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A B S T R A C T   

Age-associated osteoporosis (AAOP) poses a significant health burden, characterized by increased fracture risk 
due to declining bone mass and strength. Effective prevention and early treatment strategies are crucial to 
mitigate the disease burden and the associated healthcare costs. Current therapeutic approaches effectively 
target the individual contributing factors to AAOP. Nonetheless, the management of AAOP is complicated by the 
multitude of variables that affect its development. Main intrinsic and extrinsic factors contributing to AAOP risk 
are reviewed here, including mechanical unloading, nutrient deficiency, hormonal disbalance, disrupted meta
bolism, cognitive decline, inflammation and circadian disruption. Furthermore, it is discussed how these can be 
targeted for prevention and treatment. Although valuable as individual targets for intervention, the intercon
nectedness of these risk factors result in a unique etiology for every patient. Acknowledgement of the multi
faceted nature of AAOP will enable the development of more effective and sustainable management strategies, 
based on a holistic, patient-centered approach.   

1. Introduction 

Within our aging society, it is increasingly important to effectively 
prevent and treat age-related diseases. Osteoporosis (OP) is of particular 
concern. It is characterized by an increased fracture risk due to a decline 
in bone mass and/or quality, and affects over 35 % of elderly women and 
12 % of elderly men worldwide (Salari et al., 2021). While aging is not a 
uniform process, the term elderly typically refers to individuals above 
the age of 65 (WHO, 2018). Osteoporotic fractures induce a high disease 
burden and their treatment drives health care costs. Therefore, early 
detection and efficient prevention strategies are a priority. A multitude 
of intrinsic and extrinsic risk factors for age-associated osteoporosis 
(AAOP) have been identified throughout the years (Fig. 1). While these 
have added value as individual risk factors, they are inevitably inter
twined. This is demonstrated within two patient scenarios, revealing a 
unique AAOP etiology for each patient. 

2. Pathophysiology of osteoporosis 

Healthy bone tissue is continually being remodelled. Old or damaged 
bone tissue is resorbed by osteoclasts, while osteoblasts deposit new 
organic bone matrix, consisting of collagen fibres, glycoproteins and 

proteoglycans (Hadjidakis and Androulakis, 2006; Sims and Martin, 
2014). Finally, bone gains strength and stiffness through mineralization, 
which entails the deposition of calcium and phosphate ions as hy
droxyapatite crystals (Murshed, 2018). Osteocytes, terminally differ
entiated osteoblasts that account for 90–95 % of all bone cells, 
coordinate the process (BONEWALD, 2007). In OP, bone resorption 
outpaces formation, resulting in a net loss of bone mass. In addition, 
changes in bone microarchitecture disturb the structural integrity, 
rendering bone brittle and fragile. The resulting weakened bone struc
ture becomes prone to fractures, even from low-impact mechanical 
strain. This combination of a low bone mineral density (BMD) and an 
increased fracture risk entails the clinical definition of OP (Kanis, 1994). 
While most fractures occur after falling, the spine is particularly 
vulnerable to spontaneous osteoporotic fractures. This susceptibility 
arises from the high percentage of trabecular bone and the constant 
strain imposed by the body's weight on the spine (Chan et al., 2016). 

Gender influences bone modeling and remodeling throughout life. 
During childhood, bone diameter expands through bone formation on 
the outer periosteal surface and resorption on the inner endosteal sur
face. During puberty, boys experience further expansion in bone diam
eter through continued periosteal growth, while girls predominantly 
gain bone mass trough endosteal growth (Lauretani et al., 2008). When 
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bone mass reaches a plateau around the age of 25–30 years, men 
generally have larger bones with a wider diameter that can withstand 
more strain. Periosteal growth continues throughout life in both men 
and women. However, it is eventually outpaced by endosteal resorption, 
leading to a net loss in bone mass. Women experience a more pro
nounced loss, especially during the first postmenopausal years due to 
estrogen deficiency (Demontiero et al., 2012; Szulc et al., 2006). Men 
exhibit a slower, gradual decline, partly due to a higher rate of periosteal 

apposition as compared to women (Duan et al., 2001; Seeman, 2001). 
Bone loss persists well into old age for both genders. Data from the 
Framingham Osteoporosis study among individuals aged 67–90 
revealed that over a 4-year period, women experienced BMD losses 
ranging from 3.4 % to 4.8 %, while men lost between 0.2 % and 3.6 %. 
As women typically undergo menopause at the age of 49–52 years, 
women in this study were presumably beyond their initial post
menopausal years (Morabia and Costanza, 1998). BMD loss was skeletal 

Fig. 1. Age-related changes in intrinsic and extrinsic factors impact bone health, contributing to osteoporosis. These factors, whether independently or in combi
nation, disrupt bone remodeling, resulting in diminished mass, strength, and an increased risk of fractures. E = estrogen, T = testosterone, GH = growth hormone, 
DHEA = Dehydroepiandrosterone, GC = glucocorticoid, PTH = parathyroid hormone, OP = osteoporosis. 
Figure was created with BioRender.com. 

A.E. Smit et al.                                                                                                                                                                                                                                  

http://BioRender.com


Bone Reports 20 (2024) 101750

3

site dependent, with the radial shaft showing the highest rate of decline 
in both men and women (Hannan et al., 2000). Gender differences in 
bone size, diameter and BMD lead to varying fracture risks, with women 
over the age of 60 having an estimated lifetime risk of 44 %, compared to 
25 % for men of the same age (Nguyen et al., 2007). 

Beyond gender differences, twin and family studies indicate that 
hereditary factors determine the vast majority of variation in BMD 
(Brown et al., 2004; Hofer and Sliwinski, 2001; Mitchell et al., 2003; 
Videman et al., 2007). Genome-wide association studies (GWAS) have 
identified dozens of gene variants that influence BMD variation, and 
several of these are also associated with fracture risk (Estrada et al., 
2012; Morris et al., 2019). For instance, variants of the gene for receptor 
activator of nuclear factor-kappa B ligand (RANKL) have been associ
ated with have been associated with BMD in men (Hsu et al., 2006). 
Mutations in a single gene with a crucial role in bone remodeling can 
also induce skeletal fragility, often surpassing the impact of common 
variants identified through GWAS (Mäkitie and Zillikens, 2022; Rob
inson and Rauch, 2019). For instance, osteogenesis imperfecta patients 
suffer from low BMD and high susceptibility to fractures, in most cases 
caused by mutations in genes encoding for type I collagen, COL1A1 and 
COL1A2 (Morello, 2018). Furthermore, genetic defects in Wnt/β-catenin 
signaling, i.e. loss-of-function mutations in LRP5 and WNT1, lead to 
extremely low BMD, skeletal deformity and early onset osteoporosis 
(Mäkitie and Zillikens, 2022; Mäkitie et al., 2016; Stürznickel et al., 
2021). Another example is X-chromosomal PLS3, encoding for plastin 3. 
Mutations in this gene lead to complications raging from skeletal 
fragility in heterozygous females to severe childhood-onset osteoporosis 
in hemizygous males (Mäkitie et al., 2020). 

