
Frontiers in Immunology | www.frontiersin.

Edited by:
Catherine Sautes-Fridman,

U1138 Centre de Recherche des
Cordeliers (CRC) (INSERM), France

Reviewed by:
Richard Chahwan,

University of Zurich, Switzerland
Jon Zugazagoitia,

Independent Researcher,
Madrid, Spain

*Correspondence:
Marie-Josée Hébert
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Tertiary lymphoid structures are clusters of lymphoid tissue that develop post-natally at
sites of chronic inflammation. They have been described in association with infection,
autoimmune disorders, cancer, and allograft rejection. In their mature stage, TLS function
as ectopic germinal centers, favoring the local production of autoantibodies and
cytokines. TLS formation tends to parallel the severity of tissue injury and they are
usually indicative of locally active immune responses. The presence of TLS in patients
with solid tumors is usually associated with a better prognosis whereas their presence
predicts increased maladaptive immunologic activity in patients with autoimmune
disorders or allograft transplantation. Recent data highlight a correlation between active
cell death and TLS formation and maturation. Our group recently identified apoptotic
exosome-like vesicles, released by apoptotic cells, as novel inducers of TLS formation.
Here, we review mechanisms of TLS formation and maturation with a specific focus on the
emerging importance of tissue injury, programmed cell death and extracellular vesicles in
TLS biogenesis.
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INTRODUCTION

Tertiary lymphoid structures (TLS) are ectopic aggregates of lymphocytes and stromal cells, which,
at maturity, behave as functional sites of adaptive immune responses (1, 2). In contrast to secondary
lymphoid organs (SLO) (such as spleen, lymph nodes and Peyer’s patches), TLS are non-
encapsulated and form postnatally. They exhibit plasticity and their presence is transient,
correlating with active tissue injury and resolving after antigenic clearance and tissue repair (3).
They are composed of T and B cells as well as stromal cells, such as follicular dendritic cells (FDCs)
and aSMA+ fibroblasts. Macrophages can be found at the periphery of TLS (4) (Figure 1). TLS
display different organization levels ranging from simple clusters of B and T lymphocytes to more
mature structures where T and B cells are polarized and FDC expressing CD21 and p75
neurotrophin receptor are present, allowing the formation of germinal centers (GC) (1, 5–7). GC
are characterized by expression of activation-induced cytidine deaminase (AID) that regulated
immunoglobulin gene affinity maturation through somatic hypermutation and initiation of
immunoglobulin class switch recombination. GC are sites of B cell proliferation and affinity
org July 2021 | Volume 12 | Article 6963111
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maturation into antibody secreting plasma cells. Lymphatic
vessels and high endothelial venules (HEV), characterized by a
cuboidal shape of endothelial cells and expression of CCL21,
ICAM-1, PNAd and MAdCAM, are commonly found in mature
stages (6) (Figure 1).

TLS arise in tissues whose main function is other than the
generation of immune cells such as kidney, heart, pancreas, lung,
colon and breast. Lymphoid neogenesis (5, 8), i.e. the process of TLS
formation, can be observed in inflammatory microenvironments
resulting from chronic infection, autoimmune conditions, allograft
rejection and tumor growth (9, 10). Inflammatory cytokines such as
TNF-a, IL-17A, IL-23 and lymphotoxins, expressed by immune
cells at sites of injury induce stromal cells to produce homeostatic
chemokines, such as CXCL13, CXCL12, CCL19 and CCL21. This in
turn drives the recruitment of T and B cells and their organization
into progressively polarized clusters (11). CXCL13 expression in
TLS by CD8+ T cells and other immune cells appears pivotal to TLS
maturation (12–16). Inflammation also prompts the expression of a
number of chemokines and cytokines in tissue fibroblasts such as
Frontiers in Immunology | www.frontiersin.org 2
podoplanin, CCL19, IL-17, CXCL13, and adhesion molecules
ICAM-1 and VCAM-1, therefore creating a microenvironment
conducive to attraction and retention of lymphoid cells (17–22).
Chemokines and cytokines produced by local fibroblasts and
epithelial cells (19) favor the recruitment of immune cells and
TLS organization. Various cytokines can also synergize and/or
compensate one another, creating an environment favorable for
TLS formation and maturation (2).

