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a b s t r a c t

The COVID-19 pandemics challenges governments across the world. To develop adequate
responses, they need accurate models for the spread of the disease. Using least squares, we
fitted Bertalanffy-Pütter (BP) trend curves to data about the first wave of the COVID-19
pandemic of 2020 from 49 countries and provinces where the peak of the first wave
had been passed. BP-models achieved excellent fits (R-squared above 99%) to all data.
Using them to smoothen the data, in the median one could forecast that the final count
(asymptotic limit) of infections and fatalities would be 2.48 times (95% confidence limits
2.42e2.6) and 2.67 times (2.39e2.765) the total count at the respective peak (inflection
point). By comparison, using logistic growth would evaluate this ratio as 2.00 for all data.
The case fatality rate, defined as the quotient of the asymptotic limits of fatalities and
confirmed infections, was in the median 4.85% (confidence limits 4.4%e6.5%). Our result
supports the strategies of governments that kept the epidemic peak low, as then in the
median fewer infections and fewer fatalities could be expected.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications

Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Modeling approaches

The first wave of the novel COVID-19 disease has challenged governments across the world. Most states reacted swiftly,
closing borders, and imposing stay-at-home rules. Within a few weeks they could curb the further spread of the coronavirus
SARS-CoV2, but the economic costs were high. In the meantime, new waves emerged, and we ask: What lessons could be
drawn from the first wave?

This paper focuses on epidemic modeling using trend analysis, but with a goal that differs from the common applications
of this method. Rather than using trend-lines for the forecasting of epidemic trajectories we used them to smoothen the data,
because the data might have been blurred by random fluctuations and errors (e.g. delays in reporting). The smooth curves
were then used to derive certain statistics for the time-series of infections.
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Trend analysis was already applied successfully for the modeling of COVID-19. For example, exponential (Malthusian)
growth has been used to describe the initial explosive spread of infections (Remuzzi& Remuzzi, 2020). However, exponential
growth is not suitable for the modeling of data with a peak. Such data needmodels with sigmoidal (S-shaped) growth curves.
For this purpose, the Verhulst (1838) model of logistic growth has been particularly popular (Google scholar: about 250
papers per month about “COVID-19” and “logistic growth”). Logistic growth has achieved good fits to data from China (Shen,
2020) and Italy (Vattay, 2020), but for other data the fit has not been that good (Kamrujjaman et al., 2020).

A major drawback of the logistic model is the inflexibility with respect to the inflection point: At the peak of the outbreak
(inflection point) the logistic model predicts a doubling of the current cumulated count as the final size of the disease
(asymptotic size). Thus, logistic growth was not suitable for the study of the ratio of asymptotic size over peak size, because
for logistic growth this ratio is fixed independently of the actual data and the actual policy responses. (A similar argument
applies to many more growth models, e.g. Brody or Gompertz.) Realistic forecasts for this ratio can only be expected from
models that are more flexible with respect to the relation between the inflection point (peak) and the asymptotic limit (final
size).

We therefore use the Bertalanffy-Pütter (BP) model to describe the growth of COVID-19. Its growth curves are solutions of
differential equation (1). The model was introduced by Pütter (1920). Bertalanffy (1957) popularized it for modeling animal
growth and Chowell (2017) introduced it into epidemiology under the name “generalized Richards model”. It was recently
used to describe the first wave of COVID-19 in China (Wu et al., 2020).

y0ðtÞ¼p,yðtÞa � q,yðtÞb (1)
Equation (1) describes cumulative case-counts by a function y(t) of time (t in days). Thereby, t¼ 0 represents the first data-
point and the five free model parameters are the non-negative exponent-pair a < b (logistic growth: a ¼ 1, b ¼ 2), non-
negative scaling constants p and q, and the initial value y(0) ¼ c > 0. (“Free” means that the parameters are determined
from fitting the model to the data.)

Problem of the paper

First, we explored the goodness of fit of the five-parameter BP-model (1) to COVID-19 data. We selected a sample of 49
countries and provinces, whose data for the first wave displayed a peak, i.e. during the first wave the countries had succeeded
in “flattening the curve”. Using themethod of least squares, for each country/provincewe fitted BP-models to two time-series,
cumulated counts of fatalities and of confirmed cases (diagnosed infections).

Second, for each country and time-series (confirmed cases, fatalities) we used the BP-models to compute certain statistics
of practical significance and study themwith statistical methods, such as the asymptotic limits (final sizes of the first wave),
the inflection points (peaks of the first wave) and statistics computed from them, specifically final size over peak size. Given
the sample of 49 countries/provinces, which value of this ratio was typical for the first wave of COVID-19? Could we
distinguish between countries that had a good or a poor performance during the first wave of COVID-19?

Third, to explore the utility of BP-models for forecasting, we fitted it to the initial half of the data and compared its
extrapolation with the actual epidemic trajectories. For this purpose, we considered a calibration by means of weighted least
squares using a new weighing scheme.

2. Method

Data

We retrieved the data for this paper from CSSE (2020). This source collects for various entities (countries and provinces)
the daily counts of confirmed infections, of deaths and of recovered patients, and it updates this information daily. However,
for several countries the source does not record the count of recovered patients, whence for this paper for each of 49 countries
and provinces we used two time-series, fatalities and confirmed cases. To ensure reproducibility of our data, we defined a
reference day (June 18, 2020), so that each time-series started at the first nonzero entry for that country/province (indicator
cases and first fatalities, respectively) and it terminated on the reference day (Table 1). The resulting time-series reported
daily counts for 47e148 days.

The time-series for the confirmed infections in the Chinese province of Hubei was insofar exceptional, as it started with
444 confirmed cases. (As the pandemic started in Hubei and the disease was unknown then, the earlier counts were obtained
with different methods and the source had removed the initial segment of this time-series; the same for the fatalities.)
Further, the data for the USA pertain mainly to the first wave in the Northeast, where a “flattening of the curve” was
discernable, although the first wave in the other states just has begun.

For the choice of our sample of countries, we selected only countries/provinces that had succeeded in the flattening of the
growth curve prior to the reference day. (Thus, the epidemic peak and the final size could be discerned roughly.) We used this
criterion because our research question relates the peak to the final size. Further, wewished to utilize the observation that BP-
type models would be particularly suitable for the modeling of data that include the after-peak stage (Sornette et al., 2020).
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Table 1
Summary of the data.