However, the influence of genetic factors on BMD decreases with 
age. For instance, while genetic factors accounted for 58–88 % of BMD 
variation in pre-menopausal women, this proportion decreased to 
37–54 % in post-menopausal women (Brown et al., 2005). This likely 
reflects a greater genetic impact on bone mass accrual rather than the 
rate of bone loss. Concurrently, controllable environmental factors gain 
more importance in predicting BMD with increasing age (Brown et al., 
2005; Moayyeri et al., 2012). These include inadequate intake of 
essential nutrients, insufficient mechanical loading, smoking, substance 
use and use of oral contraceptives (Weaver et al., 2016b). Early man
agement of these factors can substantially reduce OP risk later in life. In 
fact, it has been estimated that a 10 % increase in peak bone mass can 
reduce OP risk with 50 % in adults (Cummings et al., 1993), as well as 
delay OP onset with 13 years (Hernandez et al., 2003). 

At a cellular level, aging in bone is characterized by a decrease in 
osteoblast number and activity, while osteoclasts become more active 
(Chung et al., 2014; Pietschmann et al., 2007). Moreover, age-related 

bone degradation is accelerated by accumulation of senescent bone 
cells (Kassem and Marie, 2011). Cellular senescence is a natural process 
in which cells lose their ability to divide and remain as viable but 
functionally altered cells, and is triggered by stressors including DNA 
damage, oncogene activation and inflammatory signals (Teissier et al., 
2022b). Senescent cells in turn produce inflammatory markers to induce 
a cycle of bone remodeling, and can induce senescence in neighbouring 
cells. Accumulation of these cells can lead to bone-damaging chronic 
inflammation (Pignolo et al., 2021). Novel therapeutic agents aimed at 
clearing senescent bone cells are currently in development (Soto-Gamez 
and Demaria, 2017). Finally, osteocyte density and connectivity decline 
during aging (Qiu et al., 2002; Schurman et al., 2021), while the lacunae 
housing osteocytes diminish in number and undergo hyper
mineralization (Busse et al., 2010), together disrupting bone micro
structural integrity and resulting in bone fragility. 

Moreover, the skeletal system is not an isolated entity, but is inter
connected with adjacent and remotely located tissues that communicate 
through the endocrine, nervous, immune, cardiovascular and muscular 
system (Gerosa and Lombardi, 2021; Imam et al., 2009; Karsenty and 
Olson, 2016; Lorenzo et al., 2008; Towler, 2008). These internal systems 
undergo changes with aging, thereby affecting bone remodeling dy
namics. Finally, behavioural and environmental changes during aging 
require further adaptations of internal systems. In the following section, 
we delve into the primary risk factors for age-associated osteoporosis 
(AAOP) and explore how these can be targeted for prevention and 
treatment. 

2.1. Mechanical loading 

The human skeleton is built to bear the mechanical load that arises 
from daily physical activity. Static positions, i.e. sitting or standing, 
induce a baseline of mechanical loading that increases during dynamic 
movements, such as walking or lifting (Hart et al., 2017; Lanyon and 
Rubin, 1984). An individual's body weight and posture further deter
mine the magnitude and direction of loading (Edmondston et al., 2011; 
Iwaniec and Turner, 2016). Notably, low BMI is an independent risk 
factor for OP due insufficient loading, aside from other factors as 
malnutrition and sarcopenia (Lee et al., 2020; Sieber, 2019; Tanaka 
et al., 2013). 

Individuals tend to become less active as they age, with approxi
mately one in four adults aged above 50 reported to have an inactive 
lifestyle in the United States (Watson et al., 2016). Common age-related 
physical changes, such as muscle weakness, joint stiffness and reduced 
balance make it more challenging to being active (Gomes et al., 2017). 
Furthermore, psychological factors as lack of motivation, social isolation 

Scenario 1 
Preserving bone health during anti-inflammatory therapy 

The interplay of risk factors is illustrated by the following scenario of Mrs. Veenstra, a 69-year-old post-menopausal woman who is dependent on 
glucocorticoid (GC) medication for her polymyalgia rheumatica (PMR). 

She presented with pain and stiffness in her neck, shoulders and pelvic girdle, particularly in the morning (Michet and Matteson, 2008). This 
pain had been present for over a year. Upon diagnosis, she exhibited elevated inflammatory markers, which, considering her symptom history, 
were likely already present for an extended duration. Although GC medications rapidly mitigated her symptoms, prolonged GC use likely 
accelerated the natural decline in bone mass she experienced since menopause. 

Mrs. Veenstra is at high risk for osteoporotic fractures, due to her postmenopausal state and prolonged GC use. Furthermore, a period of 
increased inflammatory state may also have contributed negatively to her bone health. 

The intervention plan should be aimed at preventing fractures while also managing PMR symptoms. Optimized intake of calcium and vitamin D 
and adequate physical exercise provide a low-cost and effective intervention strategy to improve bone mass in elderly. Notably, beneficial effects 
of regular exercise extend beyond bone health, potentially ameliorating PMR by improving muscle strength and curbing inflammation. In 
addition to lifestyle modifications, bone-protecting pharmacological agents can further improve bone health without exacerbating PMR 
symptoms. This medication should be advised depending on her fracture risk, taking GC dosage and her bone mineral density into account.  
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and fear of falling can further discourage physical activity (Zhang et al., 
2022). As a sedentary lifestyle does not provide enough loading to 
maintain bone and muscle mass, immobilization heightens susceptibility 
to fractures (LaMonte et al., 2019). 

Osteocytes are central to the cellular response to mechanical loading 
by detecting bone deformation. In response, osteocytes modulate the 
release of various signaling molecules to stimulate bone remodeling, 
including nitric oxide, prostaglandin E2 and ATP (Bonewald, 2006; Han 
et al., 2004; Nicolella et al., 2006). Osteocytes promote bone formation 
in response to mechanical stress by suppressing sclerostin production, an 
inhibitor of the Wnt/β-catenin signaling in osteoblasts (Li et al., 2005; 
Robling et al., 2008), and by reducing the ratio of RANKL to RANK decoy 
receptor osteoprotegerin (OPG) production (Li et al., 2013; Zhang et al., 
2015). The responsiveness of osteocytes to mechanical strain hinges on 
their interconnectivity. This is facilitated by an intricate web of dendritic 
extensions that foster intercellular communication (Klein-Nulend et al., 
2012). 

While regular exercise enhances peak bone mass during youth (Tveit 
et al., 2015), studies generally report only a maximum 1–3 % BMD in
crease in adults through regular exercise (Robling and Turner, 2009; 
Westcott, 2012; Zhao et al., 2015). Aside from age-related effects on 
osteoblast and osteoclasts, this may be explained by the age-related 
decline in osteocyte density and connectivity (Qiu et al., 2002; Schur
man et al., 2021), which is further aggravated by long-term immobili
zation (Rolvien et al., 2020). Failing sclerostin inhibition has been 
proposed as an underlying molecular mechanism. In old mice, plasma 
sclerostin levels, and the expression of corresponding gene Sost, failed to 
decrease following exercise (Gardinier et al., 2018). Furthermore, and 
Sost-deficiency prevented mice from mechanical unloading-induced 
bone loss (Lin et al., 2009; Tatsumi et al., 2007). Clinical studies, how
ever, report inconsistent results regarding sclerostin response to exercise 
in both young and old cohorts, thus requiring more data to clarify the 
role of sclerostin (Gombos et al., 2016; Janik et al., 2018). 

Nonetheless, physical activity is widely recommended as a low-cost 
intervention to mitigate AAOP risk by, at least, preventing BMD loss. 
Given that an osteogenic response is generated by mechanical loading 
that exceeds the magnitude that is induced by normal daily activity, 
exercise should involve dynamic, novel and high magnitude loading. 
Accordingly, low-intensity exercises, such as walking, are shown not to 
improve BMD in older individuals (Ma et al., 2013; Nikander et al., 
2010). Some, but not all, studies report that walking with added impact, 
such as brisk walking or hill walking, induce minor improvements in 
BMD (Ebrahim et al., 1997; Gába et al., 2016; Lan and Feng, 2022). 

