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Senescence is a complex cellular process that is implicated in various physi-

ological and pathological processes. It is characterized by a stable state of

cell growth arrest and by a secretome of diverse pro-inflammatory factors,

chemokines and growth factors. In this review, we summarize the context-

dependent role of cellular senescence in ageing and in age-related diseases,

such as cancer. We discuss current approaches to targeting senescence to

develop therapeutic strategies to combat cancer and to promote healthy

ageing, and we outline our vision for future research directions for

senescence-based interventions in these fields.

1. Introduction

In response to cellular stressors, cells undergo senes-

cence, a cellular state that is characterized by the

stable arrest of cell growth. While in the senescent

state, cells secrete a variety of pro-inflammatory fac-

tors, chemokines and growth factors, which together

are known as the senescence-associated secretory phe-

notype (SASP) [1,2]. Senescent cells also undergo a sig-

nificant amount of chromatin remodelling, DNA

damage response (DDR), specific morphological

changes, and enter into an altered metabolic state [1].

Senescence can be highly variable and heterogenous.

There are four main types of senescence that cells can

undergo, depending on the inducer: replicative senes-

cence (RS); oncogene-induced senescence (OIS); stress-

induced premature senescence (SIPS) and therapy-

induced senescence (TIS) [3–7]. These diverse types of

senescence are implicated in a variety of physiological

and pathological processes, and modulate the tissue
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microenvironment mainly through the SASP [8].

Senescence and the SASP are also widely reported to

have a context-dependent role in tissue ageing and in

age-associated diseases, such as cancer [9]. Indeed,

senescence-based interventions for ageing and age-

associated diseases have gained substantial traction

with an increasing number of papers being published

each year [10–13]. This review explains the rationale of

targeting senescence as an effective strategy to combat

age-related disorders with a particular focus on cancer.

We discuss both the benefits and challenges of current

senescence-targeting approaches and outline our vision

for future senescence-based intervention strategies in

promoting healthy ageing and the treatment of cancer

and other age-related diseases (Fig. 1).

2. Clearance of senescent cells by
senolytics

Senescence plays a context-dependent role in cancer

and in other diseases, such as lung fibrosis [14,15]. In

response to versatile stress inducers, senescent cells can

be either beneficial or detrimental to tissues through

remodelling the tissue microenvironment [1]. The detri-

mental effect induced by senescent cells addresses ideas

on developing ‘senolytics’, which aim at eliminating

senescent cells from damaged tissues [16]. This thera-

peutic strategy is expected to restore tissue homeosta-

sis, reduce age-associated pathology, and treat age-

related diseases.

2.1. Cellular senescence in cancer and ageing

OIS is an intrinsic tumour suppression mechanism. It

prevents premalignant cells that harbour an initial

oncogenic hit from becoming fully transformed cancer

cells [17]. However, OIS has also been shown to con-

tribute to tumour development. It does so by remod-

elling the tumour immune microenvironment through

the SASP, which is characterized by the secretion of

pro-inflammatory factors, chemokines and growth fac-

tors (Fig. 2). For example, CCL2 secreted by cells

undergoing OIS promotes cancer progression by

recruiting immune-suppressive M2 polarized macro-

phages [18]. Likewise, docetaxel-induced senescence

can reduce the size of Pten-deficient tumours by trig-

gering immunosurveillance when combined with Janus

Kinase 2 (JAK2) inhibitor NVP-BSK805 [19]. How-

ever, persistent TIS increases the risk of cancer relapse

and chemoresistance by inducing cancer stem-like cells

[20–22]. In addition, TIS contributes to chemotherapy-

induced side effects by stimulating persistent local and

systemic inflammation [20].

Notably, the elimination of senescent cells delays

tumorigenesis [23]. The clearance of senescent cells by

immune cells has also been reported to reduce fibrosis

in multiple organs and maintain uterine function in

wild-type mice [24,25]. Therefore, the selective removal

of senescent cells is considered to be a potential thera-

peutic strategy with which to treat cancer and promote

healthy ageing.