Country Fatalities Confirmed cases

Start nD ¼ days June 18 Start nC ¼ days June 18

Andorra March 22 88 52 March 2 108 854
Australia: New South Wales March 4 106 48 January 26 144 3137
Austria March 12 98 687 February 25 114 17,203
Belgium March 11 99 9675 February 4 135 60,244
Burkina Faso March 18 92 53 March 10 100 899
Canada: Alberta March 20 90 151 March 6 104 7530
Canada: British Columbia March 9 101 168 January 28 142 2775
Canada: Nova Scotia April 7 72 62 March 16 94 1061
Canada: Ontario March 17 93 2607 January 26 144 34,382
Canada: Quebec March 19 91 5298 February 28 111 54,263
Chad April 28 51 74 March 19 91 854
China: Hubei January 22 86 3222 January 22 148 68,135
Croatia March 19 91 107 February 25 114 2258
Cuba March 18 92 84 March 12 98 2280
Czechia March 22 88 333 March 1 109 10,162
Denmark (mainland) March 14 96 598 February 27 112 12,294
Estonia March 25 85 69 February 27 112 1977
Finland March 21 89 326 January 29 141 7117
France (mainland) February 15 124 29,512 January 24 146 189,906
Germany March 9 101 8851 January 27 143 188,604
Greece March 11 99 187 February 26 113 3203
Hungary March 15 95 567 March 4 106 4078
Ireland March 11 99 1710 February 29 110 25,341
Israel March 21 89 303 February 21 118 19,783
Italy February 21 118 34,448 January 31 139 237,828
Japan February 13 126 935 January 22 148 17,530
Luxembourg March 14 96 110 February 29 110 4085
Malaysia March 17 93 121 January 25 145 8515
Morocco March 10 100 213 March 2 108 8997
Netherlands (mainland) March 6 104 6074 February 27 112 49,204
Niger March 25 85 67 March 20 90 1020
Norway March 14 96 243 February 26 113 8692
Portugal March 17 93 1523 March 2 108 37,672
San Marino March 3 107 42 February 27 112 696
Sierra Leone April 23 56 51 March 31 79 1249
Slovenia March 14 96 109 March 5 105 1503
South Korea February 20 119 280 January 22 148 12,257
Spain March 3 107 28,752 February 1 138 244,683
Sweden March 11 99 5041 January 31 139 54,562
Switzerland March 5 105 1956 February 25 114 31,187
Tajikistan May 2 47 51 April 30 49 5221
Thailand March 1 109 58 January 22 148 3135
Tunisia March 19 91 50 March 4 106 1128
UK (mainland) March 6 104 42,153 January 31 139 299,251
UK: Channel Island March 26 84 48 March 10 100 570
UK: Isle of Man April 1 78 24 March 20 90 336
United Arab Emirates March 20 90 295 January 29 141 43,364
Uruguay March 28 82 24 March 13 97 849
USA (mainland) February 29 110 117,717 January 22 148 2,163,290

Source: CSSE (2020).
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Moreover, we aimed at a sample that represents all parts of the world, including extremely poor and rich countries (e.g.
Burkina Faso and Norway). Also the demographic structure of the countries differed (the case fatality rate is known to increase
with age), as did their medical infrastructures (e.g. access to intense care units), and the transmission patterns (e.g., ethnic and
socio-economic factors, social interactions and clusters may matter). Consequently, for the countries of our sample the re-
actions to and experiences with COVID-19 varied widely, from a lockdown in the Chinese province of Hubei to mere appeals
for more personal responsibility in Sweden, from intense care units that remained below their capacity in Austria to a
breakdown of the public health system in Italy.

As official COVID-19 data may be distorted for political reasons, we used an independent and well-esteemed source (CSSE,
2020). However, there remained a problem of underreporting, as a peculiarity of COVID-19 is the large number of asymptotic
carriers. According to one source (Ferretti et al., 2020), up to 50% of COVID-19 infections may happen from carriers that have
not developed symptoms yet. Further, the pre-symptomatic incubation period is relatively long (WHO, 2020.) Thus, to detect
and insulate infected persons depends largely on the intensity of testing, which in turn may vary considerably over time (e.g.
initial shortage of test kits) and between countries. (Thus, in China 86% of infections may have remained undetected prior to
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the lockdown of Wuhan: Li et al., 2020.) To reduce this type of inevitable data uncertainty, we used two time-series per
country in parallel, death tolls in addition to the counts of confirmed infections, as we did not expect a significant number of
undetected COVID-19 deaths. However, the two trajectories did not develop perfectly in parallel, as the case fatality rate
increased significantly, when in some countries the public health systems were overcharged (Vattay, 2020).

Calibration and model selection

We used the (ordinary) least-squaresmethod, which is the most common tool of calibration, and variants of it. It measures
the goodness of the fit to the data by means of SSE, the sum of squared errors (fit residuals) in equation (2). We sought five
parameters (a, b, c, p, q), so that for the solution y(t) of equation (1) the following sum SSEwas minimized, whereby yi was the
total count up to time ti and n was the length of the time-series of data-points:

SSE¼
Xn
i¼1

ðyi � yðtiÞÞ2 (2)
In the context of forecasting we developed an alternative measure for the goodness of fit, weighted least-squares that
aimed at finding parameters to minimize the following sum (3) of weighted squared errors SWSE:

SWSE¼
Xn
i¼1

ðyi � yðtiÞÞ2
jy �ðtiÞj

(3)
Another measure for the goodness of fit related to SSE is the coefficient of determination, R-squared (R2) of equation (4). It
compares the model-fit with the fit by the trivial constant model (relative improvement) and can be used to assess the
goodness of fit across different datasets.

R2 ¼1� SSEPn
k¼1ðyk �meanðy1; y2;…ynÞÞ2

(4)
In view of certain limitations for the interpretation of R-squared, in this paper we did not use it for model-selection. For
such a purpose the Akaike information criterion (AIC), equation (5), was shown to be more selective (Spiess & Neumeyer,
2010). We therefore used AIC for model comparison and used R-squared merely to inform about the goodness of fit by
means of a well-known statistic.

AIC¼n,ln
�
SSE
n

�
þ 2,K (5)
Here, n is the number of data-points and K is the number of optimized parameters of the model. (K ¼ 6 for the general BP-
model, counting a, b, c, p, q and SSE, and K¼ 4 for logistic growth, where a¼ 1, b¼ 2 are not optimized.) When comparing two
models, themodel with the lower AIC is selected (Burnham& Anderson, 2002;Motulsky& Christopoulos, 2003), whereby AIC
penalizes the model with more parameters. When comparing a model with the best-fit model (AIC and AICmin, respectively),
then equation (6) computes the probability, §, that the (worse) model with higher AIC would be “true”, when compared to
the model with the least AIC (Burnham & Anderson, 2004). Note that a difference of AIC above 10 strongly supports the
refutation of the model with a higher AIC (§ < 0.7%).

§¼
exp

�
� AIC�AICmin

2

�

1þ exp
�
� AIC�AICmin

2

� (6)
BP-model and optimization

The BP-model generalizes several well-known models. Special cases are the Brody (1945) model of bounded exponential
growth with exponent-pair (a, b) ¼ (0, 1), Verhulst (1838) logistic growth with pair (1, 2), or the model of von Bertalanffy
(1957) with (2/3, 1). The Gompertz (1832) model fits into this scheme, too: It is the limit case of the pair (1, 1), but with a
different differential equation (Marusic & Bajzer, 1993). Equation (1) also includes several models with four free parameters,
such as the generalized Bertalanffy model (b ¼ 1 with 0 � a < 1 variable), the Richards (1959) model (a ¼ 1 with b > 1
variable), or the generalized logistic model (b ¼ aþ1 with a > 0 variable; c.f. Roosa et al., 2020).
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For the BP-model, the relation between the asymptotic limit (size) ymax and the inflection point at time tinfl with size yinfl is
given by equations (7) and (8). Thereby, the asymptotic limit estimates the final size of (the first wave of) the disease; the
inflection point represents the peak of (the first wave of) the epidemics. If q¼ 0, then the growth function is unbounded, and if
a ¼ 0, then there is no inflection point.

ymax ¼
�
p
q

� 1
b�a

if q>0 (7)

�a� 1
b�a
yinfl ¼ b
,ymax if a>0 and q>0 (8)
As follows from equation (8), for logistic growth the ratio ymax/yinfl is fixed (ratio ¼ 2, because a ¼ 1, b ¼ 2), whereas for
model (1) with variable exponent-pairs any ratio larger than 1 can be attained. Further, model (1) always fits better to the data
than the logistic growth model, as it generalizes this model. (The same for any other three-parameter BP-model with given
exponent-pair.)