More favorable results are shown with resistance training, which is 
aimed at building muscular strength against external force. Kerr et al. 
(1996) showed a significant increase in BMD with resistance training 
focused on strength, but not with endurance-focused exercises. Peak 
load thus seems more important than the number of repetitions. Other 
studies favor higher load resistance training as well (Vincent and Braith, 
2002; Zehnacker and Bemis-Dougherty, 2007). However, contradicting 
findings have also been published. A trial comparing low-load high- 
repetition to high-load low-repetition showed equal BMD improvements 
by both regimens. The authors noted that total load was similar in both 
groups, in contrast to earlier studies reporting a beneficial effect of high- 
loading (Bemben and Bemben, 2011). Another study reported that BMD 
loss could be mitigated with very high-repetition, low-intensity resis
tance training (Nicholson et al., 2015). Furthermore, two systematic 
reviews reported no BMD improvement, but only attenuation of BMD 
loss through high-intensity resistance training alone (Massini et al., 
2022; Zhao et al., 2015). However, Zhao and colleagues did observe 
significant BMD improvements when resistance training was combined 
weight-bearing impact exercises, such as running and jumping (Zhao 
et al., 2015). Such high-intensity, multi-component programs are 
generally shown to improve BMD or at least mitigate BMD loss (Brooke- 
Wavell et al., 2022; Giangregorio et al., 2014; Kemmler et al., 2003; 
Martyn-St James and Carroll, 2010; von Stengel et al., 2011). 

However, high-intensity exercise programs are limitedly recom
mended for osteoporotic individuals, due to concerns that these may 
exacerbate fracture risk (Giangregorio et al., 2014; Kohrt et al., 2004). 
The recent Lifting Intervention for Training Muscle and Osteoporosis 
Rehabilitation (LIFTMOR) trials addressed these concerns. They exam
ined the efficacy and safety of high-intensity, progressive resistance and 
impact weight-bearing (HiRIT) in postmenopausal women and older 
men with low BMD (Harding et al., 2020; Watson et al., 2018). HiRIT 
involves large multi-joint compound movements such as squats and 
deadlifts, conducted in weight-bearing positions and recruiting exten
sive muscle groups. These exercises apply substantial loads at clinically 
relevant bone sites. In both trials, HiRIT significantly improved BMD at 
the lumbar spine and femoral neck, as well as bone geometry and 
functional performance, compared to the control group that did low- 
intensity exercise. Notably, both trials reported a high compliance rate 
and minimal adverse events. 

Another consideration is the site-specificity of bone response to 
certain types of exercise. A Cochrane review concluded that high- 
intensity resistance, non-weight bearing exercise is most effective to 
improve femur neck BMD, while multi-component exercise programs 
are most effective at improving spine BMD (Howe et al., 2011). Aside 
from BMD, both low and high-impact training programs have been 
shown to improve balance and reduce fall risk (Sherrington et al., 2019). 

Taken together, while no consensus is reached on the optimal type, 
duration and intensity of exercise for improving BMD in older adults, 
high-intensity resistance and multi-component programs targeted at 
relevant skeletal sites appear promising to improve BMD and fall risk in 
older and osteoporotic individuals. 

2.2. Nutrition 

Bone health relies on adequate supply of essential minerals, vitamins 
and protein. Mineralization (with calcium and phosphate) of newly 
formed -but still weak- bone, osteoid, is crucial to complete the process 
of bone formation. Aging is accompanied with alterations in nutrient 
absorption, utilization and metabolism. In addition, elderly tend to have 
diets that lack sufficient amounts of minerals and vitamins (Kelly et al., 
2016). Resulting nutrient deficiencies have implications for skeletal 
integrity (Palacios, 2006). 

Calcium is required for normal functioning of many biological pro
cesses including muscle contraction, nerve transmission and coagula
tion. Calcium levels are therefore strictly regulated, drawing upon the 
calcium reservoir in bone during low systemic calcium levels. Hypo
calcaemia is a prevalent concern among elderly, particularly in hospital 
settings. A cross-sectional study including 400 elderly patients reported 
a 24 % prevalence, while a retrospective study found a 33 % prevalence 
among elderly hip fracture patients (Thapa and Rayamajhi, 2020; Wang 
et al., 2021). However, data on hypocalcaemia in non-institutionalized 
elderly is currently lacking. 

The metabolism of calcium hinges on vitamin D levels. The main 
source of vitamin D3 is synthesis from 7-dehydrocholesterol through 
absorption of UV-B radiation in the skin (Lips, 2006). Additionally, 
vitamin D2 and D3 can be obtained through dietary sources and sup
plementation (Lamberg-Allardt, 2006). Vitamin D2 and D3 are metab
olized by the liver into 25-hydroxyvitamin D, and further metabolized in 
the kidney into its active form 1,25-dihydroxyvitamin D by 1α hydrox
ylase. By acting on the vitamin D receptor (VDR), 1,25-dihydroxyvita
min D stimulates gastrointestinal absorption of calcium through 
induction of epithelial calcium channels and calcium and sodium- 
phosphate transporters (Moor and Bonny, 2016; Perez et al., 2008; 
Song et al., 2003). 1,25-dihydroxyvitamin may also directly act on bone 
cells, as osteoblast-specific VDR overexpression promotes bone forma
tion and suppresses bone resorption (Eisman and Bouillon, 2014). The 
prevalence of vitamin D deficiency among non-institutionalized elderly 
reportedly ranges from 20 to 100 %, depending on geographical location 
(Holick et al., 2011). Deficiencies may result from diminished capacity 
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to synthesize vitamin D3 from sunlight and declined ability to synthesize 
1,25-dihydroxyvitamin D (Armbrecht et al., 1982; MacLaughlin and 
Holick, 1985; Tsai et al., 1984), as well as from decreased sunlight 
exposure. Furthermore, calcium absorption efficiency diminishes with 
increasing age (Avioli et al., 1965; Pattanaungkul et al., 2000), although 
underlying mechanisms require further elucidation (Fleet, 2022). 

Low habitual dietary calcium intake as well as low serum 25-hydrox
yvitamin D concentrations are associated with increased OP and fracture 
risk (Cauley et al., 2008; Warensjö et al., 2011). Given these conse
quences for bone health, adequate calcium and vitamin D intake are 
pivotal to mitigate AAOP risk. Studies traditionally report a reduced 
fracture risk though calcium and vitamin D supplementation (Chapuy 
et al., 1992; Jackson et al., 2006; Weaver et al., 2016a). Beneficial ef
fects of vitamin D supplementation alone are controversial, with recent 
meta-analyses reporting conflicting results on the association between 
fracture risk and vitamin D supplementation (Kong et al., 2022; LeBoff 
et al., 2022). 

Moreover, in a RCT among institutionalized older individuals with 
low 25-hydroxyvitamin D levels, increased dietary intake of high cal
cium and protein dairy foods was associated with a reduction of 33 % 
overall and 46 % hip fractures, and a decrease in fall risk of 11 % 
(Iuliano et al., 2021). Accordingly, adequate calcium and vitamin D 
dietary intake, as well as supplementation are part of the standard rec
ommendations for aging adults (Nieves, 2003). Nonetheless, in the 
Netherlands, approximately 50 % of both men and women over the age 
of 50 do not meet the recommended intake of 1000 mg per day (van 
Rossum et al., 2020). 

