
fimmu-11-02017 August 23, 2020 Time: 12:47 # 1

REVIEW
published: 25 August 2020

doi: 10.3389/fimmu.2020.02017

Edited by:
Robert James Hayashi,

Washington University School
of Medicine in St. Louis, United States

Reviewed by:
Federico Simonetta,

Geneva University Hospitals (HUG),
Switzerland

Tomomi Toubai,
Yamagata University, Japan

*Correspondence:
Nataliya Prokopenko Buxbaum

nbuxbaum@mail.nih.gov

Specialty section:
This article was submitted to

Alloimmunity and Transplantation,
a section of the journal

Frontiers in Immunology

Received: 27 May 2020
Accepted: 24 July 2020

Published: 25 August 2020

Citation:
Buxbaum NP and Pavletic SZ

(2020) Autoimmunity Following
Allogeneic Hematopoietic Stem Cell

Transplantation.
Front. Immunol. 11:2017.

doi: 10.3389/fimmu.2020.02017

Autoimmunity Following Allogeneic
Hematopoietic Stem Cell
Transplantation
Nataliya Prokopenko Buxbaum1* and Steven Z. Pavletic2

1 Experimental Transplantation and Immunotherapy Branch, Center for Cancer Research, National Cancer Institute, National
Institutes of Health, Bethesda, MD, United States, 2 Immune Deficiency Cellular Therapy Program, Center for Cancer
Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States

Autoimmune manifestations after allogeneic hematopoietic stem cell transplantation
(AHSCT) are rare and poorly understood due to the complex interplay between the
reconstituting immune system and transplant-associated factors. While autoimmune
manifestations following AHSCT have been observed in children with graft-versus-
host disease (GvHD), an alloimmune process, they are distinct from the latter in that
they are generally restricted to the hematopoietic compartment, i.e., autoimmune
hemolytic anemia, thrombocytopenia, and/or neutropenia. Autoimmune cytopenias
in the setting of ASHCT represent a donor against donor immune reaction. Non-
hematologic autoimmune conditions in the post-AHSCT setting have been described
and do not currently fall under the GvHD diagnostic criteria, but could represent
alloimmunity since they arise from the donor immune attack on the antigens that
are shared by the donor and host in the thyroid, peripheral and central nervous
systems, integument, liver, and kidney. As in the non-transplant setting, autoimmune
conditions are primarily antibody mediated. In this article we review the incidence,
risk factors, potential pathophysiology, treatment, and prognosis of hematologic and
non-hematologic autoimmune manifestations in children after AHSCT.

Keywords: autoimmunity, alloimmunity, hematopoietic stem cell transplantation, allogeneic, immune
reconstitution, non-hematologic, autoimmune hemolytic anemia, autoimmune cytopenia

INTRODUCTION

Allogeneic hematopoietic stem cell transplantation (AHSCT) has the potential to cure refractory
hematopoietic malignancies as well as acquired and inherited non-malignant immune diseases,
hemoglobinopathies, and inherited metabolic disorders. For inherited disorders, emerging genetic
therapies may offer an alternative (1, 2) while immunotherapeutic approaches, including AHSCT,
will likely continue to be widely used for malignant diseases. Children are more likely to experience
long term survival after AHSCT, but are also susceptible to harmful effects of AHSCT on growth
and development of many organ systems (3). As more children undergo ASHCT, identification of
biological risks that are unique to this population, and the underlying biological processes is needed.

Reconstitution of the adaptive immune system following AHSCT is primarily mediated through
peripheral non-thymic expansion of donor-derived T cells in the host (4, 5). Even in children,
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thymic output is significantly reduced in the immediate post-
HSCT period due to transplant-related insults. Thus, peripheral
(non-thymic) immune tolerance mechanisms appear to be
critical during this time of immune recovery and for the
emergence of both alloimmune and autoimmune complications
of AHSCT. Alloimmunity stems from the donor recognition of
host and can be detrimental when it manifests as graft-versus-
host disease (GvHD) due to the resultant attack on the recipient
tissues (6) or beneficial when directed against the malignant
cells, i.e., the graft-versus-leukemia (GVL) effect. GvHD is a
common HSCT complication that has acute and chronic forms.
Both have well-characterized clinicopathologic features involving
the gastrointestinal tract, liver and skin, with additional organ
involvement in chronic GvHD (7). Chronic GvHD (cGvHD)
typically affects tissues that form the physical and immune barrier
between the host and potential infectious pathogens and thus
are enriched with immune cells, i.e., skin, eyes, pulmonary tract,
mouth, gastrointestinal tract, and genital tract. Autoimmunity
after HSCT affects tissues that are often targeted by idiopathic
autoimmune diseases (AD).

Outside of the AHSCT setting the pathophysiology of
autoimmunity is multifactorial and the exact timing and type of
the inciting event is usually unknown. In the AHSCT setting,
the timing of the autoimmunity initiating cascade starts with
the donor cell infusion. AHSCT adds a number of potentially
detrimental effects that can skew the reconstituting immune
system toward AD and represents a unique clinical model for AD
research (8, 9). Whether GvHD and AD after HSCT have shared
pathophysiology is an active research question. Both are driven by
donor immune reaction, in the former the targets are host, while
AD is directed against the donor hematopoietic compartment, or
non-hematopoietic targets that are common to the donor and
host. Children experience lower rates of GvHD (3) but those
that undergo AHSCT for non-malignant indications appear to
have a higher risk of hematologic autoimmune manifestations
(9). Despite non-hematologic autoimmune-like manifestations
being less frequent in children than adults they too have a higher
incidence in the setting of non-malignant AHSCT (10). Although
isolated ADs following AHSCT are rare they are observed in
higher frequency in patients with GvHD (8, 9).