For certain BP-models with three or four parameters, there are different parametrizations that aim at describing model (1)
in terms of growth parameters that are meaningful for animals (c.f. Tjørve & Tjørve, 2017). For the general five-exponent BP-
model, such parametrizations are not available, as although equation (1) can be solved analytically, non-elementary functions
are needed for the solution of the general equation (Ohnishi et al., 2014).

Standard optimization tools did not always identify the best-fit parameters for the five-parameter BP-model. We therefore
used a custom-made optimization method using the Mathematica code from Renner-Martin et al. (2018). The method
searches the best-fit exponent-pair on a given search-grid (which is adapted during optimization) and for each fixed grid-
point exponent-pair (a, b) it uses a variant of simulated annealing to identify the best-fitting remaining parameters (c, p,
q). Simulated annealing (Vidal, 1993) uses elements of a random search to escape a suboptimal local minimum, which is an
advantage in the presence of many local optima (as for the present optimization problem). This approach identified BP-model
parameters with growth curves close to the data.

Statistical analysis

For each dataset, we used the best-fit BP-model to compute various statistics. For example, the ratios ymax/yinfl for the time
series of fatalities defined a random sample (of size 49) and we then used standard methods from statistics to further analyze
this sample. Note that our paper aimed at a comparison of countries in terms of these COVID-19 statistics, following the
example of literature in comparative international law (e.g. Brunner & Tschohl, 2014; Hathaway, 2002; Magesan, 2013).
Therefore, we were not interested in the variability of a statistic for a single time-series, but we studied the variability of a
statistic across different the time-series for different countries.

In view of the unknown distributions and the small sample size, we used primarily non-parametric methods, e.g.
Spearman rank test for correlations, Siegel-Tukey-test for the variance, sign-test for location parameters. (The true distri-
butions of our statistics were most likely complicated; c.f. ratio-distributions in Díaz-Franc�es & Rubio, 2013.)

In this paper, all confidence intervals assume 95% confidence. When we used nonparametric tests to establish confidence
intervals, we also informed about the actual (higher) level of confidence. For instance, when we used the one-sided sign test
for the confidence interval of a median (Hollander, 1999), we informed about the P-values of the lower and upper confidence
limits, as in view of the discrete nature of the test these were not always equal.

For some statistics we were interested in their distributions. Thereby, we used the Anderson-Darling-test to check certain
simple assumptions for continuous distributions. (For distributions different from the normal distributionwe applied this test
using 5000 Monte-Carlo simulations.) For a P-value below 5% we refuted the distribution assumption. To check, if the un-
derlying distribution of samples A and B differed, we tested, if sample A was distributed according to the smooth kernel
distribution of sample B.

3. Results and discussion

R-squared of the best-fit BP-model curves

Table 2 and Table 3 lists the best-fit parameters of the BP-model and inform about the goodness of fit: Note that other than
suggested by Chowell (2017), optimization needed exponents a > 1. For the 49 time-series of fatalities, R-squared ranged
between 99.06% and 99.98% and for the time-series of confirmed cases R-squared ranged between 98.46% and 99.97%. R-
squared could be interpreted as a statistic associated to each time-series. Under this viewpoint, the median of the pooled R-
squared values (i.e. 98 values) was 99.83%. The lower and upper confidence limits for the medianwere 99.785% and 99.865%.
(For each of these limits a one-sided sign-test for the hypothesis that this limit would be a median resulted in the P-value
1.668%, whence the actual confidence level was 96.7%.)

For logistic growth, the fit was excellent, too, with the 98 R-squared values in the range between 96.50% and 99.93%.While
the R-squared values for logistic growth were smaller, but still comparable to those of the best-fit BP-model, the Akaike
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Table 2
Best-fit BP-parameters, goodness of fit, and comparison with logistic growth for the cumulative counts of deceased.