Finally, obesity is associated with lower circulating levels of 25- 
hydroxyvitamin D. This may be due to disposition sequestration of 
vitamin D in adipose tissue, thereby reducing its bioavailability (Ekwaru 
et al., 2014; Wortsman et al., 2000). Furthermore, vitamin D supple
mentation resulted in a significantly lower increase in 25-hydroxyvita
min D levels in overweight and obese individuals, as compared to 
participants with normal weight (Manson et al., 2019; Tobias et al., 
2023). Obesity-related chronic low-grade inflammation and increased 
bone marrow adiposity may further harm bone health (Gkastaris et al., 
2020). Obesity is a prevalent and growing concern in aging commu
nities, with a prevalence of approximately 35 % in individuals above the 
age of 65 in the United States (Fakhouri et al., 2012), and a worldwide 
increase of 27.5 % of overweight individuals between 1980 and 2013 
(Ng et al., 2014). While these data would advocate to adjust vitamin D 
supplementation according to body weight, obese individuals are also 
reported to have a lower threshold for parathyroid hormone (PTH) 
response to 25-hydroxyvitamin D levels. Although requiring more data, 
this suggests that lower 25-hydroxyvitamin D levels may have less im
plications for bone health as compared to non-obese individuals 
(Shapses et al., 2013). 

Aside from calcium and vitamin D, dietary protein also supports bone 
health, with collagen serving as an essential component of bone and 
muscle tissue. Furthermore, protein intake is an important mediator of 
anabolic hormone insulin growth factor-I (IGF–I) release (Bonjour 
et al., 2001; Geusens and Boonen, 2002). In aged rats, protein diet di
minishes IGF-I levels and bone formation rate (Bourrin et al., 2000). 
Similarly, a study in elderly patients showed a correlation between low 
protein diet and low circulating IGF-I levels, which could be mitigated 
by increased protein intake. Protein intake has also been shown to 
induce intestinal calcium uptake (Mangano et al., 2014), and urinary 
calcium excretion (Calvez et al., 2012). Some concerns have been raised 
that the calcium excreted in response to high dietary protein originates 
from bone. To clarify this, a clinical trial was conducted in which 
healthy adults received a low or high protein diet (Kerstetter et al., 
2003). 80 % of increased urinary calcium originated from the extra 
absorbed calcium, implying that the remaining 20 % might originate 
from bone. Accordingly, some studies report increase in hip fracture 
under high protein diet (Frassetto et al., 2000), however others report an 
inverse trend (Wengreen et al., 2004). High protein intake also reduced 

the incidence of falls in an elderly cohort, likely due to increased bone 
and muscle strength (Zoltick et al., 2011). Nevertheless, due to the 
existing ambiguity in data, concrete dietary recommendations should be 
given with caution. 

Furthermore, adequate and varied vegetable intake has been shown 
to be beneficial for bone health. In a cohort study among community 
driven elderly, high vegetable intake was associated with a reduced fall 
and fracture risk. Specifically, intake of cruciferous and allium varieties 
reduced fall risk (Sim et al., 2018). It is currently not well understood 
which nutrients explain the beneficial effects of vegetable intake on 
bone health. Webster et al. (2023) postulates a particular importance of 
nitrate and vitamin K1 due to their high concentration in cruciferous and 
allium vegetables and known beneficial effects on skeletal muscle. Di
etary vitamin K intake indeed has been associated with reduced fracture 
risk in older hospitalized women (Sim et al., 2022), and postmenopausal 
women with osteoporosis (Huang et al., 2015), however effects on BMD 
are controversial (Vermeer, 2012). Furthermore, a recent meta-analysis 
reported no association between nitrate and fracture risks, and RCTs 
have reported conflicting effects of nitrate on BMD (Bolland et al., 2020; 
Jamal et al., 2013; Liu et al., 2022). 

Finally, the balance between dietary fibre and fat content affects the 
uptake of nutrients. A diet high in fibre improves nutrient uptake and 
absorption by promoting a healthy gut microbiome and increasing gut 
motility (Adams et al., 2018). While dietary fat is required for absorption 
of the fat-soluble vitamin D, consuming high amounts of fat can slow 
down gut motility, impair nutrient absorption and promote inflamma
tion (Youness et al., 2022). 

Delivery of essential nutrients and oxygen to bone health relies on 
adequate blood perfusion, and cardiovascular function accordingly. 
Several clinical studies report an association between cardiovascular 
dysfunction and bone health. Yang and Huang (2023) reported a close 
relationship between cardiovascular disease (CVD) prevalence and low 
BMD in adults over 60 years of age, particularly within the femur. 
Furthermore, findings from a prospective cohort study indicated a 
higher CVD incidence in women with OP, and an association between 
OP and cardiovascular mortality in men (Rodríguez-Gómez et al., 2022). 
Dysfunctional vasculature is a common and growing concern in older 
adults, as it was estimated that cardiovascular disease will become the 
leading cause of death in individuals aged above 65 by 2030 (Hei
denreich et al., 2011). Fortunately, several interventions aimed at 
improving bone health and cardiovascular health overlap, such as 
physical exercise and a well-balanced diet. Additionally, anti-resorptive 
drugs such as bisphosphonates have been suggested to cardiovascular 
complications, although robust RCT are warranted (Billington and Reid, 
2020). 

Altogether, maintaining a well-balanced diet, along with combined 
supplementation of vitamin D and calcium, have been shown to be 
effective in improving BMD score and reduce fracture risk within aging 
individuals (Boettger et al., 2018; Weaver et al., 2021; Weaver et al., 
2016a). To improve adherence to lifestyle changes, nutritional educa
tion and intervention programs provide an effective measure. Several of 
these programs have been shown to increase vegetable, fruit and fibre 
intake (Neves et al., 2020). 

2.3. Hormonal balance 

Bone functions as an endocrine organ, supporting itself by producing 
e.g. bone-IGF, bone mineral protein (BMP), fibroblast growth factor 23 
(FGF23), sclerostin and lipocalin. In addition, osteoblast-derived 
osteocalcin promotes insulin secretion and sensitivity. Several hor
mones, i.e. IGF and transforming growth factor-β (TGF-β), are stored 
within the bone matrix in their latent form. In bone regions undergoing 
resorption, these hormones are released and activated by osteoclasts to 
facilitate the remodeling process (Zhou et al., 2021). 
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2.3.1. Glucocorticoids 
Glucocorticoids (GCs) in physiological levels are essential for bone 

health especially during growth, primarily by stimulating osteogenesis 
from mesenchymal stromal cells at the expense of adipogenesis. In 
contrast, GCs in excess favor adipogenesis over osteogenesis, and induce 
a negative balance in bone remodeling. These imbalances lead to loss of 
bone mass and structure, and long-term synthetic GC use is associated 
with a high fracture risk of 30 % to 50 % (Angeli et al., 2006). GC excess 
induces an early, transient increase in bone resorption by extending 
osteoclast lifespan and suppressing osteoclast apoptosis, driven by an 
elevated RANKL/OPG ratio (Lee et al., 2021). With prolonged GC 
exposure, bone formation declines due to reduced osteoblast differen
tiation and proliferation, coupled with increased osteoblast apoptosis 
(Lee et al., 2021). This process is primarily mediated by stimulating 
inhibitors of the Wnt/β-catenin pathway (Frenkel et al., 2015). GCs are 
considered to mainly exert their effect by binding to the ubiquitously 
expressed glucocorticoid receptor (GR). GCs also signal through the 
high-affinity mineralocorticoid receptor (MR), which is expressed by 
osteoclasts, osteoblasts and osteocytes (Beavan et al., 2001). Although 
the role of the MR in bone remains to be elucidated, osteocyte-specific 
knockout of the MR attenuated loss of trabecular bone loss as induced 
by prednisolone (Fumoto et al., 2014). 