2.2. Using senolytics to eliminate senescent cells

Caloric restriction in wild-type mice is known to pro-

long a healthy lifespan by delaying the accumulation

of senescent cells [26,27]. This finding links senescent

cell burden to ageing [27]. Subsequent work in mice

and in human pre-malignant tumours has established

that senescent cells play a causal role in driving ageing

Fig. 1. The potential of

senescence-based therapeutic

strategies for promoting healthy

ageing and for combating age-

related disease. These strategies

include the development of

Senolytics and Senomorphics,

interventions for metabolic

dysfunction, p53 restoration, and

the blockade of senescence-

associated cancer cell stemness.

CAR, chimeric antigen receptor;

cGAS, cyclic GMP-AMP synthase;

JNK, c-Jun N-terminal kinase;

NAMPT, nicotinamide

phosphoribosyl transferase; STING,

stimulator of interferon genes.
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and age-related diseases, including cancer [12,28]. The

elimination of senescent cells from damaged tissues in

wild-type mice relieves the symptoms of senescence-

related disorders, restores tissue homeostasis, and pro-

motes longevity [29]. Consequently, increasing efforts

have been devoted to developing ‘senolytics’ that can

selectively eliminate senescent cells.

The first generation of senolytics was discovered

based on the intrinsic resistance of senescent cells to

apoptosis [30]. Senescence in cells is accompanied by

the upregulation of senescent-cell anti-apoptotic path-

ways (SCAPs), which reinforce the senescence status in

cells, preventing them from undergoing apoptosis

[31,32]. One such pathway is the BCL-2 pro-survival

pathway, members of which include ABT-737

(Table 1). Pan inhibitors of BCL-2 pathway members

trigger the apoptosis in OIS and TIS and in normal-

aged mice [33,34]. In wild-type aged mice treated with

a combination of apoptosis activators, lifespan was

extended, even when this treatment was administered

in later life [35]. However, the non-specificity of these

compounds may cause toxic side effects, which pro-

hibit their use in a therapeutic context [36]. A specific

BCL-xL inhibitor ABT-263 (navitoclax) that is less

hematologically toxic than the pan inhibitors was

shown to selectively induce apoptosis in senescent

human umbilical vein endothelial cells (HUVECs) but

not in proliferating ones [37]. These studies establish

Fig. 2. The multifaceted roles of the SASP in different context of senescence. The tumour-promoting (blue) and the tumour-suppressive (or-

ange) roles of the SASP are summarized. In different senescence settings, the SASP factors can be highly variable and result in different

biological functions. For example, CXCL1 secreted by OIS cells is important in suppressing tumour progression, while promoting tumour

growth during TIS. CCL2, C-C Motif Chemokine Ligand 2; CCL5, C-C Motif Chemokine Ligand 5; CD4, Cluster of Differentiation 4; CD8,

Cluster of Differentiation 8; CXCL1, Chemokine (C-X-C motif) ligand 1; CXCL2, Chemokine (C-X-C motif) ligand 2; CXCL8, Chemokine (C-X-C

motif) ligand 8; GMCSF, Granulocyte-macrophage colony-stimulating factor; IL1A, Interleukin 1 Alpha; IL6, Interleukin 6; MDSCs, Myeloid-

derived suppressor cell; NK, natural killer; OIS, oncogene-induced senescence; SASP, Senescence-associated secretory phenotype; TIS,

therapy-induced senescence.

Table 1. Senolytics and senomorphics.

Targets Refs

Senolytics

ABT-263 (navitoclax) BCL-XL [33,37]

ABT-737 BCL-2, BCL-XL and BCL-W [34]

Quercetin Multiple targets [35]

Dasatinib Pan-receptor tyrosine kinases [36]

Fisetin PI3K/AKT/mTOR [38]

BET family protein

degrader (ARV825)

Bromodomain and extraterminal

domain family protein

[40]

BPTES GLS1 [41]

uPAR-specific CAR T

cells

uPAR positive senescent cells [29]

Senomorphics

Metformin IKK and/or NF-jB [67]

MI-2-2 MLL1 [69]

JQ1 BRD4 [55]

EPZ5676 DOT1L [57]

ML324 KDM4 [56]

TSA HDAC [82]

SP600125 JNK [101]

FK866 NAMPT [22]
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the potential for repurposing apoptosis inducers as

senolytics.