Country Parameters Goodness of fit Logistic

a b c p q SSE R2 DAIC R2

Andorra 0.52 0.96 1.02E-01 9.15E-01 1.60E-01 7.59Eþ01 99.66% 130.3 98.45%
AU: NSW 0.52 4.92 3.24E-01 2.00E-01 7.96E-09 2.42Eþ02 99.30% 4.9 99.24%
Austria 0.82 1.20 6.74E-02 6.83E-01 5.76E-02 7.30Eþ03 99.88% 135.0 99.50%
Belgium 0.99 1.14 1.14Eþ00 6.31E-01 1.60E-01 1.04Eþ06 99.93% 168.7 99.58%
Burkina Faso 0.21 2.94 8.83E-02 7.15E-01 1.36E-05 7.42Eþ01 99.73% 70.6 99.39%
CAN: Alberta 0.45 2.36 8.62E-04 5.78E-01 3.81E-05 5.77Eþ02 99.78% 77.9 99.45%
CAN: BC 0.90 1.05 5.23E-01 5.00E-01 2.29E-01 7.75Eþ02 99.79% 103.2 99.40%
CAN: NS 0.93 1.29 3.66E-01 3.91E-01 8.85E-02 7.91Eþ01 99.78% 43.1 99.58%
CAN: ONT 0.85 1.20 8.15E-02 5.38E-01 3.38E-02 4.78Eþ04 99.95% 167.7 99.65%
CAN: QU 0.80 1.19 6.70E-02 6.68E-01 2.24E-02 2.22Eþ05 99.93% 176.2 99.52%
Chad 0.63 1.01 6.78E-01 1.27Eþ00 2.49E-01 1.53Eþ02 99.43% 41.3 98.61%
China: Hubei 0.99 1.34 2.27Eþ01 3.52E-01 2.09E-02 7.22Eþ04 99.94% 90.8 99.81%
Croatia 0.72 2.18 7.13E-01 2.39E-01 2.64E-04 2.78Eþ02 99.80% 26.8 99.72%
Cuba 1.02 1.81 7.70E-01 1.40E-01 4.24E-03 6.80Eþ01 99.93% 9.1 99.92%
Czechia 0.59 0.99 1.54E-01 1.39Eþ00 1.35E-01 1.96Eþ03 99.81% 174.4 98.59%
Denmark 0.75 1.07 1.41E-01 9.00E-01 1.16E-01 2.86Eþ03 99.93% 218.4 99.32%
Estonia 0.43 1.08 5.35E-02 9.06E-01 5.66E-02 1.10Eþ02 99.73% 143.4 98.49%
Finland 1.11 1.34 2.17Eþ00 2.21E-01 5.83E-02 3.60Eþ03 99.74% 21.0 99.65%
France 1.08 1.22 3.89E-01 2.88E-01 6.84E-02 2.36Eþ07 99.88% 129.7 99.63%
Germany 0.90 1.17 4.78E-01 6.51E-01 5.60E-02 4.90Eþ05 99.96% 215.2 99.63%
Greece 0.60 1.02 7.29E-02 8.27E-01 9.12E-02 9.59Eþ02 99.75% 169.7 98.53%
Hungary 0.79 1.26 1.89E-02 4.62E-01 2.31E-02 3.11Eþ03 99.93% 178.5 99.49%
Ireland 1.19 1.20 1.54Eþ00 2.41Eþ00 2.23Eþ00 7.99Eþ04 99.83% 29.0 99.76%
Israel 0.78 1.01 2.67E-01 9.59E-01 2.58E-01 1.55Eþ03 99.84% 153.8 99.04%
Italy 0.93 1.03 5.53E-01 1.13Eþ00 3.97E-01 1.04Eþ07 99.95% 281.7 99.42%
Japan 1.22 1.50 1.74Eþ00 6.23E-02 9.09E-03 1.47Eþ04 99.91% 7.4 99.90%
Luxembourg 0.77 1.14 2.63E-01 5.34E-01 9.32E-02 3.70Eþ02 99.74% 104.0 99.20%
Malaysia 0.43 1.08 2.57E-01 1.37Eþ00 6.12E-02 1.85Eþ02 99.85% 206.5 98.51%
Marocco 0.87 1.13 6.71E-02 5.62E-01 1.40E-01 2.52Eþ03 99.58% 102.2 98.79%
Netherlands 0.84 1.20 1.40E-01 7.61E-01 3.30E-02 1.49Eþ05 99.97% 277.3 99.61%
Niger 0.33 10.22 8.11E-01 3.88E-01 4.15E-19 8.20Eþ01 99.82% 64.1 99.60%
Norway 0.95 1.17 3.77E-01 5.46E-01 1.64E-01 9.25Eþ02 99.87% 103.1 99.62%
Portugal 0.63 0.96 8.82E-02 1.74Eþ00 1.51E-01 3.33Eþ04 99.86% 199.5 98.79%
San Marino 0.68 1.26 2.51E-02 4.84E-01 5.54E-02 1.15Eþ02 99.44% 69.9 98.89%
Sierra Leone 0.69 2.18 1.50Eþ00 2.78E-01 7.82E-04 5.62Eþ01 99.67% 18.1 99.51%
Slovenia 0.83 1.24 3.55E-02 4.45E-01 6.49E-02 1.74Eþ02 99.89% 134.7 99.53%
South Korea 0.71 1.75 4.43Eþ00 3.15E-01 9.19E-04 1.45Eþ03 99.86% 90.5 99.70%
Spain 0.90 1.12 4.00E-01 9.93E-01 1.05E-01 2.38Eþ07 99.81% 117.1 99.40%
Sweden 0.84 1.05 3.28E-01 7.63E-01 1.25E-01 3.55Eþ05 99.89% 177.4 99.29%
Switzerland 0.86 1.31 5.97E-02 5.66E-01 1.88E-02 1.14Eþ04 99.98% 265.6 99.75%
Tajikistan 0.31 3.32 9.68E-01 1.20Eþ00 1.00E-05 9.05Eþ01 99.20% 4.3 99.05%
Thailand 1.00 1.41 5.48E-03 3.14E-01 5.99E-02 1.01Eþ02 99.83% 103.0 99.56%
Tunesia 0.61 1.02 1.12E-01 7.56E-01 1.54E-01 1.64Eþ02 99.23% 76.1 98.15%
UK 0.95 1.02 8.53E-01 1.31Eþ00 6.22E-01 3.20Eþ07 99.88% 180.1 99.27%
UK: CI 1.26 1.41 1.04Eþ00 3.31E-01 1.87E-01 1.86Eþ02 99.20% 20.1 98.93%
UK: IM 1.46 1.59 2.65E-01 5.61E-01 3.72E-01 3.35Eþ01 99.49% 29.9 99.21%
UAE 1.19 1.36 1.26Eþ00 1.79E-01 6.82E-02 1.75Eþ03 99.84% 20.0 99.79%
Uruguay 0.00 3.16 8.68E-01 4.68E-01 1.97E-05 3.78Eþ01 99.06% 39.3 98.40%
USA 0.95 1.04 7.25E-01 9.12E-01 3.17E-01 1.50Eþ08 99.93% 220.5 99.44%

Notes: Countries the order of Table 1 (names abbreviated); x.xxEþ/eyy means x.xx,10þ/eyy (all numbers rounded to the two displayed decimals);
DAIC ¼ AIC (logistic model) minus AIC (best-fit BP-model).
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information criterion indicated that logistic growth was false in comparison to the best-fit BP-model, except for one time-
series (Canada, Alberta, cumulated confirmed cases). For 92 of the 98 time series, logistic growth was most likely false
(AIC difference of 10 or higher).

The good fit of the general BP-model to all data confirmed the utility of our custom-made approach of grid-optimization,
while well-established optimization tools failed to converge. An example for such a failure relates to the Levenberg-Marquart
(LM) algorithm that was employed by Wu et al. (2020): In terms of R-squared, the supporting information of that paper
reported for Shanghai R2 ¼ 86.7% for the five-parameter BP-model, while for logistic growth they reported the better fit
R2¼ 88.1%. Thus, the LM-algorithm failed to find the optimal model parameters for the five-parameter BP-model, because the
general model necessarily should achieve a better fit than its special case of logistic growth.

Finally, we note that we fitted the model curve to the cumulated data and not to the daily new cases, which display much
more random fluctuation and therefore results in a lower R-squared. By data-fitting to daily cases we mean the fitting of the
temporal derivativem’(t) to the daily data. In a different context we have shown that the growth curvem(t) with the best fit to
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Table 3
Best-fit BP-parameters, goodness of fit, and comparison with logistic growth for the cumulative counts of confirmed cases.

