressed as mean ± SE, Mann-Whitney U-test. SE: standard error of the mean.

Figure 3. Differences in immune check points (CD273 and CD274) expressions on M1 and M2 macrophages subtypes between 
patients and controls. Data are expressed as mean ± SE. Mann-Whitney U-test. SE: standard error of the mean.
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between the current ratio and CD80-CD206+ M2 (r = -0.31, P 
= 0.02) (Fig. 6).

Discussion

Our findings indicate a higher proportion of macrophages with 

the specific phenotype (CD68+CD11b+) in patients compared 
to individuals in good health. This observation can potentially 
be attributed to the differentiation of bone marrow and blood 
monocytes into various effector cells with unique antimicro-
bial functions when a mammalian host encounters a virulent 
pathogen [22]. The elevation in circulating monocytes in re-
sponse to infection or non-infectious inflammation is regulat-

Figure 4. Differences in CD80+CD86+ M1 between patients and controls. Data are expressed as mean ± SE. Mann-Whitney 
U-test. SE: standard error of the mean.

Figure 5. Differences in CD206+CD163+ M2 between patients and controls. Data are expressed as mean ± SE. Mann-Whitney 
U-test. SE: standard error of the mean.
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ed by molecules such as CCL2 and CCL7 [23]. These results 
were in harmony with those of Florentin et al, who document-
ed that inflammatory monocytes were increased in the blood 
of hypoxic mice and human pulmonary arterial hypertensive 
patients [24].

Alternatively, Italiani et al presented a different perspec-
tive, suggesting that the accumulation of inflammatory mono-
cytes in inflamed tissues results primarily from their migra-
tion from the bloodstream rather than from their capacity to 
proliferate. It is worth noting that inflammatory signals origi-
nating from microbial sources typically hinder their prolifera-
tion [25]. The research by Davies et al (2013) revealed that 
inflammatory monocyte-derived macrophages can indeed un-
dergo proliferation during specific phases in the resolution of 
zymosan-induced peritonitis [26]. Regarding the inclination 
of macrophage polarization during viral infections, it is im-
portant to understand that macrophage polarization involves 
various activation pathways that enable these cells to execute 
their defensive roles. This versatility allows macrophages to 
adapt and perform specific functions in diverse contexts, em-
phasizing the significant functional diversity that characterizes 
these cells [27, 28]. In this context, our results confirm that 
there is an increase in the M2 in patients rather than the con-
trol and vice versa for M1. These findings could be interpreted 
and explained in light of the individual viruses that are causing 
the infection. Burdo et al have documented that certain viruses 
have the ability to drive macrophage polarization towards the 
M1 phenotype, while others facilitate M2 polarization.

Additionally, various viruses can induce intricate patterns 
of macrophage polarization, which may vary based on factors 
such as viral strains, the stage of infection, and the gender of 
the host. Typically, virus-infected macrophages tend to adopt 
pro-inflammatory M1 phenotypes in the early stages of infec-
tion, transitioning to anti-inflammatory M2 phenotypes in the 

later stages of infection [29]. Another theory that could ex-
plain the variation in the macrophage polarization according to 
the individual virus infection could be supported by the report 
of Ferrer et al, who stated that, in most cases, virulent virus 
strains tend to suppress the antiviral reactions of M1-polarized 
macrophages and push the polarization of macrophages to-
wards the M2 phenotype. Conversely, weakened or attenuated 
virus strains typically promote the M2 phenotype [30]. In this 
context, our results could support the attenuated pathogenic 
nature of the virus infection of the studied group.

Regarding the pattern of expression of immune check-
points on macrophages and monocytes, our results confirm that 
there is increased expression of CD274 (PD-L1) on both types 
of M1 and M2 macrophages compared to the control group. 
These findings partially align with the observations made by 
Lai et al. In their study, they observed an elevation in the ex-
pression of programmed cell death protein 1, also known as 
PD-1 (CD279), and its ligand PD-L1 (CD274), particularly in 
differentiated (CD68+CD11b+) macrophages [24]. However, 
in contrast to our results, they highlighted varying expressions 
of inducible PD-L1 (CD274) and PD-1 (CD279) among dis-
tinct specialized macrophage populations. Furthermore, their 
research revealed a decrease in the levels of these checkpoints 
in THP-1-differentiated M2 macrophages [14]. In another 
investigation conducted by Xiong et al, it was proposed that 
PD-L1 might have an association with M1/M2 polarization, 
resulting in modifications in cytokine release and the expres-
sion of surface markers in macrophages [31]. One potential 
rationale for this observation is that classically activated M1 
macrophages tend to exhibit higher levels of PD-L1 (CD274) 
expression, possibly due to the influence of Th1 cells and a 
combination of LPS/IFN-γ [32].