Another study has shown that flavonoid polyphenol

fisetin can serve as a potent senolytic drug. This drug

has been shown to reduce the senescent cell burden in

wild-type mice and in human adipose tissue explants

[38]. More importantly, the administration of fisetin to

wild-type mice late in life significantly extended their

median and maximum lifespan, without causing severe

side effects. Given the safety profile of fisetin in

humans, its efficacy in reducing markers of cellular

senescence in elderly subjects is currently being

assessed in a clinical trial [39]. Bromodomain and

extra-terminal domain (BET) family degrader also

serve as potent senolytic drugs [40]. For example, the

BET degrader ARV825 provokes senolysis through the

combined effects of the attenuation of non-

homologous end joining (NHEJ) repair and the activa-

tion of autophagic pathway in RS cells [40]. Further-

more, as the intracellular pH during senescence is

lowered which in turn stimulates glutaminase 1

(GLS1) expression, GLS1 inhibitor BPTES has been

shown to eliminate senescent cells induced by transient

p53 activation and ameliorate age-associated organ

dysfunction in aged mice [41]. In addition, a tolerated

FOXO4-p53 interfering peptide has been reported to

promote nuclear exclusion of active p53 in infrared

radiation (IR)-induced senescent cells, which in turn

induces p53-mediated intrinsic apoptosis and restores

health span in both fast-ageing XpdTTD/TTD and natu-

rally aged mice [31].

In a recent study, urokinase-type plasminogen acti-

vator receptor (uPAR) was identified as a prevalent

cell-surface and secreted senescence biomarker [29].

Although uPAR plays a role in cell motility and in

tumour cell survival, mice lacking uPAR do not have

altered fertility or development [42], which exhibits a

promising safety profile. This suggests that the inhibi-

tion of uPAR could be potentially used in a therapeu-

tic context. In a mouse model of lung

adenocarcinoma, in which cell senescence is stimulated,

the injection of a uPAR-specific chimeric antigen

receptor (CAR) T cells efficiently eliminated senescent

cells and significantly extended survival [29]. CAR T

cells are T cells that have been genetically engineered

to produce a chimeric T-cell receptor for use in

immunotherapy. This study highlights the potential to

treat age-related diseases by senolytic CAR T cells.

As discussed above, several studies have demon-

strated the beneficial effects of senolytics in the context

of ageing and age-associated disorders in animal mod-

els. However, whether they are equally effective in

human clinical trials is yet to be determined given the

paradoxical and context-dependent role of senescence.

Particularly, senolytics typically only eliminate a frac-

tion of senescent cells and are known to induce side

effects such as pleural effusion and dose-limiting

thrombocytopenia [16]. When treated with senolytics

at effective doses, damaged osteoblast function and

reduced trabecular bone volume fraction have been

shown in wild-type mice [43]. In addition, a recent

study found that p16High senescent cells are struc-

turally and functionally important in ageing organisms

[44]. Elimination of p16High senescent liver sinusoidal

endothelial cells (LSECs) could lead to disruption of

blood-tissue barriers and subsequent fibrosis [44].

Thus, caution should be taken when applying these

drugs in a therapeutic context.

Given that the potential side effects caused by

senolytics and that the SASP plays an important role

in promoting ageing-related diseases, targeting the

SASP by senomorphics becomes an alternative option.

3. Targeting the SASP with
senomorphics

The SASP plays a context-dependent role in cancer

and ageing [45,46], and functions in a dynamic, vari-

able, and heterogeneous manner in different senescence

contexts [47]. Given that the detrimental effect caused

by senescent cells largely depends on the SASP,

senomorphics that aim at suppressing the SASP with-

out affecting the senescence-associated growth arrest

attract broad academic interests.