A recent comprehensive review of the literature on
hematologic AD in children identified non-malignant indication
for AHSCT, the use of unrelated transplant donor, omission of
total body irradiation in the conditioning regimen, presence of
cGvHD, and the use of peripheral or cord blood stem cell grafts
as significant risk factors (9). These provide important clues
about potential pathophysiology of AD. AD after AHSCT is
characterized by impaired immune reconstitution that may stem
from either incomplete lymphodepletion prior to HSCT, possibly
leaving partially intact the antigen presenting compartment, or
permitting donor B cell expansion concomitant with significant
T cell depletion of the graft and/or peri-transplant use of
immunosuppression that preferentially suppresses donor T
cell reconstitution. As a result, an imbalance in T and B
cell immunity may lead to an impaired peripheral tolerance,
facilitating immune dysregulation that allows emergence of
autoimmunity after AHSCT (8, 9, 11, 12). In hematological AD

after AHSCT, the reaction direction is most consistent with
donor immune recognition of donor antigens. In cases of non-
hematologic AD after AHSCT, donor immune recognition of
shared donor-host antigens is likely, but residual tissue resident
antigen presenting cells may be of host origin even when full
donor chimerism is confirmed in circulating immune cells. Thus,
the potential for non-hematologic AD to be of host against host
direction cannot be eliminated at the present time. Future studies
may enable delineation of immune cell chimerism in tissue and
thus may provide clarity on the ontogeny of the immune reaction
in non-hematologic AD after AHSCT.

The goal of this article is to comprehensively review
hematologic and non-hematologic AD after AHSCT in children,
summarized in Table 1. Furthermore, features of adult AD
following HSCT and corresponding ADs observed outside of
the HSCT setting are described with the aim of improving the
combined understanding of the underlying biology, risk factors,
and identifying potential interventions or changes to existing
HSCT platforms that may need to be implemented.

HEMATOPOIETIC AUTOIMMUNE
MANIFESTATIONS FOLLOWING AHSCT

Incidence
The most common autoimmune manifestations following
AHSCT in pediatric and adult recipients are hematologic, i.e.,
autoimmune cytopenias (AICs) (8, 9). AICs are classified based
on the affected lineage/s and include autoimmune hemolytic
anemia (AIHA), immune thrombocytopenic purpura (ITP),
Evans syndrome (AIHA and ITP), autoimmune neutropenia
(AIN), and tri-lineage autoimmune cytopenia (AIHA with
ITP and AIN) (12–14). While AIHA is the most commonly
diagnosed AIC following AHSCT, accurate reporting of ITP in
this setting is challenging because there are several alternate
potential transplant related causes of thrombocytopenia that have
to be excluded prior to making the diagnosis and laboratory
confirmation of AIHA is more readily obtained compared with
detection of anti-platelet antibodies, which are not uniformly
observed in ITP (8, 9, 14). Of note, in the setting of AHSCT for
acquired aplastic anemia, ITP incidence reportedly exceeds that
of AIHA (14), and is the same as that of AIHA in autologous
HSCT for ADs (15). Meanwhile, the incidence of AIHA in the
general population is lower than in the post-AHSCT setting and
far less common in children compared to adults (16, 17).

Despite AICs being rare following AHSCT with an estimated
incidence of ∼3% in adults (14, 18–26) and ∼5% percent in
children (9, 13, 26–31), they occur with much greater frequency
in certain AHSCT settings. The highest AIC rates, over 50%,
were reported in very young infants that received unrelated
cord blood (UCB) grafts for inherited metabolic disorders (12)
and those who received AHSCT for Wiscott-Aldrich syndrome
(WAS) (32), with antithymocyte globulin (ATG)-containing
conditioning used in both studies. Several additional case series
that demonstrated higher than average AIC incidence of 20–
35% (10, 11, 33) also involved children undergoing AHSCT for
non-malignant indications following intense lymphodepletion.
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TABLE 1 | Incidence, risk factors, associated clinical features, and proposed mechanisms for autoimmune disease after AHSCT.

Disease Incidence Risk factors and clinical features Proposed mechanism

Autoimmune cytopenia/s, including
AIHA, ITP, Evans syndrome, AIN,
and tri-lineage autoimmune
cytopenia

Rare, but common in subsets of pediatric
ASHCT compared to adult recipients

Non-malignant transplant indication Skewing of immune reconstitution toward
unregulated B cell proliferation and
auto-antibody production due to impaired
peripheral tolerance in the absence or reduced
function of T cells

Unrelated donor

Lack of TBI

cGvHD

peripheral or UCB stem cell source

additional risk factors in adult HSCT: T cell depleted grafts, ATG and
alemtuzumab in the peri-transplant setting, GvHD

Autoimmune thyroid disease,
including Hashimoto thyroiditis and
Graves’ disease

Rare, except for one pediatric study reporting
25% rate

Non-malignant transplant indication Unchecked autoantibody production against
thyroid antigens In adults, transmission of
autoantibody in the graft has been described

T cell depleted graft and/or ATG or alemtuzumab peri-transplant

Lack of TBI

Immune recovery (albeit dysfunctional)