The literature on age-related changes in cortisol levels, the endoge
nous GC variant in humans, is inconsistent, with studies reporting in
creases, decreases or no changes at all (Feldman et al., 2002; Rueggeberg 
et al., 2012; Seeman et al., 1997; Van Cauter et al., 1996). These dis
crepancies have been attributed to methodological limitations, and 
could also reflect a high interpersonal variability (Lupien et al., 1996). 
Notably, a recent longitudinal study among 1814 individuals aged 20 to 
90 years old revealed a U-shaped pattern: cortisol levels decreased until 
the age of 20, stabilized, and then increased after 60 years old (Moffat 
et al., 2020). Nevertheless, more robust longitudinal data is needed to 
draw stronger conclusions. Furthermore, aging is suggested to be 
accompanied by blunted negative feedback response of GCs on adre
nocorticotropic hormone (ACTH) release, and increased bone expression 
of 11β-hydroxysteroid dehydrogenase (11B-HSD) type 1, which converts 
inactive cortisone into the active hormone cortisol (Cooper et al., 2002). 
Aged mice showed increased adrenal production of corticosterone, the 
natural GC variant in rodents, and 11β-HSD type 1 expression in bone, 
with adverse effects on osteoblast and osteocyte apoptosis, bone for
mation rate and bone microarchitecture (Weinstein et al., 2010). In 
humans, serum cortisol concentration and bone loss rate are directly 
related in both sexes (Raff et al., 1999). Collectively, these studies sug
gest that maintaining adequate GC levels is crucial to mitigate AAOP 
risk. In addition to altered GC levels, aging is associated with a blunted 
amplitude in GC circadian rhythm (Bergendahl et al., 2000). Disrupted 
GC rhythm is detrimental to bone health as well, as explained in more 
detail in Section 2.7. 

2.3.2. Sex hormones 
Sex hormones, estrogen and testosterone, are essential to maintain 

bone health in both men and women, with estrogen being most impor
tant (Falahati-Nini et al., 2000). Estrogen regulates turnover of trabec
ular bone in women, and cortical bone in both men and women 
(Bouillon et al., 2004; Khosla et al., 2012). According to a RCT among 
healthy elderly men, estrogen accounts for over 70 % of the effect of sex 
steroids in bone resorption (Falahati-Nini et al., 2000). Estrogen regu
lates both bone resorption and formation. It suppresses osteoclast dif
ferentiation and increases osteoclast apoptosis, predominantly through 
decreasing the RANKL/OPG ratio and blocking RANKL-signaling (Egh
bali-Fatourechi et al., 2003; Hofbauer et al., 1999; Shevde et al., 2000). 
This is achieved by directly signaling through the estrogen receptor (ER) 
on osteoclasts, as osteoclast-specific ER deficiency is shown to reduce 
trabecular bone mass (Martin-Millan et al., 2010). Furthermore, estro
gen represses osteoblast apoptosis and induces osteoblast differentia
tion. This is suggested to be achieved through increased BMP and Wnt/ 

β-catenin signaling, and IGF-I production by osteoblasts (Almeida et al., 
2007; Armstrong et al., 2007; Matsumoto et al., 2013). Notably, osteo
blast linage-specific ER knockout models demonstrate loss of bone mass 
and poor response to mechanical loading in female mice (Määttä et al., 
2013; Saxon et al., 2012). Finally, estrogen is required for osteocyte 
viability and mechanosensitivity (Emerton et al., 2010; Lee et al., 2003). 

Testosterone is required for bone growth and maintenance in men, 
but also holds importance for women. Testosterone levels in women, 
produced by the adrenals, are positively associated with BMD, and low 
testosterone levels in women have been linked to OP (Zhang et al., 
2022). Testosterone signals through the androgen receptor (AR), which 
is predominantly expressed on osteoblasts and osteocytes (Abu et al., 
1997). It thereby stimulates bone formation by increasing osteoblast 
activity and lifespan, although prolonged exposure may inhibit osteo
blast proliferation (Notelovitz, 2002). Furthermore, testosterone is 
metabolized into 17β-estradiol, the most potent form of estrogen. This is 
facilitated by aromatase, a specific component of cytochrome P450 that 
is expressed in osteoblasts and osteocytes (Gennari et al., 2004; Sasano 
et al., 1997). Variation in sex hormone levels is partly explained by 
environmental factors. In both men and women, higher BMI has shown 
an inverse relationship with both total testosterone levels and the 
testosterone/estradiol ratio (Meikle et al., 1989; Oztekin et al., 2020). 

Sex hormone levels decline with age, with estrogen levels decreasing 
rapidly after menopause, and testosterone levels declining gradually 
over time (Horstman et al., 2012). This has consequences for bone, with 
estrogen deficiency being a pivotal cause of postmenopausal bone loss 
(Cheng et al., 2022). Given that men do not experience the same drastic 
decline in sex steroids as postmenopausal women do, AAOP risk is more 
affected by sex steroid deficiency in women than in men (Falahati-Nini 
et al., 2000). Aging is also accompanied by an increase in sex hormone- 
binding globulin concentration, which further reduces the amount of 
free testosterone and estrogen in the body (Aribas et al., 2021). 

2.3.3. Parathyroid hormone 
In response to low circulating calcium and 1,25 hydroxyvitamin D 

levels, PTH is secreted from the parathyroid glands to increase bone 
resorption to release calcium that is stored within the bone matrix into 
the circulation turnover (Murthy and Duque, 2021). Specifically, PTH 
both stimulates RANKL and reduces OPG secretion, leading to increased 
bone resorption and loss of bone mass, mainly in the cortical area 
(Murthy and Duque, 2021). Continuously elevated PTH hormone levels 
have been directly associated with frailty (Murthy and Duque, 2021). 
Frailty represents a combination of factors that increase a person's 
vulnerability, of which OP is an important feature (Fried et al., 2001). 
Serum PTH levels increase with age in both men and women, however 
consequences for bone health differ (Murthy and Duque, 2021). For 
instance, elevated PTH levels with age have been reported to be corre
lated to increased bone resorption in elderly women but not men 
(Fatayerji and Eastell, 1999). This may be explained by the role of sex 
steroids in mitigating PTH effects on bone resorption (Falahati-Nini 
et al., 2000), and potentially by PTH receptor sensitivity differences. The 
age-related increase in PTH levels may reflect a physiological adaption 
to low circulating calcium and 1,25-dihydroxyvitamin D levels 
(Buchanan et al., 1988; Lips, 2001). Furthermore, glomerular filtration 
rate declines with age, and patients with declined renal function typi
cally have elevated serum PTH levels, as discussed below (Noronha 
et al., 2022). However, the connection between renal function and age- 
related PTH elevation is not consistently reported. One study identified a 
decline in serum 25-hydroxyvitamin D levels as the best predictor of 
increased serum PTH levels, while they reported no relationship be
tween renal function and PTH levels (Need et al., 2004). Another study 
similarly found no association with renal function, neither with serum 
25-hydroxyvitamin D, ionized calcium, and phosphate levels (Carrivick 
et al., 2015). Variation in PTH levels is estimated to be 60 % determined 
by genetics (Hunter et al., 2001), and the responsiveness of various 
tissues to estrogen is also genetically controlled (Wall et al., 2014). 
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Nonetheless, modifiable lifestyle factors as smoking, BMI, exercise, 
vitamin D, and calcium intake have been shown to influence PTH levels, 
and thus provide a potential target for intervention (Babic Leko et al., 
2021). 