Country Parameters Goodness of fit Logistic

a b c p q SSE R2 DAIC R2

Andorra 0.89 1.34 2.77E-02 5.50E-01 2.77E-02 6.04Eþ03 99.94% 156.9 99.74%
AU: NSW 1.08 1.59 1.17E-02 2.00E-01 3.34E-03 2.55Eþ05 99.91% 33.1 99.89%
Austria 0.93 1.26 3.40E-01 6.55E-01 2.66E-02 2.17Eþ07 99.55% 68.3 99.15%
Belgium 1.09 1.18 6.34E-01 3.06E-01 1.14E-01 5.37Eþ07 99.94% 190.5 99.73%
Burkina Faso 0.63 0.91 1.63E-01 1.78Eþ00 2.63E-01 3.34Eþ04 99.63% 160.1 98.08%
CAN: Alberta 1.26 1.69 8.03Eþ01 2.59E-02 5.70E-04 2.52Eþ06 99.71% �0.2 99.70%
CAN: BC 0.92 1.31 1.84E-02 2.57E-01 1.17E-02 6.60Eþ05 99.60% 100.2 99.17%
CAN: NS 0.64 3.08 7.63Eþ00 7.35E-01 3.08E-08 6.30Eþ03 99.96% 37.9 99.93%
CAN: ONT 0.97 1.27 1.81E-01 2.03E-01 8.61E-03 5.68Eþ07 99.74% 124.9 99.36%
CAN: QU 0.73 1.65 1.33E-02 1.10Eþ00 4.51E-05 3.59Eþ07 99.92% 134.2 99.73%
Chad 1.27 1.35 5.18E-01 2.41E-01 1.40E-01 1.53Eþ04 99.85% 6.8 99.84%
China: Hubei 0.61 4.09 9.87Eþ01 7.18Eþ00 1.10E-16 2.15Eþ08 99.63% 13.1 99.59%
Croatia 0.89 1.33 2.14E-02 4.93E-01 1.65E-02 5.62Eþ04 99.94% 186.0 99.68%
Cuba 0.9 1.08 8.07E-01 6.93E-01 1.73E-01 1.87Eþ05 99.71% 100.7 99.16%
Czechia 0.86 0.99 1.94Eþ00 1.46Eþ00 4.41E-01 9.92Eþ06 99.26% 99.0 98.09%
Denmark 0.89 1.04 1.81Eþ00 9.13E-01 2.22E-01 2.66Eþ06 99.88% 150.0 99.53%
Estonia 0.87 1.14 1.99E-01 6.77E-01 8.82E-02 2.03Eþ05 99.64% 88.6 99.19%
Finland 0.93 1.36 2.92E-02 2.40E-01 5.23E-03 3.93Eþ05 99.97% 248.3 99.79%
France 0.99 1.53 1.55E-01 2.18E-01 3.13E-04 2.21Eþ09 99.77% 43.8 99.68%
Germany 1.09 1.2 6.35E-01 2.59E-01 6.84E-02 1.56Eþ09 99.83% 134.7 99.54%
Greece 0.84 1.1 3.72E-01 8.38E-01 1.04E-01 4.93Eþ05 99.64% 116.0 98.97%
Hungary 0.92 1.14 5.17E-01 5.06E-01 8.08E-02 1.63Eþ05 99.94% 177.0 99.64%
Ireland 0.79 1.85 6.94E-03 7.85E-01 1.70E-05 9.19Eþ06 99.92% 51.0 99.87%
Israel 1.02 1.24 3.59E-01 3.69E-01 4.32E-02 1.04Eþ07 99.84% 99.8 99.60%
Italy 1.02 1.13 9.21E-01 4.45E-01 1.14E-01 7.31Eþ08 99.94% 258.6 99.63%
Japan 1.26 1.75 2.00Eþ01 2.07E-02 1.76E-04 9.37Eþ06 99.88% 32.2 99.85%
Luxembourg 0.93 1.21 2.19E-01 6.78E-01 6.66E-02 6.63Eþ05 99.74% 112.6 99.26%
Malaysia 0.93 1.29 1.41E-01 2.55E-01 9.89E-03 1.08Eþ07 99.29% 84.9 98.69%
Marocco 0.99 1.06 6.67E-01 7.45E-01 3.93E-01 1.03Eþ06 99.91% 136.7 99.67%
Netherlands 0.94 1.06 8.81E-01 9.91E-01 2.72E-01 3.25Eþ07 99.91% 178.7 99.56%
Niger 0.75 0.97 2.23E-01 1.66Eþ00 3.65E-01 1.60Eþ05 98.46% 70.0 96.50%
Norway 0.89 1.02 7.35E-01 1.42Eþ00 4.39E-01 1.48Eþ06 99.86% 178.2 99.32%
Portugal 0.89 0.9 1.26Eþ00 1.31Eþ01 1.18Eþ01 1.19Eþ08 99.33% 110.2 98.07%
San Marino 0.3 5.98 2.74E-04 1.99Eþ00 1.57E-16 1.72Eþ04 99.74% 63.5 99.53%
Sierra Leone 0.94 1.14 3.92E-01 3.62E-01 8.27E-02 2.57Eþ04 99.80% 48.8 99.62%
Slovenia 0.41 2.48 4.63E-05 3.62Eþ00 9.90E-07 1.74Eþ04 99.93% 152.0 99.70%
South Korea 0.99 1.27 2.65E-01 3.77E-01 2.77E-02 4.18Eþ07 98.66% 46.1 98.11%
Spain 1.06 1.22 4.78E-01 2.70E-01 3.72E-02 2.34Eþ09 99.84% 139.0 99.55%
Sweden 0.88 0.98 5.27E-01 5.91E-01 1.83E-01 1.55Eþ08 99.59% 118.4 99.01%
Switzerland 0.95 1.15 3.32E-01 8.17E-01 1.03E-01 6.67Eþ06 99.96% 240.6 99.66%
Tajikistan 1.01 1.3 6.69Eþ01 3.43E-01 2.84E-02 2.82Eþ05 99.82% 26.0 99.67%
Thailand 1.1 1.45 4.51E-02 1.66E-01 9.99E-03 4.07Eþ05 99.85% 82.7 99.74%
Tunesia 0.83 1.29 4.21E-02 6.27E-01 2.53E-02 3.86Eþ04 99.79% 116.7 99.33%
UK 1.01 1.2 6.92E-01 2.46E-01 2.23E-02 9.18Eþ08 99.95% 236.7 99.71%
UK: CI 0.88 1.3 2.12E-02 6.37E-01 4.47E-02 5.81Eþ03 99.87% 90.9 99.66%
UK: IM 1.05 1.35 4.51Eþ00 3.67E-01 6.42E-02 2.95Eþ03 99.74% 19.4 99.66%
UAE 0.91 1.43 7.87E-02 2.10E-01 7.00E-04 1.84Eþ07 99.94% 111.7 99.85%
Uruguay 0.21 0.57 1.64Eþ00 1.32Eþ01 1.10Eþ00 2.46Eþ04 99.58% 182.4 97.16%
USA 1.01 1.08 8.09E-01 4.51E-01 1.61E-01 1.77Eþ11 99.79% 165.4 99.33%

Note as for Table 2.
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the cumulated data may be suitable to model the daily data, too, if a time-shift ts is added (Ziegler et al., 2020). The reason,
why some authors prefer fitting m’(t) to daily data rather than fitting m(t) to cumulated data is the possible underestimation
of the size of the confidence intervals for the parameters (Shen, 2020). This problem does not matter for this paper, as we
focus on comparisons of countries.