An important phase in TLS maturation is the formation of
HEV that connect TLS with the bloodstream and enable the
sustained recruitment of lymphocytes. HEVs express addressin
and CCL21 allowing the entry of naïve T cells expressing the
addressin ligand CD62L and CCR7, the chemokine receptor for
CCL21 and CCL19. Data from tumor models also demonstrate
that lymphotoxin a (LTa) and TNF receptor (TNFR)
interactions, likely through infiltrating CD8+ T cells and NK
cells, are also important for HEV formation (23). Others found
that HEV formation can occur independently of both LTa and
lymphotoxin (LT)-ß receptor (LTbR) (24). Specific requirements
FIGURE 1 | Maturation of tertiary lymphoid structures. Tertiary lymphoid structures evolve from loose aggregates of T and B cells and stromal cells (Stage 1), to
polarized clusters of T and B cells accompanied by follicular dendritic cells (FDC) (Stage 2) to mature polarized structures containing germinal centers, proliferating B
cells, plasma cells, high endothelial venules (HEV) and lymphoid vessels (LV).
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for HEV formation and TLS maturation may be a consequence
of the different microenvironments in which TLS are formed.
The presence of FDCs within B cell follicles is another hallmark
of TLS maturation. In SLO, LTbR and TNFR signaling are
essential for FDC formation. In TLS, LTa1ß2 is important for
FDC generation, enabling GC formation and antigen
presentation (25–27). Although FDCs progenitors remain
unknown, activated local stromal cells can differentiate into
FDCs upon encounter with migrating immune cells in TLSs (28).

Antigenic stimulation plays an important role in the formation
of TLS and, in turn, TLS are sites of antibody formation. In
numerous autoimmune diseases and alloimmune conditions,
pathogenic or diagnostic autoantibodies have been shown to be
produced by TLS (25, 29, 30). TLS within inflamed synovium or
salivary glands in patients with rheumatoid arthritis or Sjögren’s
syndrome, control the production of anti-citrullinated peptide
antibody, anti-Ro/SSA and anti-La/SSB antibodies (3, 31, 32). In
kidney and heart allografts with chronic rejection, TLS have been
identified as a source of anti-HLA antibodies, the latter playing a
major role in allograft rejection (33). Our group also recently
identified a role for TLS in the production of autoantibodies that
contribute to allograft inflammation and dysfunction (34, 35).

B cells within TLS can differentiate into antibody-producing
plasma cells. They can also favor autoimmunity and alloimmunity
by acting as antigen presenting cells, further perpetuating antigenic
stimulation and immunogenicity (25, 29, 30). Some conflicting
reports have pointed to the absence of correlation between TLS
formation and autoimmunity or alloimmune disease activity.
These results may stem from activation of tolerogenic pathways
in certain TLS that harbor regulatory B and T cells (36, 37). While
the presence of TLS is generally associated with disease severity in
patients with autoimmunity and alloimmune diseases such as
rheumatoid arthritis, Sjögren’s syndrome, IgA nephropathy and
allograft rejection (31–33, 38), TLS formation in solid tumors has
been generally associated with a better prognosis. B cell aggregates
in tumor TLS can participate in anti-tumor immunity by serving as
antigen presenting cells and by differentiating into plasma cells
producing tumor-associated antibodies. TLS B cell aggregates have
generally been associated with better prognosis in lung, pancreas,
colon and breast cancer (39–49).
FORMATION AND MATURATION OF TLS;
FROM LYMPHOTOXINS TO IL-17

The formation and development of SLO and TLS both rely on the
expression of lymphotoxins and inflammatory cytokines such as
TNFa. Lymphotoxins are members of the TNF superfamily and
are pivotal to the formation of SLO. Lymphoid inducer cells (LTi)
arise from innate lymphoid progenitors in the fetal liver under the
tight regulation of the nuclear hormone receptor retinoic acid
related orphan receptor gt (RORgt) and the transcriptional
regulator Id2 (50, 51). LTi express lymphotoxin a2ß1 on their
surface and the soluble lymphotoxin a3 form. Interactions
between lymphotoxins and the LTbR on stromal cells stimulate
the expression of CXCL13 and CCL21, which in turn favor
homing of T and B cells. Lymphotoxins-LTbR interactions are
Frontiers in Immunology | www.frontiersin.org 3
essential for the formation and maturation of SLO as HEV and
FDC require persistent LTbR mediated signaling (52, 53). LTbR
stimulation was originally considered also crucial for TLSs
neogenesis since LTbR expression is readily upregulated in
inflamed tissues and downstream signaling directly induces
lymphoid neogenesis in different models (7, 17, 20, 21, 54, 55).
Further studies have shown that initial recruitment of T and B cells
can occur independently of LTbR signaling (18, 56) and point to
IL-17 as an important regulator of TLS biogenesis.