Guillain-Barre syndrome Rare, 10 pediatric cases described Malignant indication for AHSCT Potentiation of Ara-C neurotoxicity Possible
molecular mimicry of PNS antigens by viral
antigens

Associated with infection or viral reactivation

Antecedent use of high dose Ara-C (practice discontinued after this
association was identified)

Myasthenia Gravis Exceedingly rare, 2 pediatric cases reported Non-malignant transplant indication Unchecked autoantibody production against
acetylcholine receptor

Acute and chronic GvHD

Manifested upon tapering of immunosuppression

Generalized severe presentation

No association with thymoma

Transverse myelitis Exceedingly rare, 1 pediatric case and several
adult cases

Non-malignant transplant indication Unchecked inflammatory milieu

Unrelated donor

Lack of TBI

Peri-transplant use of alemtuzumab

Other CNS manifestations,
including vasculitis, white matter
lesions and atrophy

Exceedingly rare, in children and adult
recipients

Unrelated donor Lymphocytic infiltration of CNS vasculature or
parenchyma by immune cells of donor origin

Manifested upon tapering of immunosuppression

(Continued)
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One such study reported a combined 50% rate of hematologic
and non-hematologic AD in children following AHSCT for
chronic granulomatous disease (CGD) following conditioning
that included alemtuzumab (10).

Risk Factors
The following significant risk factors for the development of AIC
in children undergoing HSCT have been recently confirmed:
non-malignant primary diagnosis, the use of an unrelated
donor, lack of total body irradiation (TBI) in the conditioning
regimen, chronic GvHD, and the use of peripheral or UCB
stem cell source (9). Similar risk factors have been identified
in the adult AHSCT literature with the strongest association
seen between AIC and the use of unrelated donors, T cell
depleted grafts, conditioning regimens that include ATG and
alemtuzumab, and GvHD (8). These studies provide important
clues about the pathophysiology of AIC following AHSCT
since randomized clinical trials and pre-clinical modeling to
understand mechanisms of AIC are lacking.

Proposed Pathophysiology of AIC After
AHSCT
As stated above, non-malignant disease and the use of unrelated
donor grafts are most strongly (9) and consistently (10–12, 27,
28) associated with the development of AIC in children. The
proposed pathophysiologic mechanism that could explain their
combined role in the emergence of autoimmunity after HSCT
is that AD may be driven by an impairment in peripheral
immune tolerance due to the lack of functional T cells, in
particular T regulatory cells (Tregs) with resultant inability to
suppress B cell expansion after HSCT (11), Figure 1A. In
the post-transplant time frame when AICs typically emerge,
the thymus has yet to recover from transplant related insults.
Thus, peripheral tolerance mechanisms are likely dominant
in keeping autoimmunity in check. Peripheral tolerance is
mediated by T cells, which are expected to be preferentially
eliminated in conditioning regimens used in unrelated donor
HSCT that include ATG and alemtuzumab. Alemtuzumab targets
CD52, which is expressed on T cells with greater density than
other lymphocytes (34, 35), and can be particularly effective at
inhibiting CD4 + T cell recovery compared to other T cell types
(36). Both drugs have long lasting in vivo effects and would be
expected to provide sustained T cell suppression in the post-
HSCT period. T cell depletion is also commonly performed on
haploidentical grafts, which too have been associated with greater
propensity for AIC (33). Unregulated polyclonal B cell expansion
would be more likely in the absence of T cell immunoregulatory
signals combined with the anticipated pro-inflammatory viral
stimuli commonly encountered in the immediate post-transplant
period, such as CMV, EBV, and HSV infection or reactivation
(23). In patients with cGvHD, another established risk factor
for AIC after AHSCT (30), B cell alloantibody production
is a common feature that stems from the inability of Tregs
to dampen alloimmunity (37). Furthermore, cGvHD has been
shown to respond to adoptive Treg transfer in multiple pre-
clinical and clinical studies (38, 39) and demonstrated the
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FIGURE 1 | Biological and clinical features of autoimmune manifestations following AHSCT. (A) Proposed pathophysiology for the development of autoimmune
manifestations after AHSCT as a result of donor T regulatory (T reg) cell impairment. (B) Donor immune reactions directed against donor red blood cell (RBC) antigens
mediate autoimmune hemolytic anemia after AHSCT. (C) GvHD versus “autoimmune” non-hematologic tissue/organ targets outlined in red and blue, respectively.

ability to prevent AIHA in animal models (17). Additionally,
Treg impairment is implicated in idiopathic AIHA (17, 40).
Immunophenotyping of patients with AIC post AHSCT has
confirmed low circulating CD4 and CD8 T cell numbers, low
Treg numbers (11, 26, 41), as well as Th2 skewing (13). The latter
is a shared feature of idiopathic and AD associated AIHA (17,
40), and animal models of the former. Th17 polarization has also
been implicated in the pathogenesis of idiopathic AIHA (40), but
has yet to be confirmed in AHSCT-associated AD. Cyclosporine
(CSA), the most common form of GvHD prophylaxis used
in the multiple case series with higher AD rates presented
above, would also be expected to have a greater impact on