3.1. Paradoxical role of the SASP in cancer and

ageing

The SASP-associated factors secreted from OIS cells

can trigger immune surveillance to remove premalig-

nant cells that harbour initial oncogenic hits [46]. This

immune surveillance, together with senescence-

associated growth arrest, enforces tumour suppression

[48]. Consistent with its role in boosting the immune

response, the SASP benefits cancer immunotherapies

by improving the efficacy of the immune checkpoint

blockade (ICB), such as by sensitizing programmed

cell death protein 1 (PD-1) inhibitors [49]. PD-1 inhibi-

tors block the activity of PD-1 immune checkpoint

proteins present on immune cells, which are involved

in the suppression of immune response [50]. Likewise,

CDK4/6 inhibitors have been shown to induce the

SASP and to recruit CD8 T cells to overcome resis-

tance to ICB [51,52]. Additionally, topoisomerase 1

(TOP1) functions to relax high-order topological DNA

structures during DNA replication and transcription
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[53]. TOP1 inhibitors sensitize ovarian cancers to ICB

by enhancing the expression of SASP-associated fac-

tors [54]. However, the SASP can be detrimental to

health as it is a source of chronic inflammation in

many age-related diseases, including in cancer [46].

For example, some SASP-associated factors, such as

vascular endothelial growth factor (VEGF), endothe-

lial growth factor (EGF) and transforming Growth

Factor Beta 1 (TGFb1), promote tumorigenesis and

tumour progression [45]. Given the multifaceted role

of the SASP in different settings, it should be modu-

lated with precision when being targeted for therapeu-

tic purposes.

3.2. Using senomorphic drugs to suppress SASP

Given that eliminating senescent cells by senolytics can

cause unwanted side effects and that the detrimental

effects of senescent cells are largely mediated by the

SASP, an alternative approach to targeting senescent

cells is to develop senomorphics. Senomorphic drugs,

such as BET inhibitor I-BET-762 and histone lysine

demethylase subfamily 4 (KDM4) inhibitor ML324,

aim to suppress the SASP [55,56]. Notably, senomor-

phics are expected not to affect the arrest of cell

growth that is associated with senescence [57].

3.2.1. Suppressing SASP by targeting chromatin

modifiers

OIS cells have long been known to induce the forma-

tion of visible senescence-associated heterochromatic

foci (SAHF) [58]. These foci form when already

existing heterochromatin is repositioned by chromatin

modifiers, such as Jumonji domain containing 3

(JMJD3) [59,60]. The formation of SAHF functions

as a safeguard as SAHF suppresses the transcription

of proliferation-promoting genes in OIS cells [59]. In

addition, the transcription of genes that encode

SASP-associated factors correlates with the exclusion

of their loci from SAHF, as evidenced by an accessi-

ble genomic locus adjacent to the SAHF in OIS cells

[61]. Transcription factors also play key roles in reg-

ulating the SASP. For example, nuclear factor-kappa

B (NFjB), CCAAT/enhancer-binding protein b (C/

EBPb) and Activator protein 1 (AP-1) are transcrip-

tion factors that regulate the transcription of genes

encoding SASP-associated factors in OIS cells [62–
65]. Additionally, GATA-binding protein 4 (GATA4)

indirectly induces the SASP by interacting with

NFjB in OIS, RS, and IR exposed cells [66]. More-

over, an anti-diabetic drug Metformin has been

reported to reduce the SASP through inhibition of

NFjB activation [67]. Finally, an RNAi screen for

SASP regulators identified 50 targets such as PTBP1,

which are druggable to suppress the inflammatory

secretome [68].

