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Evolution of Mycoplasmas and Genome Losses
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Streptococci and acholeplasmas have a close evolutionary relationship. We examined their
genomes to determine what chromosomal losses occurred to produce the smaller acholeplasma
genomes and found by RNA-DNA hybridization that Streptococcus cremoris and S. lactis
possess at least five or at least six ribosomal RNA gene sets, respectively, while acholeplasmas
have only two rRNA gene sets. Other important deficiencies identified in mycoplasmas are
associated with envelope or RNA genes, and analysis of these chromosomal deletions may lead
to an understanding of how mycoplasmas evolved from walled bacteria.

INTRODUCTION

Previously we have shown that mycoplasmas evolved from various bacteria and
particularly that the sterol non-requiring mycoplasmas (acholeplasmas) are
phylogenetically related to streptococci and are descended from streptococci. Conse-
quently, the mycoplasmas do not constitute a true phylogenetic class, but rather are
an assemblage of diverse wall-less bacteria [1,2]. Our conclusion that mycoplasmas
evolved from bacteria and are not a true phylogenetic class is supported by the work
of Woese and co-workers [3].
On the basis of physiological properties [1], lipid composition [4,5] and 16S rRNA

sequences [3], several other mycoplasmas as well would appear to be descendants of
gram-positive bacteria. However, whether all mycoplasmas descended from gram-
positive bacteria and consequently only gram-positive bacteria had the capacity to
give rise to mycoplasmas remains to be determined, because these characters have
not been examined in non-fermentative mycoplasmas.

Although acholeplasmas are closely related to streptococci and have retained
many of their characteristics, it is evident that acholeplasmas are radically altered
from streptococci. Because of the close phylogenetic relationship demonstrated
between streptococci and acholeplasmas, it becomes possible now to analyze this
progenitor-descendant relationship by examining the differences between the achole-
plasmas and their specific bacterial antecedents- the streptococci. It also becomes
possible now to formulate questions concerning the evolutionary mechanisms by
which mycoplasmas evolved from their progenitor bacteria.
We will focus our discussion here on chromosomal changes in mycoplasmas.

Comparison of the chromosome sizes of acholeplasmas (1 x 109 daltons) and the
known values for streptococci which range from 1.2 x 109 to 1.4 x 109 daltons [6,7]
indicates that acholeplasma genomes are approximately 20 to 30 percent smaller than
streptococcal genomes and consequently large genome losses must have occurred in
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the transition from streptococci to acholeplasmas. Some important questions are:
(1) What genome losses have occurred to produce the smaller genome mycoplasmas?
(2) Were the losses scattered around the chromosome or were losses mainly in cer-
tain chromosome segments? (3) What mechanism(s) brought these changes about?
(4) Why do all known mycoplasma genome sizes cluster closely near the two values
5 x 108 and 1 x 109 daltons rather than forming a range of genome sizes and is the
separation in the size of these values by a factor of two significant? These questions
can be examined directly by using gene probes to examine and compare the chromo-
some organization of mycoplasmas and their bacterial progenitors.

MATERIALS AND METHODS

Mycoplasma and streptococcal strains, cultivation conditions and immunological
methods [2], and enzyme assays [8] were described previously. DNA was isolated as
described [9]; ribosomal RNA was extracted from ribosomes, purified by elec-
trophoresis, partially hydrolyzed, and 5'-labeled with (y-32P) ATP with T4 poly-
nucleotide kinase [10]. Total chromosome DNA was cleaved with restriction en-
donucleases according to the conditions described by the supplier (New England
Biolabs, Beverly, MA, or BRL, Gaithersberg, MD). The resulting DNA fragments
and lamda phage DNA molecular weight standards were separated in horizontal 0.7
percent agarose gels in 0.04 M Tris-0.02 M Na acetate buffer-2 mM Na2EDTA and
transferred to nitrocellulose paper by the method of Southern [11]. Hybridizations
described here were carried out with S. cremoris32P-5'-labeled 5S, 16S, or 23S rRNA
probes at 37°C in 4 x SSC-50 percent formamide-0.4 percent SDS for 16 hours.
Filters were washed at 22°C in 2 x SSC, treated with 10 jg heated pancreatic RNAse
per ml, washed in 0.4 percent SDS-2 x SSC and autoradiographed.