2.3.4. Growth hormone 
Growth hormone (GH) stimulates the production of IGF–I. In 

addition to promoting bone growth during development, GH also helps 
maintain bone mass and structure in adulthood by stimulating osteo
blast activity and inhibiting osteoclast activity (Olney, 2003). The 
secretion and response to GH and IGF-I decline with age, and this is 
suggested to contribute to age-related bone loss (Di Somma et al., 2011; 
Perrini et al., 2010). 

2.3.5. Dehydroepiandrosterone 
Finally, aging is associated with reduced dehydroepiandrosterone 

(DHEA) levels, likely due to gradual shrinking of the zona reticularis in 
the adrenal gland (Yiallouris et al., 2019). DHEA has been shown to 
increase BMD, which may be ascribed to increased IGF-I expression and 
concurrent bone formation rate (Kirby et al., 2020). DHA supplemen
tation could thus be postulated to improve bone health with aging. 

2.3.6. Chronic Kidney Disease 
Furthermore, common metabolic diseases among older individuals, 

as Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD), 
induce hormonal disbalances. Reduced renal function impairs the syn
thesis of 1,25 hydroxyvitamin D and disrupts phosphate metabolism, 
resulting in reduced intestinal calcium absorption and altered phosphate 
levels. This typically leads to elevated FGF23 levels and secondary hy
perparathyroidism (Pazianas and Miller, 2021). Secondary hyperpara
thyroidism, in turn, leads to increased bone resorption, reduced BMD 
and increased OP risk (Bover et al., 2019; Hampson et al., 2021). 
However, the effects of impaired kidney function on bone health extend 
beyond hyperparathyroidism. For instance, CKD-related metabolic 
acidosis further exacerbates bone loss by stimulating bone resorption to 
buffer excess acid (Kim, 2021). As kidney function declines with age, 
CKD becomes increasingly prevalent, reportedly affecting 38 to 62 % in 
individuals aged above 70 years (Ebert et al., 2017). 

2.3.7. Mental stress 
Hormonal balance can also be influenced by psychological factors 

such as mental stress. During prolonged stress, the hypothalamic- 
pituitary-adrenal (HPA) axis becomes deregulated, resulting in 
reduced GH levels and increased GC levels, consequently disrupting the 
balance in bone remodeling (Herman et al., 2016). Several studies in 
women report that higher perceived stress for a prolonged period, for 
example due to stressful work, is associated with a lower BMD and 
increased fracture risk (Kelly et al., 2019). This holds importance for 
older individuals, as aging is accompanied by biological and environ
mental changes that may pose stress on the individual. In particular, 
chronic conditions and pain induce mental stress in elderly (Vasunilas
horn et al., 2015). 

2.4. Metabolism 

Metabolism comprises numerous biochemical and enzymatic re
actions that are essential for homeostasis in organisms. The balance 
between anabolism and catabolism is constantly regulated and adapts to 
changes in energy expenditure (Moldakozhayev and Gladyshev, 2023). 
The cellular and systemic metabolic changes that occur during aging 
have consequences for bone health: metabolic disorders such as obesity 
and dyslipidaemia are associated with both aging and the development 
of various bone disorders (Asadipooya and Uy, 2019; Suzuki et al., 
2020). 

Lipid and bone metabolism are interconnected, as adipocytes and 
osteoblasts both derive from bone marrow stromal cells (BMSCs). The 

differentiation of BMSCs into either cell type depends on signaling cues 
and the microenvironment (Berendsen and Olsen, 2014). Aging is 
associated with an increase in bone marrow adiposity, resulting from a 
shift towards adipogenesis at the expense of osteogenesis (Ambrosi 
et al., 2017; Justesen et al., 2001). In addition, bone marrow adipocytes 
secrete bone-regulating factors including RANKL and OPG (Hu et al., 
2021). Furthermore, adipocytes secrete factors that promote the con
version of osteoblasts towards an adipocyte-like cell. For instance, 
upregulated expression of adipocyte marker CD36 has been reported in 
osteoporotic women (Balla et al., 2008). Interestingly, another study 
found that expression of this marker was detected in osteoblasts of 
elderly subjects, but not in osteoblasts of younger subjects (Clabaut 
et al., 2021). The disruption of bone microenvironment by bone marrow 
adiposity is directly associated with fracture and OP risk (Veldhuis-Vlug 
and Rosen, 2018). In addition, several disorders that are associated with 
age, such as diabetes mellitus (DM) and obesity, both induce bone 
marrow adipogenesis and reduce bone formation (Ali et al., 2022). 

Glucose metabolism is involved in bone health by maintaining an 
energy balance within bone cells. High glucose levels are linked to a 
decline in bone quality and a higher risk of fractures. Hyperglycemia 
negatively affects bone by reducing osteoblast metabolism and matu
ration (Eller-Vainicher et al., 2020). Furthermore, hyperglycemia pro
motes the formation of advanced glycation end products (AGEs), and 
AGE accumulation in bone has been shown to impair bone health by 
inducing osteoclastogenesis, reducing osteogenesis and impairing bone 
mineralization (Asadipooya and Uy, 2019). Furthermore, low levels of 
the anabolic hormone insulin, which are typical in uncontrolled DM type 
I, can reduce bone formation rate. In fact, mice with induced DM type I 
show a poor bone regeneration, which could be rescued by insulin 
supplementation (Cignachi et al., 2020). Since DM type I typically 
manifests during youth, individuals with the condition tend to have 
lower peak bone mass (Weber and Schwartz, 2016). This can accelerate 
the age at which the critical lower limit of bone mass is reached. 
Consequently, DM type I patients, who lack insulin, show increased hip 
fracture risk and decreased BMD. Paradoxically, individuals with DM 
type II, which mainly results from insulin insensitivity, also show 
elevated hip fracture risk, even though their BMD is significantly higher 
than non-diabetic individuals (Ma et al., 2012; Vestergaard, 2007). 
Thus, pathophysiological mechanisms for bone complications in DM 
type I and II differ. In a meta-analysis by Ma et al. (2012), young age, 
male gender, high BMI and poor glycemic control were all positively 
associated with high BMD in DM type II patients. Another meta-analysis 
by the same group revealed that poor glycemic control in diabetes type II 
patients was associated with an increased fracture risk, despite stronger 
bone geometry and increased BMD (Oei et al., 2013). Notably, while 
absolute BMD was increased in insulin-treated women with diabetes 
type II, this relationship was reversed when correcting for lean mass, 
suggesting a poor adaptation to mechanical loading (Garg et al., 2012). 

In addition, individuals with DM may experience complications as 
nerve and muscle degeneration, and reduced vision due to retina 
degeneration. These complications may both directly affect bone health 
as well as increase the risk of falling (Gilbert and Pratley, 2015). To 
further complicate matters, antidiabetic drugs, such as thiazolidine
dione, improve insulin sensitivity in patients, however also induce 
adiposity, bone loss and fracture risk (Lecka-Czernik, 2010; Yki-Jarvi
nen, 2004). Nevertheless, DM is reportedly more strongly related to OP 
risk in a younger population, presumably as other OP risk factors are less 
prevalent at a younger age (Lin et al., 2021). 

