
INTRODUCTION

One-quarter of global cancer deaths are caused by lung 
cancer (Sharma et al., 2007). Approximately 235,000 new 
cases of lung cancer patients were reported in the USA in 
2020. The two major sub-categories of lung cancer are small 
cell lung cancer (SCLC) and non-small cell lung cancer 
(NSCLC). NSCLC accounts for almost 85% of all lung cancers 
(Finlay et al., 2014). The subtypes of NSCLC are adenocar-
cinoma, squamous cell carcinoma, and large cell carcinoma. 
In advanced NSCLC, the 5-year survival rate is less than 20% 
(Midha et al., 2015). Epidermal growth factor receptor (EGFR) 
is one of the most investigated drug targets to treat NSCLC. 

ERBB family
EGFR belongs to the ERBB gene family (Wee and Wang, 

2017). ERBB family kinases consist of four types i) EGFR/

ERBB1/HER1, ii) NEU/ERBB2/HER2, iii) ERBB3/HER3, 
and iv) ERBB4/HER4, and are activated by ligand binding 
to the receptor to form homo-dimer or hetero-dimers (Table 
1) (Finigan et al., 2012). ERBB2 has no evidence of direct 
ligand binding; however, it is a heterodimeric binding partner 
to its family members (Tzahar et al., 1996). All family mem-
bers of ERBB have intrinsic tyrosine kinase activity, except 
for ERBB3. ERBB family kinases are inactive when they exist 
in the monomeric form. On the ligand binding, such as with 
EGF and transforming growth factor-α (TGF-α), the receptors 
undergo conformational changes that enable the formation of 
homo-dimerization or hetero-dimerization, which activates the 
kinase domain (Singh et al., 2016).

Structure of EGFR
EGFR is a glycoprotein with 170 kDa and is a member of 

the receptor tyrosine kinase. EGFR contains three domains: 
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i) an extracellular ligand-binding domain, ii) a transmembrane 
domain, and iii) an intracellular domain that contains an ATP-
binding active site with a tyrosine moiety (Roskoski, 2014). 
The extracellular domain comprises 621 amino acids and is 
subdivided into four regions (exons 1-16). EGFR activation 
begins with ligand binding, followed by homo- or hetero-di-
merization, resulting in tyrosine phosphorylation which is lo-
cated in the intracellular tyrosine kinase domain (Carpenter et 
al., 1991). The transmembrane domain consists of 23 amino 
acids (Ile622 to Met644). The intracellular domain consists of 
three major regions: flexible juxtamembrane (exons 16 and 
17), tyrosine kinase domain (exons 18-24), and C-terminal 
tail (exons 25-28) (Morrow and Grant, 2000). The tyrosine ki-
nase domain is further divided into two parts: the N-lobe and 
C-lobe. The ATP-binding active site is located between these 
two lobes. Kinase downstream signaling is activated by trans 

autophosphorylation interactions of the N-lobe of the receptor 
to the C-lobe of the other receptor (Tanner and Kyte, 1999). 
The kinase region also contains lysine rich residue, which is 
known as the main site of receptor ubiquitination (Zhang et al., 
2006). In addition, the C-terminal tail contains several tyrosine 
residues that undergo autophosphorylation after activation of 
the receptor and serve as docking sites for effector proteins 
that transmit the signal further downstream. These proteins 
also regulate signal transduction (Walton et al., 1990).

EGFR downstream signaling pathways
EGF binds to EGFR and forms homo- or hetero-dimer-

ization with other ERBB members, leading to EGFR recep-
tor phosphorylation and the activation of downstream path-
ways (Ferguson et al., 2003) (Fig. 1). Ultimately, it drives 
the phosphorylation of downstream effectors such as RAS–
RAF–MEK–ERK–MAPK and PI3K–AKT–mTOR (Batzer et al., 
1994). The activation of these kinases stimulates the complete 
signaling network with many effects, such as cell proliferation, 
differentiation, migration, growth, and apoptosis inhibition (Ol-
sen et al., 2006).