RESULTS

The rRNA genes in acholeplasmas and streptococci were examined and compared
by hybridizing 32P-5'-labeled S. cremoris 5S, 16S, and 23S rRNA to southern blots of
restriction fragments obtained from whole chromosomes digested with various
restriction endonucleases. For purposes of comparing acholeplasma rRNA genes,
the most useful digests were obtained with the endonucleases Eco RI, Hind III, and
Bgl II, all of which recognize AT rich sequences. Mycoplasmas generally have
relatively low GC contents [9], and it would be expected that restriction en-
donucleases that recognize GC rich DNA sequences would cleave relatively few sites
in mycoplasma genomes. Nevertheless, acholeplasma DNAs were treated with
several such enzymes, with the view that there could be fortuitous sequences in the
chromosome that could provide fragments useful for the analysis of the acholeplasma
chromosomes. The enzymes BamH I, Xho I, and Sma I indeed did produce mainly a
smear of very large fragments which were not useful for rRNA gene analysis.
However, certain acholeplasma DNAs in addition to the smear of large fragments
produced a small number of bands which formed a pattern characteristic for that
species. For example, A. hippikon DNA produced six well-separated, characteristic
bands in BamH I digests and such distinct digest fragments may prove useful in
genome analysis. Interestingly, some of these bands matched in size the bands from
S. lactis BamH I digests.
The number of rRNA gene sets was determined by counting the fragments which

hybridized to 5S, 16S, and 23S rRNA. Five Acholeplasma species have been ex-
amined and, in each DNA digest, two DNA restriction fragments reacted with all
three rRNA probes. Results are shown for three species, digested with each of two
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FIG. 1. Autoradiograph of A. equifetale, A. hippikon, and A. laidlawii DNAs digested with the re-
striction enzymes EcoRI and Bgl II and hybridized with 32P-5'-labeled 5S, 16S, and 23S rRNAs.

enzymes (Fig. 1). Similar results were obtained for A. granularum and A. axanthum
(not shown). We conclude that Acholeplasma species chromosomes each contain
only two rRNA gene sets. It is apparent also that the individual acholeplasma rRNA
genes are physically linked together on the chromosome, and, from the fact that the
16S genes are associated with the 23S genes and the 5S genes are associated with the
23S genes, the order probably is in the usual 16S-23S-5S eubacterial arrangement.

Results of hybridizations with EcoRl digests of DNA from two group N strep-
tococci, S. lactis and S. cremoris, are shown in Fig. 2. We estimate that there are at
least five rRNA gene sets in S. cremoris and at least six rRNA gene sets in S. lactis
(assuming that the darker, lower band in the S. lactis 23S and 5S rRNA
autoradiographs are composed of two co-migrating rRNA gene-bearing fragments).
Analysis of hybridizations with digests obtained with Bgl II and Hind III support
these results.