As for a limitation, note that the grid-optimization of this paper was not suitable to compute confidence intervals for the
best-fit BP-model parameters to a particular time-series. The reason is the CPU-time needed for optimization: To estimate
confidence intervals, the optimization would have to be repeated for several hundred random perturbations of the data.
However, for the problem of this paper such confidence bounds were not needed, as we used the best-fit model merely to
smoothen the data by means of a sigmoidal growth function and compute the inflection point. Thereby, we were not
interested in the variability of the inflection point with respect to a specific time-series (confidence bounds), because we
compared the inflection points from different time-series of different countries, wherewe expected amuch higher variability.
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Asymptotic limits and forecasting from subsamples

Fig. 1 illustrates a difficulty in estimating the final size of the first wave. The cumulated counts of fatalities in Austria (blue
dots) continued to increase slowly, as the epidemics did not end with the first wave. (Specifically, there was a jump at t ¼ 76
from 645 to 668 fatalities.) Therefore, there was no clear-cut definition of the “end of the first wave” and of its final size. We
explored this issue by comparing for two calibrations (SSE and SWSE) the BP-model growth curves fitted to the full data (96
data-points) and the one fitted to the initial half of the data (48 data-points). For SSE, the growth curves fitted well to the first
55 data-points and to the data-points after the jump. Thereby the curve fitted to the initial 48 data-points (red solid line) had a
slightly lower asymptotic limit than the one fitted to the full data (black solid line). This observation generalizes, as for SSE the
asymptotic limit computed for an initial segment of the data in general underestimates the final size (Kühleitner et al., 2019).
Thus, SSE could be used if all data-points came from the first wave. The growth curve for SWSE that was fitted to the initial 48
data-points (dashed red line) appeared to fit best to the initial 76 data-points, but it fitted poorly to the data-points after the
above-mentioned jump. Thus, this growth curve could be used, if the first wave ended prior to the jump. The growth curve for
SWSE that was fitted to the full data (dashed black line) appeared to fit worst, whereby the weights for SWSE by design
tolerate a higher variability in the total count during the epidemic peak (where data uncertainty might be largest).

In view of the similar behavior of the two growth curves for SSE (solid lines) and the problematic fit of the latter SWSE
growth curve, we decided to analyze the country performances by fitting a BP-growth curve to the full data and use SSE for
calibration.

In the following sense this decision led us to implicitly assume that for our data the first wave lasted till the reference day
(June 18) or ended only shortly before it. For, in the median over the considered time-series the cumulated counts on the
reference day (Table 1), i.e. the maximal count max(yi), differed barely from the asymptotic limits ymax of the BP-model curves
that were fitted to the 98 time-series (Table 4). Thereby, equation (7) was used to compute ymax and we used the quotients
ymax/max(yi) as a test-statistic (Table 5). For the combined sample of 98 quotients, the median of the quotients was 0.994,
whereby the lower and upper confidence limits were 0.9865 and 1. (The P-values of one-sided sign-tests were 1.668% and
2.72%, respectively, amounting to 95.6% confidence.) Thus, in the median the quotients were close to one, but slightly smaller.
(This was to be expected, as the epidemics continued after the first wave.)

Notably, the different types of time-series differed with respect to the quotients ymax/max(yi): The variance of the two
samples of 49 quotients, one for fatalities and the other for confirmed cases, differed significantly (Siegel-Tukey test: P-value
close to 0). Indeed, 95%of the quotients for the time-series of fatalities were in the interval between 0.954 and 1.131 (2.5% and
97.5% quantiles), while the same interval for the confirmed cases had the endpoints 0.871 and 2.013.
Forecasting the final size from the peak

We utilized the good approximation of the data by BP-growth functions (calibration: SSE) to obtain estimates for the peak
yinfl (inflection point) from equation (8). Next, when comparing the final size and the peak size of the first wave of the ep-
idemics we could ask:What forecast about the final size could be drawn at the peak, i.e.: howmany further victimswere to be
Fig. 1. Total count of deceased since the begin of the COVID-19 epidemics in Austria (blue dots), and four lines for the BP-model growth-curves with best fit to
100% (black) and 50% (red) of the data, using SSE (solid) and SWSE (dashed) for calibration.
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Table 4
Further parameters (computed from the best-fit BP-model parameters).

Country fatalities confirmed cases

ymax yinfl tinfl ymax yinfl tinfl

Andorra 5.25Eþ01 1.30Eþ01 10.64 7.63Eþ02 3.07Eþ02 26.90
AU: NSW 4.81Eþ01 2.89Eþ01 46.72 3.06Eþ03 1.43Eþ03 61.35
Austria 6.70Eþ02 2.46Eþ02 25.79 1.64Eþ04 6.52Eþ03 30.02
Belgium 9.60Eþ03 3.75Eþ03 32.79 5.94Eþ04 2.46Eþ04 64.83
Burkina Faso 5.36Eþ01 2.04Eþ01 19.20 9.33Eþ02 2.51Eþ02 20.61
CAN: Alberta 1.55Eþ02 6.49Eþ01 32.65 7.19Eþ03 3.63Eþ03 47.48
CAN: BC 1.83Eþ02 6.53Eþ01 36.12 2.74Eþ03 1.11Eþ03 68.19
CAN: NS 6.21Eþ01 2.50Eþ01 20.75 1.06Eþ03 5.54Eþ02 30.01
CAN: Ontario 2.73Eþ03 1.02Eþ03 40.65 3.74Eþ04 1.52Eþ04 92.65
CAN: Quebec 6.06Eþ03 2.19Eþ03 45.08 5.89Eþ04 2.43Eþ04 57.34
Chad 7.30Eþ01 2.11Eþ01 8.21 8.76Eþ02 4.08Eþ02 56.06
China: Hubei 3.21Eþ03 1.35Eþ03 22.10 6.79Eþ04 3.93Eþ04 20.33
Croatia 1.06Eþ02 4.96Eþ01 33.97 2.25Eþ03 9.02Eþ02 36.00
Cuba 8.34Eþ01 4.04Eþ01 34.28 2.25Eþ03 8.15Eþ02 33.83
Czechia 3.41Eþ02 9.36Eþ01 16.38 9.69Eþ03 3.28Eþ03 30.12
Denmark 6.05Eþ02 1.99Eþ02 24.17 1.25Eþ04 4.43Eþ03 38.38
Estonia 7.13Eþ01 1.73Eþ01 11.98 1.90Eþ03 6.97Eþ02 31.19
Finland 3.26Eþ02 1.44Eþ02 32.38 7.33Eþ03 3.03Eþ03 75.24
France 2.89Eþ04 1.21Eþ04 54.82 1.84Eþ05 8.22Eþ04 73.29
Germany 8.84Eþ03 3.35Eþ03 35.13 1.82Eþ05 7.60Eþ04 65.29
Greece 1.91Eþ02 5.39Eþ01 21.16 3.01Eþ03 1.07Eþ03 30.59
Hungary 5.84Eþ02 2.16Eþ02 37.93 4.17Eþ03 1.57Eþ03 41.86
Ireland 1.69Eþ03 7.31Eþ02 40.18 2.52Eþ04 1.13Eþ04 44.99
Israel 3.02Eþ02 9.80Eþ01 20.62 1.71Eþ04 7.03Eþ03 42.47
Italy 3.47Eþ04 1.25Eþ04 39.99 2.37Eþ05 9.33Eþ04 58.40
Japan 9.64Eþ02 4.61Eþ02 78.27 1.68Eþ04 8.62Eþ03 85.05
Luxembourg 1.12Eþ02 3.88Eþ01 21.80 3.97Eþ03 1.55Eþ03 27.09
Malaysia 1.19Eþ02 2.89Eþ01 10.35 8.35Eþ03 3.36Eþ03 71.40
Marocco 2.07Eþ02 7.59Eþ01 27.32 9.39Eþ03 3.54Eþ03 52.51
Netherlands 6.12Eþ03 2.27Eþ03 33.78 4.82Eþ04 1.77Eþ04 37.80
Niger 6.56Eþ01 4.64Eþ01 47.06 9.77Eþ02 3.03Eþ02 18.25
Norway 2.38Eþ02 9.25Eþ01 24.48 8.51Eþ03 2.98Eþ03 26.79
Portugal 1.65Eþ03 4.60Eþ02 24.47 3.69Eþ04 1.21Eþ04 36.00
San Marino 4.19Eþ01 1.45Eþ01 17.73 6.83Eþ02 4.04Eþ02 48.24
Sierra Leone 5.15Eþ01 2.38Eþ01 19.90 1.61Eþ03 6.13Eþ02 51.80
Slovenia 1.10Eþ02 4.11Eþ01 26.06 1.48Eþ03 6.20Eþ02 21.66
South Korea 2.74Eþ02 1.15Eþ02 31.52 1.11Eþ04 4.56Eþ03 41.59
Spain 2.77Eþ04 1.02Eþ04 30.55 2.37Eþ05 9.86Eþ04 60.11
Sweden 5.50Eþ03 1.90Eþ03 43.18 1.22Eþ05 4.16Eþ04 123.46
Switzerland 1.94Eþ03 7.61Eþ02 32.08 3.08Eþ04 1.18Eþ04 30.27
Tajikistan 4.86Eþ01 2.21Eþ01 9.25 5.36Eþ03 2.25Eþ03 20.71
Thailand 5.69Eþ01 2.46Eþ01 36.21 3.05Eþ03 1.38Eþ03 67.44
Tunesia 4.87Eþ01 1.39Eþ01 12.79 1.08Eþ03 4.13Eþ02 28.44
UK 4.27Eþ04 1.55Eþ04 41.10 3.10Eþ05 1.25Eþ05 80.74
UK: CI 4.59Eþ01 2.17Eþ01 23.44 5.58Eþ02 2.20Eþ02 23.41
UK: IM 2.37Eþ01 1.23Eþ01 20.75 3.34Eþ02 1.44Eþ02 16.91
UAE 2.91Eþ02 1.33Eþ02 44.36 5.81Eþ04 2.44Eþ04 109.48
Uruguay 2.42Eþ01 NA NA 9.90Eþ02 6.18Eþ01 3.23
USA 1.25Eþ05 4.56Eþ04 52.73 2.40Eþ06 9.23Eþ05 94.86