T rather than B cell subsets, in particular on IL-2 dependent
expansion of Tregs (42). Of note, cyclosporine-, and calcineurin-
based immunosuppression and incomplete lymphodepletion are
associated with AICs after both solid organ transplantation
(SOT) (41, 43–46) and non-malignancy HSCT and could point
to shared biological mechanisms. Supporting this notion is
the observation in the AHSCT AIC where withdrawal of
CSA followed by anti-B cell directed therapy with rituximab
or anti-CD38 resulted in clinical responses (11, 47). Finally,
decades ago cyclosporine was shown to induce autologous
GvHD-like reaction purportedly via disruption of peripheral
tolerance (48).
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While the pathophysiology of AICs is not fully understood,
it does appear that AIHA is primarily driven by donor immune
reactions against donor erythrocytes (9, 23) (Figure 1B). Donor
chimerism was not uniformly reported in studies of AIC after
AHST, but was usually full donor at the time of AIC diagnosis
when reported (13, 23, 24, 31, 41), which implicates a donor
against donor process. Thalassemia HSCT is characterized by
higher AIC incidence, which could implicate prior transfusion
and resultant alloimmunization playing a role in AIHA via the
host versus donor response. Although if true, this would also be
expected with other non-malignant indications, such as sickle cell
disease, which have not been identified as risk factors for AIHA
after AHSCT. Other AICs after AHSCT, ITP, and AIN, are also
antibody mediated and evidence suggests that they too are donor
against donor (12, 13, 41).

Distinguishing AIHA From Major and
Minor ABO Mismatch Hemolysis
While ABO mismatched AHSCT can be associated with delayed
engraftment and other complications, it is often unavoidable in
the HSCT setting (49) where HLA matching is prioritized over
ABO and the two are not genetically linked (49). AIHA following
AHSCT is distinct from ABO mismatch driven hemolysis, which
can arise from either major or minor ABO mismatch between
the donor and host (49). The ABO mismatch driven hemolysis
can present with (1) immediate intravascular hemolysis mediated
by host ABO antibodies directed against donor RBCs in the
graft; (2) delayed hemolysis from residual host cells reacting to
RBCs produced by the engrafted donor marrow, and (3) pure
red cell aplasia (PRCA). Immediate intravascular hemolysis is
more common when marrow is used as an HSCT source due
to potential transfer of donor RBC in the stem cell graft, which
can be minimized with RBC removal prior to graft infusion.
Additionally, the timing of this clinical presentation readily
distinguishes this alloimmune process from AIHA (49). Delayed
hemolysis from residual host cells reacting to RBCs produced
by the engrafted donor marrow typically occurs later in the
post-HSCT period and mediates delayed engraftment commonly
observed with ABO mismatched HSCT that typically occurs
∼5 weeks after graft infusion compared to ∼3 weeks that is
routinely observed with ABO matched HSCT or peripheral blood
stem cell grafts. Delayed hemolysis can present months after
HSCT if full chimerism is not yet established and requires
chimerism studies to distinguish it from AIHA. PRCA results
from destruction of erythroid progenitors within the marrow
by residual anti-donor antibodies. It may present in the same
time frame as AIHA, within 6 months of HSCT, and have a
similar clinical presentation despite the mechanisms between
these entities being distinct, i.e., with ABO mismatch being host
antibody driven and with AIHA being donor antibody driven
(23) reactions against donor RBC.

AIHA Diagnosis
Diagnosis of AIHA is established by performing a direct anti-
globulin test (DAT), also called direct Coombs test, which detects
in vivo coating of erythrocytes with antibodies (16). In the
DAT, non-specific anti-human globulin will agglutinate RBCs

coated by all antibody isotypes, IgA, IgM, IgG, etc. (16, 40)
with agglutination more likely to be detected at warm testing
temperatures when IgG antibody subtypes (IgG1, IgG2, IgG3,
and IgG4), and/or C3 (complement) are present on the RBC
and cold testing temperatures when IgM is bound. IgG mediates
extravascular hemolysis via the reticuloendothelial system that
is mainly splenic (Figure 1B). The pentameric antibody IgM
is most efficient at fixing complement both in laboratory
testing and in vivo and can cause significantly greater in vivo
RBC destruction than other isotypes mainly via intravascular
hemolysis. Meanwhile, C3-mediated hemolysis predominantly
occurs in the liver. The majority of AIHA after AHSCT is
warm type, followed by cold, then mixed (41). The type is
important to ascertain because it can guide treatment, with cold
agglutinin disease being less likely to respond to splenectomy
since the RBC destruction would not be expected to occur in the
reticuloendothelial system. If the DAT is positive, monospecific
anti-IgG, anti-IgM, and anti-C3 antisera are used to further
define the autoantibody. In cases of AIHA following AHSCT
when monospecific testing was reported, IgG was commonly
detected in combination with C3, with some cases of IgG,
and IgM co-occurring. IgG when present was eluted to test
for specificity. When looking at available studies, there was a
suggestion that co-occurrence of warm and cold AIHA may have
a more severe course (11), but no consistent pattern of severity
of hemolysis or likelihood of response to treatment was clearly
apparent for a particular type of antibody in post-AHSCT AIHA.