IL-17A is the initial member of the IL-17 cytokine family that
includes IL-17A, B, C, D, E and F. The IL-17 family plays
important roles in host-defense against infection and behaves
as a master regulator of inflammatory and autoimmune responses.
It is also known to regulate the growth of several tumors, including
skin, colon, pancreas, liver, lung and myeloma (57–65). A number
of immune cells can produce IL-17A including LTi, Th17 T cells
and gd T cells, which has been implicated in autoimmune and
inflammatory diseases such as multiple sclerosis, psoriasis,
rheumatoid arthritis, crescentic glomerulonephritis, lupus
nephritis and uveitis, among others (66–82).

In multiple sclerosis, IL-17-producing gd T cells are thought to
be initiators of inflammation and inductors of Th17 cells. In the
experimental autoimmune encephalomyelitis (EAE) model, early
accumulation of gd T cells was observed in the central nervous
system (CNS) where they release IL-17 and IL-21 to enhance the
pro-inflammatory activity of ab Th17 cells (71). Patients with
multiple sclerosis also show accumulation of IL-17+ cells in
chronic demyelinated areas of the CNS, and an increase in IL-
17-producing gd T cells in the cerebrospinal fluid (72, 73).
Experimental models of skin inflammation identified IL-17A/F-
producing gd T cells as necessary and sufficient to trigger
psoriasis-like plaque formation in IL-23- or Immiquimod-
induced models (74). IL-17-secreting gd T cells were also
shown to enhance Th17 responses when skin inflammation was
triggered with BCG immunization or Freund’s adjuvant (75, 76).
Similarly, human dermal gd T cells are abundant in biopsies of
psoriasis lesions, with an ability to produce higher levels of IL-17
compared to ab Th17 cells upon IL-23 stimulation in vitro (74).
In mouse models of non-autoimmune arthritis, resident and
peripheral gd T cells were reported as a major source of IL-17
(77, 78). An increase in circulating IL-17A-producing gd T cells
was also found in arthritis patients, suggesting their priming by
cytokines secreted at the site of inflammation (79, 80). In
Crescentic glomerulonephritis, renal IL-17A-producing gd T
cells were found to be the main contributor in the early
inflammatory response by promoting kidney injury. They were
predominated by IL-17A-producing Th17 at later phases (81). In
the experimental autoimmune uveitis model, ab and gd T cells
interactions was found to be important for mediation of eye
inflammation. In this model, an early expansion of gd T cells in
SLO induces IL-17 production and further generation of Th17
responses by ab cells at the inflammatory site (82).

A growing body of evidence has confirmed a role for IL-17A
produced by Th17 T cells and gd T cells in the development of TLS
in the context of pulmonary infection, CNS inflammation, renal
ischemia-reperfusion, obstruction and IgA nephropathy, and
kidney transplantation (22, 38, 54, 83–88). In a model of LPS-
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induced pulmonary infection in neonatal mice, ab and gd T cells
were detected within Inducible Bronchus-Associated Lymphoid
Tissues (iBALT). gd T cells formed a large proportion of infiltrating
cells and both contributed to IL-17 production. Adoptive transfer
of these purified T cell subsets, separately or together, to LPS-
treated Tcrbd-/- neonatal mice, showed preferential contribution of
gd T cells in promoting iBALT development and of ab T cells in
forming larger areas of iBALT (83). Using another model of
pulmonary infection induced by Pseudomonas aeruginosa, gd T
cells were found to be the main source of IL-17 within iBALT,
inducing CXCL-12 production by IL-17R+ stromal cells, B cell
recruitment and follicles formation independent of FDC. When
induced in IL-17a/f -/- or gd T cells-deficient mice upon infection,
lymphoid structures were less organized and, in the absence of gd T
cells, showed a reduction in number and size (84). In the EAE
model, TLS formation in the CNS was also shown to require IL‐17
production. Among various Th cell subsets adoptively transferred
to mice, IL-17-secreting podoplanin-positive Th17 cells generated
large organized and well structured ectopic lymphoid follicles in the
CNS (22). Renal TLOs induced by ischemia-reperfusion injury in
aged mice were reported to be enriched in Th17 cell differentiation,
with increased expression of IL-17A and IL-23R (38). Moreover,
human renal rejected graft samples show a correlation between
shorter graft survival and high interstitial infiltration of Th17 cells,
producing IL-17 and IL-21 and promoting lymphoid
neogenesis (85).