Target SASP-promoting transcription factors is

challenging due to the fact that they lack catalytic

active sites for drugs to bind. Therefore, chromatin

modifiers that have drug binding pockets become ideal

targets for suppressing the SASP. For example, mixed

lineage leukemia protein-1 (MLL1), which mediates

histone H3 lysine 4 (H3K4) methylation, contributes

to SASP upregulation in both OIS and TIS models

[69]. Consistently, MLL1 inhibition reduces SASP gene

expression via the DNA damage and response path-

way. Additionally, disruptor of telomeric silencing 1-

like (DOT1L) is required for Interleukin 1 Alpha

(IL1A) expression, which is an important upstream

regulator of many other SASP genes [70]. Further-

more, inhibition of the epigenetic regulator Bromod-

omain Containing 4 (BRD4), which helps to organize

new super enhancers to drive the SASP, suppresses

this secretory phenotype [55]. Similarly, a potent inhi-

bitor that selectively targets KDM4 can also reduce

SASP gene expression by altering the accessibility of

chromatin and the transcriptomic landscape [56].

Importantly, the inhibition of these chromatin modi-

fiers reduces SASP gene expression without altering

the growth arrest of senescent cells, which provides a

promising avenue for being targeted in the therapeutic

context.

In addition, a recent study has shown that the dis-

ruption of the chromatin loop that drives the expres-

sion of SASP-associated genes might also be used to

reduce the SASP [71]. The methyltransferase-like 3

(METTL3) and 14 (METTL14) catalyze mRNA N6-

methyladenosine (m6A) modification [72]. However, in

senescent cells, the METTL3 and METTL14 complex

mediates important senescence-associated enhancer-

promoter (EP) looping in an enzymatic activity-

independent manner [71]. Specifically, Mettl3 and

Mettl14 redistribute to the promoter and enhancer of

SASP-associated genes, respectively [71]. In wild-type

mouse models, genetically knockdown of METTL3 or

METTL14 reduces the immune surveillance function

of the SASP. In addition, in a xenograft mouse

model, knockdown of Mettl3, Mettl14 significantly

decreases the tumorigenesis mediated by the SASP

[71]. Notably, SASP reduction brought about by Met-

tl3 and Mettl14 depletion was not accompanied by

impairments to the senescence-associated growth

arrest [71]. Thus, the Mettl3/Mettl14 complex could

provide a promising target for new anti-SASP

senomorphics.
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3.2.2. Targeting cGAS-STING pathway to suppress

SASP

The innate immune cGAS-STING pathway is a critical

regulator of the SASP (Fig. 3). This pathway functions

to sense cytosolic DNA and induce an immune

response [73]. Upon binding cytosolic DNA, cyclic

GMP-AMP Synthase (cGAS) produces 2,3-cyclic

GMP-AMP (2,3-cGAMP), which subsequently binds

to Stimulator of Interferon Genes (STING) to trigger

the activation of interferon regulatory transcription

factors (IRFs), such as IRF3 [73]. Activated IRFs

stimulate the transcription of inflammatory genes and

therefore mediate innate immune response [73]. The

cGAS-STING signalling pathway is activated by rec-

ognizing cytoplasmic chromatin fragments (CCF),

which form and accumulate during senescence with the

loss of nuclear envelope integrity [74]. cGAS is simi-

larly activated by cytoplasmic-localized cDNA gener-

ated by the reverse transcription of de-repressed

retrotransposon LINE-1 elements (long-interspersed

element 1) [75]. Once activated, cGAS stimulates the

phosphorylation of STING and promotes NFjB tran-

scription, which leads to the upregulation of SASP-

associated genes [76].

In OIS or RS cells, LINE-1 acts as a driver of type

I interferon (IFN-I) signalling via cGAS-STING acti-

vation to induce chronic inflammation [75]. In con-

trast, CCF-triggered cGAS activation cannot stimulate

IFN-I in OIS or TIS human fetal diploid (HFD) cells

[74]. This is likely due to p38 mitogen-activated pro-

tein kinase (MAPK)-mediated STING inhibition

[74,77]. However, in oxidative stress-induced senescent

mouse embryonic fibroblasts, cGAS activation trig-

gered by CCF can induce IFN-I production [76].