Treatment and Prognosis of AIHA After
AHSCT
Post-AHSCT AIHA is most commonly treated with intravenous
immunoglobulin (IVIG) or steroids, rituximab monotherapy,
plus a variety of other approaches. Only a third of the cases
are steroid responsive. Rituximab has a reported ∼60–80%
response rate. Other combinatorial immunosuppressive
approaches have been described, including azathioprine,
cyclosporine, 6-mercaptopurine, mycophenolate mofetil,
danazol, cyclophosphamide and vincristine, bortezomib,
alemtuzumab, sirolimus, and second stem cell infusion (9).
A treatment strategy of reducing immunosuppression that is
more heavily directed against T cells (i.e., CSA and calcineurin
inhibitors) and instead using anti-B cell directed therapies in
a subset of patients resulted in resolution of AIHA once T
cell reconstitution was achieved (11). While prognosis appears
to be marginally better in children than in adults, mortality
in some cases did occur (9) and overall higher mortality in
AHSCT recipients with AIHA compared to those without
was reported (13). Also, AHSCT associated AIHA appears to
be more treatment refractory (9) compared to non-AHSCT
associated cases with the latter having ∼80% of response rate
to corticosteroids within 3 weeks, splenectomy having a 70%
response rate, and rituximab having a 60% response rate. Several
recalcitrant cases of post-AHSCT AIC, including AIHA, have
been recently reported to respond to daratumumab (47, 50,
51), which targets CD38 that is expressed on plasmablasts
and plasma cells.
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Other Hematologic Autoimmune
Manifestations
Immune thrombocytopenic purpura after ASHCT appears to
have slightly higher incidence in children than adult recipients
(9, 52), but is quite rare in both, limiting understanding of its
pathophysiology and prognostication. Idiopathic (53) and post-
AHSCT ITP (54) have been associated with Treg dysfunction.
In both clinical settings, ITP diagnosis is that of exclusion.
Antibodies against platelets were not consistently obtained across
the reported case series and reviews of ITP occurring after
AHSCT, but when testing was reported, ∼75% of the clinically
determined cases were associated with detectable direct and
indirect anti-platelet antibody (12, 28). The antigenic specificity
of the antibody was even less frequently reported, but when
available appeared to be directed against similar thrombocyte
antigens as non-HSCT associated ITP, i.e., platelet membrane
glycoproteins IIb-IIIa or Ib-IX. As already described for AIC
in general, donor chimerism was most often full donor at
the time of diagnosis, confirming that the post-AHSCT ITP
is frequently autoimmune, i.e., donor against donor. Passive
transfer of donor ITP has been described in the adult AHSCT
literature (31, 52), but not in the pediatric setting. For post-
AHSCT ITP and Evans syndrome, systemic corticosteroids and
IVIG were the typical first line treatment, with a majority
of the patients eventually receiving multiple lines of therapy,
including rituximab, which resulted in a few complete responses
(30, 31), daratumumab (47, 51), vincristine, cyclophosphamide,
azathioprine, 6-mercaptopurine, alemtuzumab, plasma exchange,
stem cell boost, splenectomy, rapamycin, romiplostim, and
eltrombopag (28). It appears that ITP after AHSCT is often
chronic, recalcitrant to treatment, and can result in mortality (15,
28, 31, 55).

Autoimmune neutropenia after AHSCT is also an antibody
driven process, although in most AIC studies confirmatory
testing of direct or indirect anti-neutrophil antibodies was not
reported, and when reported was infrequently positive (12, 14,
48). Similar treatment approaches for AIN have been reported as
for AIHA, ITP, and Evans syndrome, but again, given the rarity
of this AHSCT complication, prognostication is not appropriate.
Acquired hemophilia, i.e., development of factor VIII inhibitors,
has been reported in the setting of autologous HSCT for AD
(15, 20, 48, 56, 57), but not in the setting of adult or pediatric
AHSCT. Thrombotic microangiopathic manifestations following
AHSCT as a result of high ADAMTS 13 inhibitor levels have been
described (8) albeit not in children.

NON-HEMATOLOGIC “AUTO” IMMUNE
DISEASES AFTER AHSCT

Non-hematologic manifestations after AHSCT that are
potentially autoimmune in mechanism, involving the thyroid,
central and peripheral nervous systems, integument, liver, and
kidney are far less common in children than in adults and have
not been extensively described or reviewed in the setting of
AHSCT (Figure 1C). Whether these conditions are autoimmune

or alloimmune is an ongoing research question because immune
effectors are of donor origin but are directed against targets that
are common to the donor and host, e.g., acetylcholine esterase
receptor, thyroid peroxidase, etc. These conditions are antibody
mediated, which is also the case outside of the AHSCT setting
when they are truly autoimmune. Such ADs have also been
reported in the setting of dysregulated immunity associated with
immunosuppression after SOT where the autoimmune reaction
is that of host against host. In contrast, GvHD is a common, well-
recognized, and better described immune driven complication
of AHSCT that is mediated by donor immunity against non-
hematopoietic host organs and tissues. Donor against host
directed antibodies are implicated in GvHD pathophysiology.
While myasthenia gravis (MG) and peripheral neuropathies
are not formally part of cGvHD diagnostic criteria, they are
considered “other” or “associated features” of cGvHD when
present concomitant with classical GvHD manifestations and are
observed in the setting of cGvHD. Whether non-hematologic
thyroid, peripheral and central nervous system (PNS and CNS)
manifestations and vitiligo should be considered “other GvHD”
or referred to as autoimmune is not clear at this time. Since
in the adult HSCT literature they are most often described as
autoimmune, in this review they will be referred to as such
for consistency.