Notes: tinfl is the solution of y(t) ¼ yinfl (we used only yinfl but reported tinfl for the sake of completeness); NA means no inflection point; otherwise as in
Table 2.
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expected once the peak had been reached? Thereby, countries that had comparably low peak counts (yinfl) had comparably
low final counts at the end of the first wave (asymptotic limit ymax). While for both types of data (confirmed cases, fatalities)
the correlation between peak size and final sizewas high (Spearman rho close to 1) and highly significant (Spearman rank test
for independence: P-values close to 0), this correlation was associated to country size. To eliminate this dependency, we
studied the ratios ymax/yinfl for the 98 time-series (Table 5).

Fig. 2 illustrates the use of the BP-model for this problem by the example of Burkina Faso: The blue dots represent the
reported fatalities. To smoothen the data, we identified the best-fit trajectory of the best fitting BP-model (black curve). We
then used this model curve to estimate the epidemic peak (red: inflection point) and the final size (red line: asymptotic limit).
While the fit by the logistic growth curve (green) to the datawas clearly poorer, its asymptotic limit did not differ significantly
from that of the best-fit growth curve. However, the drawback of the logistic growth curve was its data-independent ratio
ymax/yinfl ¼ 2 (resulting in a clearly distinct estimate for the inflection point, see red dots in Fig. 2). Using the best-fit BP-model
the ratio for final size over peak size was ymax/yinfl ¼ 2.6.
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Table 5
Further statistics (computed from the previous parameters).

Country fatalities confirmed cases CFR

ymax/max(yi) yinfl/ymax ymax/max(yi) yinfl/ymax

Andorra 1.01 4.03 0.89 2.48 6.9%
AU: NSW 1.00 1.67 0.98 2.13 1.6%
Austria 0.98 2.72 0.95 2.51 4.1%
Belgium 0.99 2.56 0.99 2.41 16.2%
Burkina Faso 1.01 2.63 1.04 3.72 5.7%
CAN: Alberta 1.02 2.38 0.95 1.98 2.2%
CAN: BC 1.09 2.79 0.99 2.47 6.7%
CAN: NS 1.00 2.48 0.99 1.90 5.9%
CAN: Ontario 1.05 2.68 1.09 2.46 7.3%
CAN: Quebec 1.14 2.77 1.08 2.43 10.3%
Chad 0.99 3.46 1.03 2.15 8.3%
China: Hubei 0.99 2.37 1.00 1.73 4.7%
Croatia 0.99 2.14 0.99 2.49 4.7%
Cuba 0.99 2.07 0.98 2.75 3.7%
Czechia 1.03 3.65 0.95 2.95 3.5%
Denmark 1.01 3.04 1.02 2.82 4.8%
Estonia 1.03 4.12 0.96 2.72 3.8%
Finland 1.00 2.27 1.03 2.42 4.4%
France 0.98 2.39 0.97 2.24 15.7%
Germany 1.00 2.64 0.97 2.40 4.9%
Greece 1.02 3.54 0.94 2.82 6.3%
Hungary 1.03 2.70 1.02 2.65 14.0%
Ireland 0.99 2.31 0.99 2.23 6.7%
Israel 1.00 3.08 0.86 2.43 1.8%
Italy 1.01 2.78 1.00 2.54 14.7%
Japan 1.03 2.09 0.96 1.96 5.7%
Luxembourg 1.02 2.89 0.97 2.56 2.8%
Malaysia 0.98 4.12 0.98 2.48 1.4%
Marocco 0.97 2.73 1.04 2.65 2.2%
Netherlands 1.01 2.69 0.98 2.72 12.7%
Niger 0.98 1.41 0.96 3.22 6.7%
Norway 0.98 2.58 0.98 2.85 2.8%
Portugal 1.08 3.58 0.98 3.06 4.5%
San Marino 1.00 2.90 0.98 1.69 6.1%
Sierra Leone 1.01 2.16 1.29 2.62 3.2%
Slovenia 1.00 2.66 0.98 2.39 7.4%
South Korea 0.98 2.38 0.91 2.43 2.5%
Spain 0.96 2.70 0.97 2.41 11.7%
Sweden 1.09 2.89 2.24 2.93 4.5%
Switzerland 0.99 2.55 0.99 2.60 6.3%
Tajikistan 0.95 2.20 1.03 2.39 0.9%
Thailand 0.98 2.31 0.97 2.20 1.9%
Tunesia 0.97 3.50 0.96 2.61 4.5%
UK 1.01 2.76 1.03 2.48 13.8%
UK: CI 0.96 2.12 0.98 2.53 8.2%
UK: IM 0.99 1.93 0.99 2.31 7.1%
UAE 0.99 2.19 1.34 2.39 0.5%
Uruguay 1.01 NA 1.17 16.02 2.4%
USA 1.06 2.73 1.11 2.60 5.2%