2.5. Brain and nervous system 

Cognitive decline is directly associated with an increased fall risk, 
and with falling-induced fracture risk (Tsutsumimoto et al., 2018). Aside 
from this evident association between bone and cognitive health, both 
are involved in similar hormonal, immune and molecular pathways, and 
share common risk factors for disease (Kelly et al., 2020). The brain 
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regulates bone metabolism by sensory innervation and endocrine cross- 
talk between brain and bone (Masi, 2012). In this regard, neurological 
disorders may mediate secondary effects in bone, while bone distur
bances have also been reported to precede cognitive decline (Xiao et al., 
2023). For instance, expression of several Alzheimer's disease-related 
genes was associated with elevated RANKL and tartrate-resistant acid 
phosphatase (TRAP) gene expression, as well as reduced femoral cortical 
thickness (Stapledon et al., 2021). Another example of brain-bone 
crosstalk is neuropeptide Y (NPY), which is expressed by central and 
peripheral nervous systems to regulate bone formation in response to 
obesity and fasting (Botelho and Cavadas, 2015). NPY expression is 
increased during “starving” conditions to conserve energy, however also 
reduces bone formation. During adequate nutrient intake, NPY levels are 
low and thereby allow normal bone remodeling. Notably, NPY levels 
increase with aging and has been linked to several aging hallmarks 
including cellular senescence (Botelho and Cavadas, 2015). The 
connection between cognitive conditions and OP is still an active area of 
investigation and not widely recognized within clinical practice. This is 
reflected by the fact that less than 5 % of hip fracture patients with 
dementia are referred for treatment of OP, compared to around 30 % of 
hip fracture patients within the overall population (Bliuc et al., 2021), 
although this may also be explained by a low life expectancy. 

2.6. Inflammation 

Pro-inflammatory cytokines significantly contribute to bone loss 
while simultaneously increasing susceptibility to osteoporotic fractures 
(Amarasekara et al., 2015). During aging, the immune system experi
ences changes that are similar as seen during chronic stress. Aging in
duces immunosenescence, with elevated serum levels of acute phase 
proteins and pro-inflammatory cytokines (Teissier et al., 2022a). 
Furthermore, periodontitis has been shown to contribute to chronic low- 
grade inflammation and is highly prevalent in older adults, affecting up 
to 44 % of individuals aged above 65 (Nazir, 2017). Studies have 
demonstrated that pro-inflammatory cytokines, such as tumor necrosis 
factor alpha (TNF-alpha), interleukin 6 (IL-6) and IL-12, amplify bone 
loss (Kany et al., 2019). Notably, higher baseline inflammatory marker 
levels were associated with higher fracture risk in a large population 
study (Cauley, et al., 2007). Furthermore, wear particles from prosthetic 
devices, such as knee and hip replacements, can induce local inflam
mation and subsequent bone degeneration (Ingham and Fisher, 2005). 
The process of bone resorption also triggers release of inflammatory 
cytokines thereby establishing a vicious cycle of inflammation and bone 
loss (Amarasekara et al., 2015). The relationship between inflammation 
and OP is well exemplified by rheumatoid arthritis (RA). In RA, both 
joints and bone deteriorate due to the release of metalloproteinases and 
proinflammatory cytokines (IL-1, TNF-α) that lead to cartilage and bone 
damage (Zwerina et al., 2007). Consequently, the severity of the disease 
acts as distinct risk factor for OP in individuals diagnosed with RA. 

2.7. Circadian rhythm 

An often unrecognized contributing factor to AAOP is the disruption 
of circadian rhythm. Circadian rhythm plays a significant role in bone 
health, and disruptions to this rhythm, such as those caused by shift 
work, elevate the risk of OP (Schilperoort et al., 2020; Smit et al., 2022; 
Winter et al., 2021). At the core of internal circadian regulation is the 
suprachiasmatic nucleus (SCN), whose output is synchronized to inter
nal and external stimuli such as light/dark rhythm. 

As individuals age, amplitude and phase of rhythmic SCN output 
becomes disrupted (Nakamura et al., 2016). These disturbances are 
likely due to age-related changes within the SCN (Biello, 2009; Naka
mura et al., 2011). Behavioural rhythms, such as sleep/wake cycles, also 
become disrupted with increasing age (Duffy et al., 1998; Mattis and 
Sehgal, 2016). Notably, implantation of foetal SCN tissue in aged rats 
could restore some rhythmic behaviours, implying a causal link between 

SCN aging and behavioural arrhythmia (Cai et al., 1997; Li and Satinoff, 
1998). Consequently, when behavioural rhythms decline, the SCN no 
longer receives sufficient rhythmic input. This may be compounded by a 
compromised sensitivity and exposure to light (Sletten et al., 2009). 

Several hormones that regulate bone remodeling exhibit a diurnal 
rhythm, including PTH, estrogen, testosterone and GCs, and disturbing 
rhythmic signaling of these factors in bone has negative consequences 
for bone health (Bergendahl et al., 2000; Sletten et al., 2009; Smit et al., 
2022). For instance, flattening of the diurnal amplitude in GC levels, 
without increasing overall levels, was shown to induce an osteoporotic 
phenotype in female mice (Schilperoort et al., 2021; Winter et al., 2021). 
Notably, circadian rhythm also influences the adaptation of bone to 
mechanical loading in animal models, emphasizing the intricate inter
play between circadian rhythm and bone health (Bouchard et al., 2022). 

3. AAOP prevention and treatment strategies 

Interventions for AAOP can be used with the aim of prevention, 
disease management and symptom relief. Primarily, adopting a healthy 
lifestyle throughout life enables achieving an optimal peak bone mass 
and preservation of bone mass and structure during aging. These be
haviours include regular physical activity, a balanced diet, moderation 
of alcohol consumption and smoking cessation, as discussed in previous 
sections. Specifically in regards to offset age-related changes in nutrient 
uptake and metabolism, it is advisable to enhance calcium and vitamin D 
intake, either through dietary sources or supplements. Standard guide
lines suggest the initiation of vitamin D supplementation after meno
pause, or at the age of 70 for men (Voulgaridou et al., 2023). 

Aside from preserving bone quality, fracture risk in elderly can be 
effectively mitigated through fall prevention strategies. These include 
creating a safe living environment with limited tripping hazards and 
assistive devises such as a stairlift (Campani et al., 2021). Furthermore, 
physical exercise has been shown to effectively improve balance and 
reduce fall rates in elderly, as discussed in Section 2.1 (Papalia et al., 
2020). 

To the extension of lifestyle modifications, a range of anti- 
osteoporotic drugs are currently utilized, comprising both anti
resorptive and bone-anabolic medications. Bisphosphonates are typi
cally the first drug of choice. These antiresorptive bisphosphonates 
adsorb to hydroxyapatite crystals, especially in areas of high bone 
remodeling. Upon bone resorption, osteoclasts internalize the 
bisphosphonate molecules, leading to reduced osteoclast function or 
apoptosis, depending on the subtype (Jobke et al., 2014; Rodan and 
Fleisch, 1996). Another antiresorptive agent also particularly recom
mended for postmenopausal osteoporosis is denosumab. Similar to OPG, 
denosumab acts as a human monoclonal antibody against RANKL, 
thereby acting on all phases of osteoclasts (Kostenuik et al., 2009). While 
improving BMD during treatment, discontinuation leads to increased 
bone resorption and BMD loss. The mechanisms underlying this rebound 
effect are an active area of research. McDonald et al. (2021) suggests 
that denosumab induces the fission of osteoclasts, and these accumu
lated ‘osteomorphs’ collectively fuse into active osteoclasts after 
discontinuation. Fu et al. (2023) proposes an alternative hypothesis, 
asserting that denosumab treatment disrupts the OPG/RANKL balance 
due to reduced osteoblast and osteocyte formation. The latter hypothesis 
is supported by recent clinical trials in which BMD gain with denosumab 
could be maintained by concurrent treatment with bone-anabolic 
romosozumab (Ebina et al., 2020; Kendler et al., 2019). 