Autoimmune Thyroid Disease
Thyroid ADs after AHSCT, mainly Hashimoto thyroiditis and
Graves’ disease, are mediated by antibodies against thyroid
antigens and have been described primarily in the setting
of autologous and allogenic HSCT for AD in adults (8, 15,
22, 48, 58–60), and AHSCT for non-malignant indications in
children (10, 55, 61–63). For the reported series in children,
common features were T cell depletion (graft ex vivo, ATG
or alemtuzumab peri-transplant), non-malignant indication (all
cases described here), lack of TBI (in all cases summarized
here), and an incidence of 1–25%. The highest Autoimmune
Thyroid Disease (AITD) incidence was described in a cohort of
24 boys that received matched sibling or unrelated donor AHSCT
after alemtuzumab conditioning (10), with 5 cases of Graves’
disease and one case of Hashimoto thyroiditis, which represents
an unusually high rate. Of note, non-AHSCT AITD has also
been associated with alemtuzumab treatment in multiple sclerosis
(62). Multiple reports discussed in this review of autoimmune
hematologic manifestations in children did not observe AITD
and three pediatric case series that described AITD had also
reported on hematologic AD occurring at higher rates than AITD
(55). In the pediatric series that reported the highest AITD rate,
above average incidence of AIC of 20% was also observed, as
was the rate of CNS and PNS manifestations with 8% and 4%,
respectively. Thus, this series appears to have had unique features
resulting in significantly higher rates of AITD, an otherwise
rare complication of AHSCT. In both children and adults,
AITD diagnosis after AHSCT was established with appropriate
antibody detection and treatment approaches were supportive,
i.e., thyroid suppression for hyperthyroidism and replacement
hypothyroidism. Unlike hematologic AD, there were no deaths
attributable to AITD in the pediatric studies. In adult AHSCT
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reports of AITD, possible transmission of donor autoantibodies
in the graft has been reported (8, 48, 64–66) while in children this
etiology does not appear to play a role. Interestingly, one study
noted that recovery of CD4 T cell counts was coincidental with
onset of AITD, similar to the setting of immune restoration in
patients with HIV in whom AITD has also been reported (62). In
many of the pediatric post-AHSCT AITD cases reviewed here,
onset was typically later than that of AICs, perhaps suggestive
that immune recovery, albeit dysfunctional since it resulted in a
manifestation of autoimmunity, may play a role in the emergence
of AITD in the post-AHSCT setting.

Intriguingly, another autoimmune mediated endocrinopathy,
type 1 diabetes mellitus, has not been described in the pediatric
studies reviewed here for hematological and non-hematological
AD after AHSCT or otherwise, while insulin resistance after
AHSCT is commonly described in adults and children after
AHSCT (67–69).

Neurological Autoimmune and
Graft-Versus-Host Disease
Manifestations After AHSCT in Children
Neurological manifestations of autoimmunity after AHSCT and
cGvHD have been reported to affect central and peripheral
nervous systems (8, 70). Neurological manifestations are not
included in the definitive cGvHD diagnostic criteria, but
nonetheless are considered “associated” with cGvHD when
involving the PNS: peripheral nerve, including Guillain-Barre
syndrome (GBS), neuromuscular junction, i.e., MG, and muscle.
Of the latter, myositis and polymyositis are deemed the
only “distinctive” neurological manifestations of cGvHD (70);
however, these entities are not described in this review due to
paucity of reports on these manifestations in pediatric AHSCT
setting. MG and peripheral neuropathies are considered “other”
GvHD or “associated with GvHD” in the presence of classical
cGvHD manifestations in other organs. For CNS manifestations
to be regarded as “definitively” cGvHD, they have to occur
with classic cGvHD manifestations in other organs, other
causes have to be excluded, and presence of imaging, CSF, and
biopsy proven evidence of alloreactivity and proven response to
immunosuppression are necessary (70). Notably, most antibody
driven neurological entities after ASHCT manifest in the setting
of full donor chimerism, hence the cGvHD or autoimmune
processes again arises.

PNS Manifestations
Guillain-Barre syndrome is a rare complication of AHSCT in
children and adults (8, 48, 71, 72), and in the latter more
likely in allogenic than autologous HSCT (72). We found 10
reported cases of pediatric GBS after HSCT in the literature
(10, 71, 73–75). Of those, 8 were in the setting of HSCT for a
malignant indication and 2 for CGD (10). In the former, 2 cases
were reported following autologous HSCT (71, 74), and 2 were
associated with infection, bacterial sepsis, and parainfluenza 1.
No evidence of GvHD had been described in all 10 cases, although
4 occurred within the immediate post-transplant window, hence
potential association with GvHD would not be evaluable (73,

75). In adult recipients, GBS has been associated with GvHD
(70) and with infection/reactivation of CMV, HSV, and HHV6
(8, 71, 76, 77) as well as antecedent infections (70). A strong
association between GBS in the first week after AHSCT and the
use of antecedent high dose Ara-C was observed in two reports
involving 4 children (73, 75), and resulted in 3 fatalities (75).
The remaining patients responded to treatment with systemic
corticosteroids, IVIG, plasmapheresis, and rituximab.