As regards the differential expression of CD273 (PD-
L2) on different subtypes of macrophages, our results reveal 

Figure 6. Correlations between PC/MPV ratio and, CD80+CD86+ M1, CD80-CD206+ M2. Spearman rho test is used for correla-
tion. PC: platelet count; MPV: mean platelet volume.
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no significant difference in the expression between patients 
and the control group. This could be supported by the find-
ings of Loke and Allison, who reported that PD-L2 is absent 
in inflammatory macrophages but can be prompted to appear 
through alternative activation triggered by IL-4. While PD-L1 
can be readily induced on various antigen-presenting cell lines 
and resident macrophages, it is noteworthy that PD-L2 shows 
its most significant inducibility, specifically in the context of 
inflammatory macrophages [32]. Studying the correlation of 
different macrophage subtypes M1 and M2 revealed a signifi-
cant positive correlation between inflammatory indices (PC/
MPV, NLR) and M1. At the same time, these inflammatory 
indices and M2 had a significant negative correlation. These 
observations are consistent with the general characteristics of 
M1 macrophages, which, when activated classically by IFN-γ, 
tend to secrete increased levels of pro-inflammatory cytokines 
and chemokines. This secretion promotes the activation of Th1 
responses, facilitates complement-mediated phagocytosis, and 
contributes to type I inflammation [11]. In various infections, 
the polarization of macrophages towards the M1 phenotype 
can actually enhance the establishment of viruses. For in-
stance, human immunodeficiency virus (HIV)-1 induces acute 
inflammation and promotes the recruitment of monocytes and 
T cells to the site of viral infection [12].

On the contrary, M2-like macrophages play a role in regu-
lating Th2 responses by producing anti-inflammatory me-
diators. This, in turn, leads to the recruitment of neutrophils, 
monocytes, and T lymphocytes. M2-like macrophages are of-
ten characterized as highly endocytic and partially phagocytic 
[11]. Another study by Feng et al [13] concluded that M1 ac-
tivation promotes inflammation in symptomatic juvenile idi-
opathic arthritis. Conversely, M2a macrophages exhibit a rapid 
response in suppressing inflammation in this context. In cases 
of inactive systemic juvenile idiopathic arthritis, M2b and M2c 
macrophages play a predominant role in curbing inflammation.

Limitations

The current study had some limitations. First, the effector 
function of the macrophages was not assessed by the differ-
ent cytokines milieu to prove the subtype polarization effector 
function. Furthermore, type 2 macrophages have different sub-
types, M2a, M2b, and M2c, which are not investigated in this 
work. Numerous questions still need to be answered and rep-
resent potential avenues for future research. How might these 
findings influence the course of disease and the development 
of therapeutic approaches? Moreover, the customized response 
of the immune system according to the type of infectious agent 
could not be assessed in this work. Most of the available re-
sources and experimental models included the antitumor ef-
fect of macrophages, so we recommend further examination 
of the macrophages in the context of the viral infection perse. 
Checkpoint modulation presents a highly promising strategy. 
Nevertheless, there is a significant demand for more in-depth 
investigations, particularly regarding various checkpoint mol-
ecules and their cell-specific distribution patterns, which can 
have an impact on underlying pathologies.

Conclusion

The examination of clinical specimens obtained from patients 
with signs of acute respiratory viral infection showed the role 
of the macrophage in the immune response. Dysfunction in 
macrophages results in heightened immune activity and in-
flammation, which plays a role in the progression of viral dis-
eases and the emergence of accompanying health issues. This 
malfunction in macrophages is a common characteristic seen 
in various viruses, making it a promising focus for antiviral 
therapies with broad applicability. The immune checkpoint 
could be a target for immune modulation in patients with se-
vere symptoms.

Supplementary Material

Suppl 1. Case 1. A 30-year-old male patient with anterior seg-
ments of the bilateral lower lung lobes showed consolidation 
with mild interlobar thickening and GGO, suggesting broncho-
pneumonia. Case 2. A 42-year-old male patient with bilateral 
lower lung lobes showed GGO with tree-in bud consolidation 
suggesting bronchopneumonia (viral pneumonia) COVID-19, 
CORADS 3, mild severity score. Case 3. A 20-year-old fe-
male patient with bilateral GGO exhibited mild inhomogene-
ous consolidation involving both lower lung lobes, suggesting 
bronchopneumonia.
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