Despite their context-dependent differences in IFN sig-

nalling activation, both CCF and LINE-1 induce the

SASP in a cGAS-dependent manner. Given that

senescence-related inflammation is reduced in cGAS-

deficient, and in STING-deficient, cells or mice, inhibi-

tors of the cGAS-STING axis have attracted broad

interest [74,78,79]. cGAS or STING inhibitors such as

Fig. 3. LINE1 and CCF stimulate the SASP gene expression through the cGAS-STING innate immune pathway. When cells undergo senes-

cence, impaired integrity of the nuclear envelope contributes to the formation of CCF. In another aspect, high levels of LINE1 mRNA were

found in senescent cytosolic, which leads to increased amount of LINE1 cDNA through reverse transcription. These two sources of cytoso-

lic DNA bind to and activate cGAS to generate the second messenger 2,3-cGAMP. cGAMP sequentially binds to and activate STING to

recruit TBK1. TBK1 facilitates the phosphorylation of IRF3 and NFkB, which function as important transcriptional factors to promote the

SASP gene expression. 2,3-cGAMP, 2,3-cyclic GMP-AMP; AMP, adenosine monophosphate; ATP, adenosine 50-triphosphate; CCF, Cytoplas-
mic chromatin fragment; cGAS, GMP–AMP synthase; GMP, guanosine monophosphate; GTP, guanosine 50-triphosphate; IRF3, interferon
regulatory transcription factor3; LINE1, Long Interspersed Element 1; NFkB, nuclear factor-kappa B; STING, stimulator of interferon genes;

TBK1, tank-binding kinase 1.
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G150 and H151 have been reported to have potency in

the sub-micromolar range [80,81]. However, whether

these inhibitors can be repurposed as effective

senomorphics with manageable side effects remains to

be determined [80,81].

Strategies that dampen the upstream triggers of

cGAS-STING signalling might provide an equally

effective therapeutic approach. For example, Lamivu-

dine, which is a nucleotide reverse transcriptase inhibi-

tor, has been shown to suppress LINE1 formation

[75]. This correlates with a decreased inflammatory

response and improved age-associated phenotypes in

naturally aged mice and in a progeroid ageing mouse

model [75]. Furthermore, HDAC inhibitors impair

CCF formation by damaging mitochondria-to-nucleus

retrograde signalling, which also results in SASP sup-

pression [82]. Given that HDAC inhibitors such as

vorinostat and belinostat are already approved for the

treatment of patients with haematological malignan-

cies, it provides a promising therapeutic potential for

treating age-related diseases [83].

Overall, senomorphics aim at suppressing the SASP

without interfering with the cell growth arrest of senes-

cent cells. Despite that, senomorphics show promising

efficacy in suppressing the SASP expression in multiple

types of senescent cell models and animal models,

strategies that target on other signalling pathways may

provide additional avenues for therapeutic interven-

tions.

4. Other potential strategies for
treating senescence-associated
diseases

Given that senescence is accompanied by metabolic

alteration, DNA damage, and stem-like signatures,

strategies targeting these alterations may remodel the

senescence-associated microenvironment for treating

ageing-related diseases [1]. Other strategies such as tar-

geting of increased lysosomal enzyme activity or intrin-

sic lowered pH environment have been reviewed

elsewhere [84].

4.1. Interventions for metabolic dysfunction

Metabolic dysfunction is known to induce senescence

responses [85]. The altered metabolic status of senes-

cent cells plays an essential role in reinforcing

senescence-associated growth arrest and in sustaining

the SASP. For example, during mitochondrial

dysfunction-associated senescence (MiDAS), cytosolic

NADH accumulates, resulting in a low NAD+/NADH

ratio, which activates the energy sensor, AMPK

signalling, to elicit the SASP [86]. NAD+ can also

serve as a cofactor for sirtuin family proteins (SIRTs)

and for poly-ADP-ribose polymerase (PARP), which

both protect cells from senescence in a manner that

depends on their ability to consume NAD+ [87–90].
For example, SIRT1 and SIRT6 loss in primary