Role of EGFR in NSCLC
EGFR plays a significant role in stimulating lung cancer 

generation and propagation (Ferlay et al., 2007). Lung cancer 
development proceeds from deregulated cellular proliferation 
that stimulates normal cells into malignant transformation. 
EGFR plays a significant role in initiating and triggering sig-
naling events in NSCLC and SCLC. Within NSCLC, there are 
three types of sub-categories: i) adenocarcinomas, ii) squa-
mous cell carcinomas, and iii) large cell carcinomas (Kenfield 
et al., 2008). EGFR overexpression has been identified among 
these subtypes of NSCLC, with the highest rates seen in squa-

Table 1. ERBB family receptors and ligands

Receptor Ligand

ERBB1/HER1/EGFR EGF
TGF-α
Amphiregulin
Betacellulin
Epiregulin

ERBB2/HER2 No ligand
ERBB3/HER3 Neuregulin 1, 2
ERBB4/HER 4 Betacellulin

Heparin-binding EGF
Epiregulin
Neuregulin 1-4
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Fig. 1. EGFR cellular signaling pathway (Finigan et al., 2012) (Permission granted by the American Thoracic Society).
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mous tumors (90%) and the lowest rates in adenocarcinomas 
(40%) and very little in large cell adenocarcinoma. Research 
has shown that EGFR can be a drug target in NSCLC therapy. 
The inhibition of EGFR function can be targeted by two major 
strategies: i) intracellular kinase signaling inactivation by TKIs 
and ii) neutralizing EGFR and ligands with antibodies (Ciardi-
ello and Tortora, 2008).

Mutations in EGFR
EGFR L858R and Del19 mutations are the two major driv-

ing mutations, and account for somatic mutations in the kinase 
domain of the EGFR gene related to lung adenocarcinoma. A 
total of 35% of Asians and 15% of Caucasians suffering from 
lung adenocarcinoma have EGFR-related mutations (Ko-
bayashi and Mitsudomi, 2016). According to the COSMIC da-
tabase, nearly 590 types of epithermal growth factor receptor 
mutations have been reported to date. The majority of these 
genes are present in the first four exons (18-21) of the tyro-
sine kinase domain (Fig. 2) (Kosaka et al., 2004). Early stud-
ies simplified the complexity of tumor genotypes by dividing 
them into mutant or wild-type. The most common mutations 
(sensitizing mutations) are Del19 (exon 19 deletions) and 
L858R (mutation in exon 21) (Tokudome et al., 2020). These 
sensitizing mutations or driving mutations account for 85% of 
EGFR mutations in NSCLC (Li et al., 2008). In addition, EGFR 
exon 20 insertion mutations are heterogeneous and are the 

third most common EGFR mutation, but no TKI is available yet 
(Goldberg et al., 2018).

Mechanism of EGFR activation by mutations
After EGF ligand binding to the EGFR, the C-helix con-

formation changes from outward to inward. This conforma-
tional change activates the enzyme from an inactive form to 
an active conformation (Purba et al., 2017). This active con-
formation forms important interactions with the p-loop of the 
active site, which is located between the cleft of the N-lobe 
and C-lobe (Yun et al., 2007). Earlier research confirmed that 
the driving mutations (Del19 and L858R) induced a confor-
mational change, which disrupted the inactive form of EGFR, 
causing an equilibrium swing toward an active state over an 
inactive state. This change allowed EGFR to become ligand-
independent and form homo- and hetero-dimerization, result-
ing in the proliferation and activation of downstream signaling 
pathways (Vyse and Huang, 2019). This variance in confor-
mational change between the wild-type and mutant receptors 
resulted in the dependency of tumor cells on EGFR signaling. 
By targeting these classical activating EGFR mutations, there 
is room to treat NSCLC patients by making EGFR TKIs (Har-
rison et al., 2020).