Medications that stimulate bone formation include teriparatide and 
romosozumab. Teriparatide is a recombinant form of human PTH, that 
stimulates new bone formation when administered in an intermittent 
regime (Yamamoto et al., 2016). While chronically elevated PTH levels 
stimulate bone resorption and thereby result in bone loss, pulsatile PTH 
peaks can induce a rapid increase in bone formation by inhibiting 
osteoblast apoptosis and promoting osteoblast formation (Silva et al., 
2011). This is explained by the difference in lifespan of osteoclasts and 
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osteoblasts; a few days versus three months respectively (Dobnig et al., 
2005). Romosozumab is a monoclonal antibody targeting sclerostin 
(McClung et al., 2014). Romosozumab has been shown to induce bone 
formation and reduce bone resorption, and is currently prescribed to 
post-menopausal women with a low BMD score and vertebral fractures 
(Kompas; McClung et al., 2014). Given that mechanical loading sup
presses sclerostin secretion, romosozumab has been proposed as a 
therapeutical option for older individuals that are immobilized for a 
prolonged period (Rolvien et al., 2020). However, caution is needed due 
to potential cardiovascular adverse events (Saag et al., 2017). Impor
tantly, pharmacological treatments have also been shown to be safe and 
effective in the ‘oldest old’, i.e. individuals aged above 80 (Vanden
broucke et al., 2017). 

Given the diurnal patterns in both bone turnover and its regulators, 
timing the administration of therapeutic agents, referred to as chrono
therapy, can be effective in enhancing treatment outcomes and miti
gating side effects (Winter et al., 2021). For example, teriparatide 
demonstrates heightened effectiveness when administered in the 
morning, as evidenced by lower bone resorption marker CTx values and 
a more substantial increase in lumbar spine BMD, as compared to eve
ning administration (Luchavova et al., 2011; Michalska et al., 2012). 
Moreover, administering vitamin D3 at the onset of the dark phase in 
aged rats, as opposed to within the light phase, resulted in a greater BMD 
increase and reduced the severity of side effects, including hypercalce
mia (Tsuruoka et al., 2001). 

While medical treatments and facilitated prevention programs can 
promptly improve bone health and reduce fracture risk, continuous 
management of AAOP risk factors is necessary to maintain bone health 
throughout all of adulthood. Therefore, greatest gains can be achieved 
through adequate self-management, which requires sufficient health 
literacy. This can improve the low adherence to AAOP intervention 
programs and medication, as individuals need to comprehend the rea
sons and methods for adhering to their therapies. In addition to proper 
patient education, treatment options with minimal adverse effects and 
lower frequent dosing have been reported to enhance therapy adherence 
(Hiligsmann et al., 2019). 

4. Integrating risk factors to personalize AAOP treatment 

Physical inactivity, malnutrition, hormonal and metabolic dis
balance, cognitive decline, (chronic) inflammation and blunted circa
dian rhythm are all well-recognized as individual contributing factors to 
AAOP. However, AAOP is not a mere sum of individual factors, but a 
complex integration of these factors on biological, systemic and 
behavioural level, as exemplified in patient scenario 2. 

As a means to integrate individual risk factors to accurately predict 
AAOP risk, several assessment tools have been developed. These tools 
are aimed at predicting increased fracture risk and typically integrate 

factors as BMD, age, body weight, history of fractures and use of 
medication that list OP as adverse effect (Rubin et al., 2013). As the 
effect of BMD on fracture risk in itself is affected by the presence of other 
risk factors, fracture risk assessment tools can also assist in deciding 
which patients should be referred for BMD measurement (Compston 
et al., 2009). The Fracture Risk Assessment Tool (FRAX) is frequently 
used, which includes 10 clinical risk factors with or without BMD to 
predict the 10-year probability of osteoporotic fractures (Kanis et al., 
2007). Fracture risk can also be determined by an online tool developed 
by Garvan institute, which performs similar to FRAX but also includes 
fall risk which is of particular importance for the elderly population, and 
is freely accessible (Agarwal et al., 2022). Interestingly, a review on 
AAOP risk tools concluded that the more complex FRAX performed 
similarly to simpler screening tools, or even age alone (Rubin et al., 
2013). Other studies also report that increasing the complexity of tools 
does not improve prediction accuracy (Leslie et al., 2016). One may 
conclude that taking account of all factors that contribute to AAOP is not 
necessary to accurately identify individuals at risk, and even a routine 
screening at a certain age may be most effective. However, there is a lack 
of high-quality studies that have evaluated their effectiveness in 
selecting patients for therapy and improving fracture outcomes (Rubin 
et al., 2013). 

Identifying individuals at risk is only the starting point for the 
management of AAOP. In fact, the effectivity and durability of in
terventions highly depends on the precise combination of risk factors, 
which can vary for each individual. Therefore, a personalized approach 
that takes into account the unique circumstances of the individual may 
result in the most effective care for AAOP. This is in line with the 
growing support in literature for personalized medicine in OP care. 

5. Conclusion 

In conclusion, AAOP presents a global health challenge that becomes 
increasingly relevant in our aging society. This review has highlighted 
the multifaceted nature of AAOP, discussing the numerous biological 
and behavioural changes that contribute to its development and guide 
treatment decisions. As every patient presents a unique disease etiology, 
the management of AAOP can benefit from holistic and patient-centred 
approach. This entails integration of lifestyle changes, fall prevention 
strategies, and medical therapy. Tailoring interventions to the specific 
circumstances and needs of individual patients will maximize outcomes 
and improve overall disease management. Moving forward, the devel
opment of an integrated disease model for AAOP that encompasses all 
significant interactions between various factors would be instrumental 
in designing comprehensive and personalized treatment strategies. 
Nevertheless, increased awareness of the diverse factors influencing 
disease progression can already guide healthcare professionals in earlier 
detection and improved management of AAOP. 

Scenario 2 
Mechanical loading after menopause 

Mrs. Lee is a postmenopausal 60-year-old woman, diagnosed with vitamin D deficiency. Mrs. Lee also has a family history of OP. Her genetic 
predisposition means that she is at a higher risk of developing osteoporotic fractures, even with adequate hormone levels and exercise. 
Additionally, her previous knee injury makes it difficult for her to engage in, which is considered to be most effective type of physical exercise to 
stimulate bone formation. Mrs. Lee is concerned about her bone health and wants to know what she can do to prevent OP fractures. 

To address these challenges, Mrs. Lee's healthcare primarily recommends to increase her vitamin D and calcium intake through a balanced diet 
and supplementation. Furthermore, she is advised to engage in low-impact weight-bearing exercises, such as brisk walking, and resistance 
training with weights or resistance bands. Initially of moderate impact and building towards higher intensity according to physical capabilities. 
This tailored exercise program may preserve bone mass without placing excessive strain on her joints (Nikander et al., 2010). The combination 
of mechanical and nutritional intervention allows Mrs. Lee to proactively reduce her osteoporotic fracture risk. In addition, given her post
menopausal status and family history of OP, Mrs. Lee is referred for a DXA scan to determine her BMD, together with a vertebral fracture 
assessment (VFA) to detect spinal fractures.  
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