human lung fibroblasts induces senescence or prema-

ture ageing with a hyperinflammatory phenotype [90–
93]. Sirtinol, a Sirt1 inhibitor, induces senescence-like

growth arrest and reduced MAPK signalling in human

cancer cells [94]. Although NAD+ protects against

senescence-associated growth arrest, one study has

shown that once senescence is fully established, NAD+

promotes inflammatory SASP during OIS and TIS

[95]. Mechanistically, this is mediated by the upregula-

tion of nicotinamide phosphoribosyl transferase

(NAMPT) through the high mobility group A

(HMGA) proteins [95]. An increased NAD+/NADH

ratio suppresses the AMPK signalling pathway to

enhance NFjB transcriptional activity, which upregu-

lates the SASP [95]. Consistently, selective NAMPT

inhibitors, such as FK866, suppress the SASP, inhibit

tumour progression, and prevent SASP-associated

chemotherapy relapse by eliminating cancer stem-like

cells in xenograft mouse models [22]. In addition to

NAD metabolism, mitochondrial deficiency, including

the loss of mitochondrial proteins, the stalling of the

electron transport chain, and mutations in mitochon-

drial DNA (mtDNA), are all known drivers of senes-

cence [96–98]. For example, the overexpression of

mitochondrial protein deacetylase SIRT3 in human

fibroblasts can antagonize cellular senescence induced

by high glucose [99].

Reactive oxygen species (ROS) also accumulate in

mitochondria during senescence [85]. Increased ROS

production activates c-Jun N-terminal kinase (JNK) to

promote the release of CCF, which drive the SASP via

the cGAS-STING pathway [100]. Consistently, antiox-

idants or JNK inhibitors are sufficient to suppress

CCF formation, thus reducing the SASP. Senescence is

also induced in mice by the depletion of mitochondrial

superoxide dismutase (SOD2), which destroys superox-

ide anion radicals [101]. However, ROS are vitally

important signalling molecules that are involved in

many cellular processes, making it a formidable chal-

lenge to inhibit them without causing deleterious

effects.

4.2. Restoring p53 function to induce senescence

The p53/p21cip1 tumour suppressor pathway plays a

vital role in regulating senescence [102]. p53 can be

activated during senescence both in a DDR-dependent
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and DDR-independent manner. For instance, both

OIS and RS are accompanied by DNA damage, which

triggers the DDR cascade to phosphorylate and stabi-

lize p53 [103,104]. p53 can also be activated and stabi-

lized by direct phosphorylation by p38 or by being

bound by mTORC1 [105]. p53 transcriptionally stimu-

lates p21cip1, which plays a critical role in mediating

cell cycle exit during senescence [106,107]. Further-

more, p53 undergoes post-translational modifications

during senescence. For example, the acetylation of

lysine 320 of p53 promotes p21cip1 expression [108].

This contributes to the maintenance of senescence

since p21cip1 knockout in TIS cells triggers apoptosis

via caspase activation [109].

In the absence of p16, p53 inactivation prevents

human senescent fibroblasts from undergoing senes-

cence [110]. In addition, in double mutant Tp53�/�/
Atm�/� mice that lack both p53 and ATM, cells fail to

senesce and the mice develop tumours earlier than

their single knockout counterparts do [111]. These

findings indicate that p53 acts as an inducer of senes-

cence that protects cells from being cancerous. Thus,

p53 might induce fast-growing cancer cells to senes-

cence and thus provide a potential therapeutic target

for cancer treatment. Given this possibility, the activa-

tion of p53 by small molecules has been explored. For

example, the ability to alter p53 activation via post-

translational modification using inauhzin and by

blocking its nuclear exportation by using RG7112 has

been investigated, as has restoring p53 activity via the

delivery of p53 mRNA [112–116]. These studies also

highlight the potential to combine a p53 activator with

senolytics to eliminate cancer cells by first inducing

their senescence, in what is known as a ‘one-two

punch’ therapeutic strategy [117].