Fig. 2. Frequency of EGFR mutations in lung cancer and availability of targeted tyrosine kinase inhibitors (modified from the original figure, 
Kobayashi and Mitsudomi, 2016) [Permission granted from the publisher (John Wiley and Sons)].
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CHRONICLES OF EGFR TKIS

During the early 1970s, lung cancer was considered as one 
unit arising from the lung. Later, chemotherapy combination 
studies of all patients with lung cancer, irrespective of sub-
types such as SCLC or NSCLC, resulted in a minimum benefit 
to the patients, with the overall survival rate less than seven 
months (Pao and Chmielecki, 2010). During the early 2000s, 
a groundbreaking chemotherapy trial with platinum doublets 
studied in all patients with NSCLC revealed no particular ben-
efit in the overall survival rate of the patients (Sandler et al., 
2006), irrespective of histological subtype. Nonetheless, sub-
dividing lung cancers into more clinically related subsets has 
continued. From this research analysis, scientists confirmed 
the main histological differences among lung cancer types, 
such as SCLC and NSCLC. NSCLC consists of multiple sub-
types, such as adenocarcinoma, squamous cell carcinoma, 
and large cell carcinoma (Travis et al., 2011). Today, additional 
subcategorization is driven by the understanding that tumors 
can be defined by different molecular criteria. The discovery 
that separate subsets of cancers harbor precise driver muta-
tions in genes encoding signaling enzymes that are essential 
for cellular proliferation and survival led to one of the most 
promising treatment approaches. In 2004, the first EGFR mu-
tant tumors were discovered, which presented the best-stud-
ied model of oncogene dependence in lung cancer (Gazdar, 
2009). 

First-generation EGFR TKIs
Research has confirmed that almost 85% of EGFR muta-

tions in NSCLC consist of Del19 (deletions in exon 19) and 
L858R point mutations (within exon 21). Several small mol-
ecule inhibitors have been designed and evaluated for their 
inhibitory activity against EGFR mutant kinases. These ki-
nase inhibitors belong to competitive inhibitors as they bind 
to the intracellular active region of the tyrosine kinase domain, 
where ATP binds to the kinase activation (Du and Lovly, 2018). 
Anilinoquinazoline-based derivatives, such as gefitinib and er-
lotinib (Fig. 3), are first-generation EGFR inhibitors and are 
reversible inhibitors. Gefitinib and erlotinib exhibit significant 
potency against driving mutations (Del19 and L858R) (Eck 
and Yun, 2010). The treatment of NSCLC patients with first-
generation EGFR inhibitors led to a positive response rate of 
approximately 60%-80%. Although these small molecule in-
hibitors showed promising results, most of the patients who 
responded to this treatment faced drug resistance after nearly 
10-12 months of treatment (Karachaliou et al., 2018). The ma-
jor resistance mechanism is the replacement of threonine 790 

with methionine residue (T790M) in nearly 60% of patients. 
This mutation increases the affinity for ATP and decreases the 
affinity to the first-generation EGFR inhibitors (Ko et al., 2017).

Second-generation EGFR TKIs 
To overcome the T790M mutation arising from the treat-

ment of first-generation inhibitors, several irreversible 4-ani-
linoquinazoline analogs have been developed. 

The second-generation EGFR TKIs such as afatinib, 
dacomitinib, neratinib, canertinib, and pelitinib (Fig. 4) have 
electrophilic acrylamide to form covalent interactions with 
Cys797 at the ATP-binding site of EGFR (Yu and Riely, 2013). 
The anilinoquinazoline moiety forms a hinge binding within 
the ATP-binding domain, providing a potential interaction with 
the gatekeeper Met790 residue and shows nanomolar po-
tency toward EGFR Del19/T790M and EGFR L858R/T790M. 
However, the clinical benefits were compromised due to poor 
selectivity toward wild-type EGFR. Second-generation EGFR 
TKIs suffer intolerable low maximum tolerable dose due to 
dose-limiting toxicity, resulting from targeting wild-type EGFR 
and the repulsion created by the gatekeeper mutation T790M 
(Lin et al., 2014).