Two cases of MG after HSCT have been reported in children,
both in the setting of non-malignant indication and mismatched
sibling AHSCT (78, 79). In both instances, MG was generalized
(non-focal), was associated with cGvHD and manifested as
immunosuppression was being tapered, with one patient having
also experienced acute GvHD and the other engraftment
syndrome. Acetylcholine receptor antibodies were present in
both cases. One patient was treated with pyridostigmine,
atropine, AZA, thymectomy and plasmapheresis, and was
eventually responsive to thalidomide (78). The other patient was
found to be initially ANA positive prior to the development
of MG manifestations and presented with severe generalized
MG that required intubation and eventually resolved after
treatment, which consisted of MMF, IVIG, methylprednisolone,
pyridostigmine, cyclosporine, plasma exchange, and finally a
course of rituximab. Notably, outside of the HSCT setting, MG
is quite rare in children and when it occurs in pre-pubertal
setting is often ocular and remains so without generalization.
In such settings it is also less likely to be antibody positive
and has a favorable prognosis, including reported spontaneous
remissions (80). In the adult HSCT literature, 23 cases of MG
have been reported after allogeneic and autologous HSCT (8,
48, 70), with a majority of the patients having acetylcholine
receptor antibodies and few with musculoskeletal receptor
antibodies. The majority were associated with cGvHD and
most presented upon discontinuation or tapering of cGvHD
immunosuppression. Treatment was similar to idiopathic
MG, i.e., pyridostigmine, acetylcholine esterase inhibitors, and
immunosuppression. In contrast to MG in adults in the
non-HSCT setting there was no observed association with
thymoma (8). Of note, MG in the setting of immunosuppression
(ATG or alemtuzumab) after renal transplantation has been
reported (81).

Myositis and polymyositis although rare after AHSCT
are associated with cGvHD (70), but have not been well
described in children.

CNS Manifestations
CNS immune manifestations that are cGvHD related have been
rarely reported in adult HSCT literature and can be ascribed
to cerebrovascular, stroke-like presentations, encephalopathy
with resultant seizures, and demyelination processes (70, 82–
84). Isolated cases of immune CNS disease after HSCT have
been reported in children (85–88), and only one of these
presented as transverse myelitis (TM) that was not associated
with GvHD, but was associated with AIC and GBS (10), while
several cases of TM after HSCT have been reported in adults
(8, 89). Isolated optic neuritis has also been described in the
adult AHSCT literature (70), but has not been reported in
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the pediatric AHSCT setting. A case of CNS granulomatous
angiitis/vasculitis was described in an 18-year old recipient
of mismatched unrelated graft, in association with weaning
of immunosuppression for resolving acute GI GvHD. The
patient was found to have generalized CNS atrophy on
MRI, which was obtained due to progressive spasticity and
seizures. The patient’s cognitive dysfunction worsened further to
progressive encephalopathy with concurrent skin cGvHD onset
that manifested 5 months after HSCT (87). Interestingly, short
tandem repeat (STR) analysis of a micro dissected section of
her inflamed arteriole confirmed that the lymphocytic infiltrate
was of donor chimerism. The patient improved following very
high doses of steroids, stabilized, but eventually lost her graft
and died 2 years after HSCT. Similarly, in adult patients with
CNS-GvHD, infiltrating lymphocytes were of donor origin (70,
83) suggesting that CNS-GvHD can be appropriately classified
as a GvHD manifestation. Two case reports have described
diffuse white matter lesions in children with GvHD and a case
of cortical atrophy associated with cGvHD (85, 86). While CNS
immune manifestations after HSCT in children are extremely
rare, they are primarily associated with GvHD and tapering of
immunosuppression and likely represent alloimmune rather than
autoimmune processes.

Skin Autoimmune GvHD-Associated
Manifestations After AHSCT
Vitiligo is a rare manifestation in the AHSCT setting, which
is mostly observed with concomitant acute or chronic skin
GvHD. A total of 8 pediatric vitiligo cases after HSCT have
been described in the literature in several case series combining
adult and pediatric patients (55, 90–93). Cathcart et al. described
one pediatric case of extensive vitiligo developing 4 years
after mismatched sibling T cell depleted HSCT for malignancy,
interestingly without concomitant chronic GvHD, albeit with
a history of resolved acute skin and liver GvHD (92). In
the same series, nine adult cases of post-HSCT vitiligo were
described. All had been transplanted for a malignant indication
and were associated with acute or chronic GvHD. Another
case series reporting on vitiligo after AHSCT for malignant
indications included a pediatric patient with extensive vitiligo
after AHSCT for ALL associated with skin and GI GvHD
(91). Sanli et al. described six cases that were observed in a
single transplant center in 421 consecutive patients (93). One of
these 6 cases occurred in a 19-year-old who developed vitiligo
6 months after matched sibling HSCT for CML, and which was
associated with liver cGvHD, alopecia areata, and subsequently
oral and lichenoid skin GvHD. Finally, five additional cases
of vitiligo in children were reported, one in association with
lichenoid skin cGvHD after AHSCT for aplastic anemia (94)
and four in the setting of peripheral blood stem cell grafts
for hemoglobinopathy (55) without an association with GvHD
or other AD. Vitiligo has been associated with autoimmunity
outside the HSCT setting (95) and can be mediated by antibodies
directed against melanocytes (55, 96), and thus could represent
an autoimmune process. Nevertheless, alloimmunity cannot be
excluded in this clinical entity as half of the reported pediatric

cases of vitiligo after AHSCT were associated with concomitant
classic skin cGvHD.