4.3. Blocking senescence-associated stemness in

cancer

It is well-known that crucial signaling components of

senescence pathways, such as p16INK4a, p21cip1, and

p53, are also critical regulators of cancer stem-cell-like

phenotypes [118]. A gain of stemness in cancer cells

has profound effects on tumour progression and

aggressiveness [119]. For example, in a transcriptome

profiling study of TIS cells, a dramatic increase in a

stem-cell transcriptional signature was observed in

senescent, compared to non-senescent, lymphomas

[21]. Moreover, enhanced tumour initiation was

observed in cells that had escaped from senescence

through reduced level of lysine 9 trimethylated histone

H3 (H3K9me3) or p53, in TIS cancer cells and in

mouse models of leukaemia [21]. Strikingly, non-stem

bulk leukaemia cells gained the ability to self-renew

and could be made into leukaemia-initiating stem cells

by temporarily undergoing enforced senescence in vitro

[21]. In another study, NAMPT inhibition significantly

suppressed the senescence-associated stemness in ovar-

ian cancer cells that are triggered by platinum-based

chemotherapy [22]. Moreover, the combination of the

NAMPT inhibitor, FK866, and cisplatin dramatically

improved the survival of mice bearing ovarian tumours

and was mechanistically correlated with the inhibition

of stem-cell signatures [22]. Overall, these studies pro-

vide a novel strategy for blocking senescence-

associated stemness in the treatment of human can-

cers.

5. Conclusions and perspectives

Senescence is a complicated cellular process that is

characterized by a variety of phenotypic changes and

pleiotropic functional consequences. These phenotypic

changes are spatially and temporally dynamic and

depend on stress inducers and the genetic con-

text [120]. While the growth arrest of senescent cells is

beneficial in early life, protecting healthy tissues from

tumorigenesis, senescent cells are resistant to pro-

grammed cell death and stimulate chronic inflamma-

tion, thus damaging tissue homeostasis and

contributing to tumorigenesis in later life. Despite the

complexity of cellular senescence, emerging evidence

demonstrates that senescence-based therapeutic

approaches have considerable potential for promoting

healthy ageing and for combating age-associated dis-

eases, such as cancer [10]. Of particular therapeutic

potential is the use of senolytics to eliminate senescent

cells and the use of senomorphics to suppress the

SASP.

Technical advancements and innovations bring new

avenues for the development of novel senescence-based

interventions. The advances of whole-genome next-

generation sequencing (NGS) are greatly accelerating

biomarker identification and targeted therapy in cancer

[121,122]. The integration of big data-mining and arti-

ficial intelligence (AI)-based approaches holds great

promise for the identification of novel biomarkers in

senescence-associated pathologies [123]. Once novel

senescent biomarkers are identified, cutting-edge thera-

pies can be developed to treat senescence-associated

diseases [124–126]. Advances in functional genomics

can also be used to dissect context-dependent

senescence-regulating pathways, such as the use of

genome-wide CRISPR (clustered regularly interspaced

short palindromic repeats)-based screening [127,128].

Notably, single-cell-based technologies, including
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single-cell RNA sequencing (scRNA-sequencing) and

single-cell split-pool recognition of interactions by tag

extension (scSPRITE) enable the 2D transcriptome

and 3D epigenome to be measured in dynamic and

heterogenous cell populations, such as in ageing tissues

[129,130]. Moreover, a novel method for enriching

extrachromosomal circular DNA elements (eccDNAs)

has been recently reported [131]. This study showed

that eccDNAs can be used to activate STING in regu-

lating the immune response in bone marrow-derived

dendritic cells [131]. However, whether eccDNA exists

due to damaged chromosomal DNA and thereby stim-

ulates cGAS-STING signalling in the context of senes-

cence remains to be investigated. Together, these

evolving technologies will both pave the way for iden-

tifying novel targets for senescence-based therapies and

help to uncover senescence-associated mechanisms that

can be leveraged for therapeutic targeting.
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