Third-generation EGFR TKIs
Third-generation irreversible EGFR inhibitors, namely 

osimertinib and lazertinib, are potent against mutated EGFR 
and display encouraging efficacy in NSCLC patients who are 
resistant to first- and second-generation inhibitors. They se-
lectively target Del19 and L858R mutations, as well as the 
gatekeeper T790M-resistance mutation, by forming a covalent 
bond with the C797 residue, located in the ATP-binding site of 
mutant EGFR (Grabe et al., 2018). Both osimertinib and lazer-
tinib (Fig. 5) exhibit superior activity against T790M mutants, 
with minimal off-target effects and fewer adverse events re-
lated to less inhibition of wild-type EGFR. Due to the excellent 
efficacy and better safety profile, osimertinib was approved to 
treat T790M-positive patients who have advanced EGFR mu-
tations after first- or second-generation EGFR TKIs (Gao et 
al., 2016). The high clinical efficiency of osimertinib was com-
promised by modifying nucleophilic cysteine to serine in the 
active site, the C797S mutation. The point mutation of C797S 
led to acquired resistance, limiting the use of third-generation 
EGFR inhibitors (Lategahn et al., 2019).

Lazertinib showed promising antitumor activity in patients 
with tumors that had activated EGFR mutations and T790M 
resistance mutations. Lazertinib displayed less efficacy 
against wild-type EGFR than osimertinib, indicating that lazer-
tinib might have fewer off-target side effects than osimertinib. 
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Moreover, in a murine brain metastasis model, lazertinib inhib-
ited intracranial tumor growth more efficiently than osimertinib. 
Clinical data have shown that lazertinib might be more effec-
tive in treating lung cancer with brain metastasis (Lategahn et 
al., 2019).

Resistance mechanism caused by the C797S mutation
The C797S mutation in EGFR is one of the mechanisms 

of drug resistance to third-generation EGFR TKIs such as 
osimertinib and lazertinib. Recent study findings have shown 
that C797S/T790M is in cis conformation in 82% of patients, 
C797S/T790M is in trans conformations in 10% of patients, 
C797S alone without T790M is in 6% of patients, and two 
co-existing C797S clones (one in cis with T790M and one 
in trans) are in 2% of patients. In addition, 84% of patients 
showed additional resistance mechanisms with C797S, in-
cluding EGFR amplification (48%), MET amplification (16%), 
BRAF V600E (5%), and PIK3CA mutation (15%) (Piotrowska 
et al., 2015). The context in which C797S develops regarding 
the other EGFR alleles influences the efficacy of subsequent 

treatments. Niederst et al. (2015) emphasized that the allelic 
context of C797S acquired resistance after treatment with 
third-generation EGFR TKIs affects subsequent treatment 
strategies. This study concluded that if C797S and T790M 
mutations were in trans, resistant cells will be resistant to the 
third-generation EGFR TKIs but respond to a combination of 
the first- and third-generation TKIs. If the mutations are in cis, 
they are unresponsive to any EGFR TKI alone or in combina-
tion. In addition, if C797S develops along with the driving mu-
tations of EGFR (when third-generation TKIs are administered 
in the first-line setting), the cells become resistant to third-gen-
eration EGFR TKIs but show a response to first-generation 
EGFR TKIs (Niederst et al., 2015).

Small molecule against EGFR-TM NSCLC
The C797S point mutation is one of the major problems 

for NSCLC patients who are treated with currently available 
EGFR TKIs. According to updated clinical studies, approxi-
mately 40% of patients have developed C797S mutations af-
ter treatment with third-generation EGFR TKIs. Globally, many 
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pharmaceutical companies are focused on the development of 
small molecules to treat EGFR triple mutant NSCLC (Table 2). 