Interestingly, the closely related group N streptococci, S. cremoris and S. lactis,
shared two identically sized rDNA fragments bearing 5S, 16S, and 23S rDNA gene
sequences. It seems probable that these shared restriction fragments will contain
identical or nearly identical sequences. Some of the acholeplasmas also shared ap-
parently identically sized rDNA fragments bearing both 16S and 23S rDNA se-
quences; for example, in Bgl II digests, A. equifetale shared one of its two rRNA
gene fragments with one A. laidlawii fragment. These fragments too could share se-
quences. Especially interesting was the fact that some of the acholeplasma and strep-
tococci shared apparently equal-sized cut rDNA fragments with one another. For
example, A. laidlawii and S. lactis shared a 16S-23S rRNA gene fragment, and this
could be coincidental or could result from the sharing of large nucleotide tracts. In
addition, in both streptococcal and acholeplasma digests, one or a small number of
fragments were detected that hybridized only to 16S rRNA but not to 23S rRNA,
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In addition to the complete absence of several rRNA genes, the remaining rRNA
genes appear to lack some nucleotides or nucleotide sequences. Reff et al. [17] re-
ported that the 16S rRNA (but not 23S rRNA) of all mycoplasmas examined ap-
peared to be smaller in size than bacterial 16S rRNAs by about 12,000 daltons (this
value would indicate the absence of about 37 nucleotides). Also, Woese and co-
workers [3] reported that a number of sequences highly conserved in bacteria were
not present in mycoplasma 16S rRNAs. In addition, the length of the 5S rRNAs
from M. capricolum [18] and Spiroplasma sp. BC3 [Walker, this symposium] is only
107 nucleotides, the shortest known for any bacteria, suggesting that mycoplasma
5S rRNAs may also be missing some nucleotides (5S rRNAs from gram-positive
bacteria are 116 or 117 nucleotides long). We have compiled the specific deficiencies
or genome losses that have been identified in acholeplasmas (most of these also oc-
cur in other mycoplasmas), and all occur either in rRNA genes or in cell envelope-
related functions (Table 1). Thus, losses of rRNA gene sets and certain rRNA gene
sequences together with losses of genes coding for several cell envelope-related func-
tions comprise the most prominent chromosomal losses universally missing from
mycoplasma genomes. Any explanation for the genesis of mycoplasmas will have to
account for these massive chromosomal losses. The apparent universality of these
two classes of genome losses among mycoplasmas suggests that they could have been
primary events in the formation of mycoplasmas.
The mechanism(s) by which large reductions in genome size occurred to produce

the mycoplasmas is not known, and we have already speculated on how large or
small chromosome losses could have occurred [2]. Because of our finding that
acholeplasmas have only two rRNA gene copies compared to at least five or six
copies for streptococci, it seems appropriate to focus our attention on chromosome
alteration mechanisms involving rRNA genes. In E. coli there are seven rRNA
operons distributed around the chromosome [15] and in B. subtilis there are nine or
ten gene copies [16]. Because rRNA operons are largely homologous there is the
potential for unequal recombination between these genes, and such recombination
could lead to major rearrangements of the chromosome. These rearrangements
might take the form of tandem duplications, inversions, translocations, or, of

TABLE 1
Comparison of Streptococcal and Acholeplasma Genomes and Envelopes

Streptococci Acholeplasmas

Genome
Size 1.2-1.47 x 109 1 x 109
G + C content 34-421o 29-35%o
RNA gene sets At least 5 or 6 sets Two sets

rRNA
G + C content Lower range
16S rRNA 12,000 daltons smaller

Sequences missing
5S rRNA Sequences missing?

Envelope
Penicillin binding

proteins Present Absent
PEP sugar

transferase Present Absent
NADH oxidase Membrane soluble Membrane only
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greatest interest here, deletions. The type of rearrangement would depend on the
configuration on the chromosome of the interacting genes. The work of Hill and co-
workers [19] shows that in fact at least some of these alterations can occur readily in
E. coli. Thus, a conceivable mechanism for the loss of rRNA genes (and, possibly,
genes in the intervening chromosome segments) is that a chromosome segment
bounded by homologous rRNA genes could be deleted instead of being transposed.
It seems probable that similar events could occur in gram-positive bacteria.
Trowsdale and Anagnostopoulos [20] showed that in B. subtilis very large genome
segments- as large as one-third of the chromosome- can undergo translocation and
inversion or duplication, and recently Loughney et al. [16] identified a B. subtilis
strain in which a single rRNA gene set was deleted.

Deletions of cell wall-related genes and rRNA genes are the classes of deficiencies
found universally in mycoplasmas. It is interesting to note that the rRNA (and
tRNA) genes are located on the chromosome near the origin of replication [21] and
that the replication origin is associated with the cell membrane [22,23]; in B. subtilis,
inhibition of cell-wall synthesis inhibits or prevents initiation of chromosome DNA
replication [24]. Whether perturbation of the interaction of these elements could
have had some role in mycoplasma formation is being explored.
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