Notes: max(yi) are the June 18 counts of Table 1; CFR is the case fatality rate and lower/upper are estimates for the minimal/maximal rates of other “good
fitting” models (based on a simulation); otherwise as in Table 4.
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For all 49 time-series of cumulated counts of confirmed infections, the best-fit BP-model had an inflection point and the
ratios ymax/yinfl ranged from 1.7 to 16. The median of ymax/yinfl was 2.48 with lower and upper confidence limits 2.42 and 2.6
(one-sided sign-tests: P-value 2.2% for both limits and therefore confidence level 95.6%). For the cumulated counts of fa-
talities, the best-fit BP-model to the time-series of Uruguay was without inflection point. For the remaining 48 time-series,
the ratios ymax/yinfl ranged from 1.42 to 4.12. Themedian of ymax/yinflwas 2.67 with lower and upper confidence limits 2.39 and
2.765 (one-sided sign-tests: P-values 2.97% and 1.47% for the lower and upper limit, respectively, and therefore confidence
level 95.6%).

We note that the ratios ymax/yinfl were (stochastically) higher for the time-series of fatalities: Removing Uruguay
temporarily from the dataset (no inflection point), 2/3 of the 48 remaining countries/provinces (i.e.: all, except nine) had a
higher ratio ymax/yinfl for the fatalities than for the confirmed infections (one-sided sign-test: P-value 1.5%). Further, the ratios
for the fatalities and confirmed infections were correlated (Spearman rho 0.332 with P-value 2.1% for the Spearman rank test
of independence).
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Fig. 2. Total count of deceased since the begin of the COVID-19 epidemics in Burkina Faso (blue dots), logistic growth curve (green), best-fit growth curve (black),
asymptotic limit (red line), and inflection points (red dots) of the best-fit growth curve (labeled) and the logistic growth curve.
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The distributions of the ratios ymax/yinfl differed between the samples of confirmed cases and fatalities (Anderson-Darling
test for equal distributions: P-value 0.9%, using a smooth kernel distribution). However, two different Cauchy-distributions
could be fitted to the samples (Anderson-Darling test: P-value 26.6% for the fatalities and 56.6% for the confirmed in-
fections). Recall that the Cauchy distribution has the cumulative distribution function CDF(x)¼ 0.5þ arctan((xem)/s)/p. Using
the maximum-likelihood parameters (m ¼ 2.6209, s ¼ 0.272202 for fatalities, m ¼ 2.4828, s ¼ 0.154565 for confirmed cases)
we obtained the confidence intervals [1, 6.08], and [1, 4.447] for the ratios for fatalities and confirmed infections, respectively.
(The upper limits are the 97.5% quantiles of the distributions. For the lower limits, always ymax/yinfl � 1. Note that compared to
the cumulative histogram, CDF overestimated the probability of ratios below 2.)
Case fatality rates

The case fatality rate of a disease in a country is the number of dead over the number of diagnosed infections at a certain
moment of time. When used for estimating the plausible lethality (IFR: infection fatality rate), there is a bias, as the count of
recovered persons is not considered (Ghani et al., 2005) and as a correction for the time-lag between becoming infected and
dying is needed (Russell et al., 2020). Further, for COVID-19 there is an additional uncertainty in view of the unknown number
of asymptomatic infections that never have been identified. For this reason we considered a time-independent asymptotic
version for the first wave of COVID-19 and we used it for country comparison (rather than for estimating IFR): CFR is the
asymptotic limit of fatalities over the asymptotic limit of confirmed cases (Table 5).

CFR varied widely between the countries, from 0.5% for the United Arab Emirates to 16.2% for Belgium. The seven countries
with the largest CFR-values were Spain (CFR ¼ 11.7%), Netherlands (12.7%), United Kingdom (13.8%), Hungary (14%), Italy
(14.7%), France (15.7%), and Belgium (16.2%).

The median CFRwas 4.85% and the limits of the confidence interval for the medianwere 4.4% and 6.5%. (Using a one-sided
sign-test the P-value was 2.22% for each limit, resulting in a confidence level of 95.6%.) Was the variability of CFR compatible
with the hypothesis of random fluctuations? In other words, did a CFR above/below the median indicate a poor/good policy
response? We observed that even the high CFR-values were within the range of statistical fluctuations of a lognormal dis-
tribution. Thereby first, for the full sample of 49 CFR-values the hypothesis that their logarithms were normally distributed
was not refuted by the Anderson-Darling test (P-value 23.8%.) Second, assuming a lognormal distribution for CFR, we used the
maximum likelihood-method to identify its location and shape parameters (�3.04606 and 0.731759, respectively; median
4.7546%). This resulted in the 95%-confidence interval for the CFR-values between 1.13% and 19.95%. The latter bound was
higher than the highest observed CFR.
4. Conclusion

We have compared the experiences of different countries with the first wave of COVID-19, as this may help in shaping
future responses.
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As to our primary aim, we have shown that the general BP-model had excellent fits to the epidemiological data of the
considered countries (Section 3.1). It clearly outperformed logistic growth. Based on 98 COVID-19 time-series the general BP-
model achieved in the median R2 ¼ 99.83% with a narrow 95% confidence interval. As a caveat, we claim this good fit only for
the problem of fitting the general BP-model to epidemic data that are cumulative and that include the after-peak stage. For
our data, the latter condition was confirmed by the statistic “asymptotic limit over final count” (Section 3.2), whose median
was close to one.

As to policy recommendationswe found that countries that could keep the peak of thewave low succeeded also in keeping
the final size low (Section 3.3). We confirmed this bymodeling final size over peak size by the statistics “asymptotic limit over
size at the inflection point”. For the general BP-model this ratio was flexible and therefore (other than for logistic growth with
a fixed ratio of 2) it could be estimated from the data. Thereby, our data would have supported the following forecasts for a
country/province during the first wave of the COVID-19 epidemics: Using themedians, at the peak of the confirmed infections
one could forecast that the final count of infections at the end of the wave would be about 2.5 times the present peak count.
Further, at the peak of fatalities the forecast for the final count of fatalities would be 2.7 times the present peak count. Note
that these forecasts extrapolated from the sample of 49 countries/provinces. As to limitations for such forecasts, we assumed
that these countries would be representative for the global situation.

The case fatality rate, CFR, is another statistic of concern for epidemiologists (Section 3.4). Did a high CFR indicate a policy
failure? The median CFR was about 5%, but for some countries it exceeded 10%. While it might be true that in countries with
excessive CFR somethingmight have gonewrong, our datawere consistent with the hypothesis of a lognormal distribution for
which high CFR-values were not unlikely. Thus, our data did not allow to single out countries with a particularly good or bad
performance.
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