Next-generation allosteric EGFR TKIs
The appearance of the C797S point mutation in EGFR 

prevented clinical treatment with third-generation inhibitors 
that are effective against EGFR T790M mutation. The C797S 
mutation prohibited the formation of covalent bonds with the 
Michael acceptor of the third-generation inhibitors. Because 
of this drawback, there is an immediate requirement for the 
development of next-generation EGFR inhibitors targeting the 
triple mutant L858R/T790M/C797S and Del19/T790M/C797S 
(Lu et al., 2018). As third-generation EGFR TKIs are irrevers-
ible inhibitors, novel treatment modalities are required in a 
non-irreversible fashion against EGFR T790M/C797S muta-
tions (Akazawa et al., 2020). Recent studies have indicated 
that EAI045 and TREA-0236 (Fig. 6) inhibit EGFR mutants in 
an allosteric manner (Lee et al., 2018).

These two small molecules showed activity in biochemical 

assays against L858R/T790M and L858R/T790M/C797S mu-
tations (Jia et al., 2016). Both these compounds bind to the in-
active conformation of mutated EGFR in the allosteric pocket. 
These are not active against wild-type EGFR because of the 
steric clash with L858 and L861. Combination therapy and 
the EGFR antibody cetuximab led to a significant increase in 
cellular potency. The development of allosteric inhibitors can 
be a significant step to treat EGFR mutant NSCLC. EAI045 
showed high inhibition levels to L858R/T790M and L858R/
T790M/C797S mutations with a novel mechanism.

Mutant-selective allosteric EGFR degraders
Allosteric EGFR inhibitors successfully inhibited the L858R/

Table 2. Fourth-generation EGFR inhibitors

Compound Structure Clinical trails Reference

BLU-945 Undisclosed Phase 1 Schalm et al., 2020
BBT-176 Undisclosed Phase 1

Table 3. Summary of EGFR inhibitors

EGFR 
wt.

EGFR mutations

Inhibition modedel_19
L858R

del_19/T790M
L858R/T790M

del_19/T790M/C797S
L858R/T790M/C797S

Gefitinib (First Gen.) Sensitive Sensitive Resistant Resistant Reversible
Afatinib (Second Gen.) Sensitive Sensitive Sensitive Resistant Irreversible
Osimertinib (Third Gen.) Resistant Sensitive Sensitive Resistant Irreversible
(Fourth Gen.) Resistant Sensitive Sensitive Sensitive Not irreversible
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T790M/C797S mutation in an in vitro biochemical assay. How-
ever, EAI045 is not effective in blocking EGFR-driven prolif-
eration in cells as a single agent because of its differential 
potency on the two subunits of the dimeric receptor, which 
interact asymmetrically in the active state (Tinivella and Ras-
telli, 2018). Thus, it requires cetuximab for improved potency 
in cells and in vivo. Allosteric inhibitors were only effective in 
combination with antibodies, such as cetuximab. Toxicity-re-
lated concerns arose from the off-target issues of cetuximab, 
which binds to all EGFR forms, including the wild-type. This 
limited the potential of allosteric inhibitors for therapeutic use 
(Bhullar et al., 2018). 

As a promising alternative to inhibition, targeted protein 
degradation (TPD) using small molecules has emerged as a 
novel therapeutic approach. The TPD mechanism depends 
on degrader molecules that bind the protein target of interest 
and recruit it to an E3 ubiquitin ligase. This contiguity with E3 
ligase affects target polyubiquitination and subsequent protea-
somal degradation (Lai and Crews, 2017).

DDC-01-163 (Fig. 7) was developed as an allosteric de-
grader selective for EGFR triple mutants. It successfully in-
hibited the proliferation of EGFR mutant Ba/F3 cells (L858R/
T790M) with no activity against the wild-type. Furthermore, the 
mechanism of allosteric degrader activity is independent of 
cetuximab. This result represents a noteworthy advance over 
existing EGFR allosteric inhibitors (De Clercq et al., 2019).