Other Rare Autoimmune Manifestations
After HSCT
Whether autoimmune-like hepatitis (AIH) occurring after HSCT
truly represents an autoimmune manifestation versus drug-
associated hepatitis, i.e., by cyclosporine, is difficult to ascertain
since only two pediatric cases (55, 97) and one adult case have
been reported (98). The liver biopsy in all three cases showed
portal eosinophilia and plasma cell infiltration, with chimerism
of the lymphocytic infiltrate demonstrated to be of donor origin
in the adult patient. In one pediatric case after AHSCT for a
metabolic disorder there was no concurrent or prior history of
GvHD (55) and in the other AIH was associated with GvHD
(97), as was the case reported in the adult. All three cases were
steroid responsive. In the adult patient, azathioprine was used
in combination with steroids and in one pediatric case ursodiol
was combined with steroid (97). This was the only patient
that had been on cyclosporine prior to AIH diagnosis, upon
which it was discontinued. It was not clear from the description
of the case whether the other pediatric patient had been on
cyclosporine after HSCT.

Whether the kidney is a target of autoimmunity after AHSCT
or a manifestation of GvHD-associated alloimmunity is not
clear. Reports of membranous nephropathy and minimal change
disease have been described in the post-HSCT setting, most
commonly observed in association with cGvHD and particularly
upon weaning of immunosuppression (99). However, a few
cases have occurred in the autologous HSCT setting without
GvHD (100), with two such reports in children (101, 102).
The pathophysiology of these renal manifestations appears
to be mediated by antigen-antibody complexes deposited in
the glomerular subendothelium as a result of either kidney
antigens being targeted or indirect injury from deposition of
the complexes targeting antigens exogenous to the kidney (99).
The pediatric cases of immune-mediated nephropathy after
HSCT had been reportedly treatment responsive to systemic
immunosuppression with corticosteroids, which are also used
outside of the HSCT setting for these clinical entities.

Rheumatologic diseases possibly autoimmune in etiology have
been described after autologous and allogeneic HSCT, including
rheumatoid arthritis, psoriatic arthritis, spondyloarthropathy,
vasculitis, and antiphospholipid antibody syndrome, more
commonly after AHSCT for autoimmune indications (8, 15, 48).
In one report, two young adult patients had been described
as having possible autoimmune arthritis (103). A 24-year-old
man who underwent AHSCT for a T cell lymphoma and
antecedent history of arthritis (concomitant ANA titers negative)
developed acute symmetrical polyarthritis involving the proximal
interphalangeal (PIP) and metacarpophalangeal (MCP) joints,
wrists, and knees 1 month after discontinuation of post-HSCT
immunosuppression. This was associated with a high ANA titer.
The patient experienced spontaneous resolution of symptoms
6 months later. The other patient was a 2l year-old woman
who received matched sibling HSCT for AML, with resolved
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acute skin GvHD skin and ongoing lung cGvHD. She developed
bilateral shoulder and unilateral hip and knee pain, with
arthrocentesis finding of coagulase-negative Staphylococcus.
Despite appropriate antibiotic treatment, synovitis now involving
bilateral knees and several PIP joints persisted and was then
treated with anti-inflammatory medications (not specifically
stated) and intra-articular injection of the knee with a
corticosteroid, which resulted in complete resolution of the
symptoms. Whether the arthritis was immune- or infection-
driven in the latter case is not entirely clear. Otherwise,
autoimmune arthritities have been almost exclusively described
in the setting of HSCT for autoimmunity (15, 22), which indicates
that a predisposition toward autoimmunity in combination with
the transplant factors likely plays a pathophysiological role in
such manifestations.

FUTURE DIRECTIONS AND SUMMARY

Identification of risk factors for autoimmune manifestations in
children and adults undergoing ASHCT as well as comprehensive
diagnostic characterization of these rare cases are imperative to
advance the understanding of the biological mechanisms behind
these complex set of conditions. Many AD manifestations remain
poorly understood due to lack of prospective studies and pre-
clinical models. The former would be difficult to implement due
to rarity of these complications, but subsets of patients have
been identified to have higher inherent risks for developing AD
(8, 9), which could facilitate such efforts. Such studies should
include the collection of clinically well annotated samples of
blood and tissue. Innovative study designs adapted to rare entities
and development of novel minimally invasive biological sampling
techniques suitable for pediatric patients are imperative to move
this area of research forward. Emerging diagnostic approaches
could provide further mechanistic insights into pathophysiology
of manifestations. For example, single cell sequencing approaches
are now able to capture TCR diversity, and as analytical
methods advance valuable insights into antigenic targets, i.e.,
TCR specificity, may be identified (104). Patient outcomes could
be improved by selection of targeted treatments (if targets
are known), which would potentially be more effective and
less toxic than general immunosuppression (105). For example,
unregulated B cell expansion had been implicated as a potential

mechanism of AD and the use of anti-B cell agents has
demonstrated clinical efficacy in steroid refractory cases (28, 48).
Treg dysfunction is a common feature of GvHD (106) and AD
after AHSCT and perhaps in vivo Treg expansion is a strategy
that could be attempted in the setting of AD after ASHCT. Janus
tyrosine kinase (JAK) inhibitors were developed for ADs outside
of the AHSCT setting (107) and have elicited clinical responses in
patients with steroid refractory GvHD (108), which indicates they
may also be efficacious in AD after AHSCT. In conclusion, AD
likely stems from T and B cell dysfunction in the context of pro-
inflammatory post-AHSCT milieu in which immunoregulatory
processes are impaired. As risk factors for the development of AD
after ASHCT are better characterized and the underlying biology
is better understood, patients and families can be appropriately
advised about the risks, changes to the existing BMT platforms
can be implemented, and therapeutic targeting of underlying
biology can be explored.
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