DDC-01-163 induced the selective degradation and inhibi-
tion of mutant EGFR cells in a dose-dependent manner and 
was especially inactive toward wild-type EGFR. The human 
cancer cell line, H1975, also displayed consistent results. 
These encouraging results suggest that the development of 
allosteric PROTACs for EGFR could assist a wide range of 
patients with EGFR L858R/T790M/C797S mutations (Jang et 
al., 2020).

Summary and future prospects
Gefitinib and erlotinib are first-generation reversible EGFR 

TKIs. They are quinazoline-based derivatives that act as ATP 
competitive inhibitors binding reversibly to the tyrosine kinase 
pocket of EGFR. Both drugs exhibited high inhibitory activity 
against wild-type and mutant EGFR. However, they ultimately 
develop resistance due to secondary mutations (Wang et al., 
2016).

Afatinib and dacomitinib are irreversible EGFR TKIs. Al-
though their structures are similar to gefitinib or erlotinib with a 
quinazoline backbone, their unique acrylate side chain feature 
binds covalently to the C797 of EGFR, creating irreversible in-
hibition of the EGFR tyrosine kinase. Afatinib and dacomitinib 
demonstrated in vitro activity against activating EGFR muta-
tions and wild-type EGFR, which causes dose-limiting toxicity 
(Abdallah and Hirsh, 2018). 

Osimertinib is an irreversible third-generation EGFR TKI. 
The key core structure changed from quinazolin to pyrimi-
dine. Its acrylate side chain was introduced toward the sol-
vent region to form covalent bonds with C797. Osimertinib 
potently inhibits T790M-positive tumors and spares wild-type 
EGFR. Osimertinib effectively inhibited EGFR-sensitizing and 
T790M-resistance mutations. It has also been approved as 
a first-line treatment for patients with EGFR mutation-positive 
NSCLC. Treatment was limited by generating third mutation 
C797S, which causes resistance to osimertinib (Kishikawa et 
al., 2020) (Table 3). 

TKIs are standard treatment options for NSCLC with EGFR 
mutations (Zarogoulidis et al., 2016). Increasing clinical inves-
tigations have explored the value of fourth-generation EGFR 
TKIs plus antiangiogenic drugs as the first-line treatment 
for EGFR-mutated NSCLC. Fourth-generation EGFR TKIs 
should be reversible or allosteric mechanisms (Maity et al., 
2020). Recent studies have proposed TPD, an alternative in-
hibition modality using small molecules.

CONCLUSION

NSCLC patients treated with first-generation EGFR TKIs 
have shown a dramatic response. Retrospective analyses of 
first-generation EGFR TKI trials have reported response rates 
of 77% in patients with sensitizing EGFR mutations (L858R 
and Del19). However, resistance was acquired by developing 
the secondary mutation T790M. The development of second-
generation TKIs has shown encouraging results for secondary 
mutations. Conversely, inhibition of wild-type EGFR caused 
adverse events such as rash, acne, and diarrhea. 

Irreversible third-generation EGFR TKIs have better effica-
cy and safety profiles by sparing wild-type EGFR than other in-
hibitors. However, the treatment was limited by the third muta-
tion C797S. The mechanism of resistance to third-generation 
EGFR TKIs is more heterogeneous than that of other inhibi-
tors. In many cases, the putative mechanism of resistance has 
not yet been identified.

In conclusion, treatment options for third-generation EGFR 
TKIs resistant are not available. Patients with EGFR triple 
mutations may receive subsequent therapies, such as immu-
notherapy and cytotoxic chemotherapy. Nonetheless, several 
areas of unmet medical needs remain to be addressed to pro-
vide treatment options for EGFR-related NSCLC patients.
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