We have recently shown that gd T17 cells play a critical role in
IL‐17 overexpression and lymphoid neogenesis in a model of
vascular rejection (34). The importance of IL‐17 in the activation
of autoimmune responses in the context of transplantation appears
to stem from its capacity to initiate recruitment of immune cells to
sites of injury and promote maturation of antigen‐presenting cells
(89–94). As Th17 cells are the classic producers of IL‐17, they have
been suggested to play a pivotal role in autoimmune pathways
triggered following transplantation. Intriguingly, our findings
demonstrate the importance of gd T cells, rather than Th17
cells, in coordinating the IL‐17 response triggered by vascular
injury of vascular allografts (34). These observations are in line
with previous studies showing that human IL‐17‐producing gd T
cells are generated in the periphery and recruited to inflamed
tissues (95, 96). This process takes place more rapidly compared to
the activation of conventional T lymphocytes as gd T cells can be
activated in the absence of a cognate TCR ligand (97).

Collectively, depending on the nature of the insult and the
tissue implicated, peripheral or resident IL-17-producing gd T
cells may be involved at early phases to organize immunological
events in response to inflammatory signals, and promote further
conventional T cell responses at the site of inflammation.
TISSUE INJURY, CELL DEATH, AND
EXTRACELLULAR VESICLES REGULATE
TLS BIOGENESIS

The production of danger associated molecular patterns (DAMPs)
at sites of injury is considered pivotal to TLS biogenesis. Various
Frontiers in Immunology | www.frontiersin.org 4
animal models and disease states in humans highlight a clear
correlation between the degree of tissue injury, TLS number and
maturation stages (4, 38, 98). In models of renal ischemia-
reperfusion injury and ureteral obstruction in mice, the severity
of renal damage is associated with TLS biogenesis. Aged mice,
which show enhanced tissue injury after ischemia-reperfusion,
were recently found to exhibit an increased propensity to TLS
formation, translating into accentuated renal dysfunction (4, 98).
Yet the precise DAMPs and mediators that are prompting TLS
formation through activation of Th17 T cells and/or gd T cells are
only beginning to be characterized.

Our group and others showed that apoptosis, a type of
programmed cell death classically considered non-inflammatory,
can prompt the release of a number of mediators of importance in
regulating immune cells towards either anti- but also pro-
inflammatory and immunogenic responses (99–101). Activation
of caspase-3 in dying cells leads to the release of different types of
extracellular vesicles. Our group identified apoptotic exosome-like
vesicles (ApoExo) as a novel type of extracellular vesicles released
by endothelial cells through caspase-3 dependent pathways.
ApoExo are smaller than classical apoptotic bodies, ranging
from 30 to 100nm. Their protein, mRNA and microRNA
contents differ from those of classical apoptotic bodies and
classical exosomes (100, 102, 103). They are characterized by the
presence of active 20S proteasome, perlecan LG3 C-terminal
fragment and long non-coding RNAs. We showed that ApoExo
are released in the bloodstream after hindlimb and renal ischemic
injury resulting in higher circulating levels. In a model of vascular
rejection in mice, allograft recipients injected with ApoExo
showed increased TLS formation within the allograft (Figure 2).
ApoExo injection prompted egress of gd T cells from the spleen to
the allograft leading to increased intragraft IL-17 expression,
complement deposition and enhanced production of
autoantibodies (34) (Figure 2). Mice genetically deficient in gd T
cells showed significantly less TLS formation, decreased
autoantibody production and diminished allograft inflammation
(Figure 2). Contrary to ApoExo, injection of apoptotic bodies did
not foster TLS formation nor autoantibody production. The
mechanism by which ApoExo activate gd T cells and favor their
homing to sites of injury remains to be fully characterized. Our
results identify the proteasome activity of ApoExo as a pivotal
signal regulating trafficking of gd T cells to sites of vascular injury
(34). Injection of ApoExo devoid of proteasome activity failed to
induce TLS biogenesis and autoantibody formation in this system
(Figure 2). Collectively, these recent findings identify ApoExo as
novel inducers of gd T cells activation and TLS formation and
provide new clues into the mechanisms of cross talk between tissue
injury and TLS biogenesis. The scope of future investigations will
be to identify whether activation of gd T cells by ApoExo is antigen
specific or derives from innate signaling triggered by Toll‐like
receptor ligands or nonprotein mediators.
CONCLUSION

TLS are increasingly attracting interest because of their capacity
to sustain local adaptive immune responses in a variety of disease
July 2021 | Volume 12 | Article 696311
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states. Not only do TLS correlate with the severity and chronicity
of tissue injury, they are increasingly recognized as pivotal
players in maladaptive tissue remodeling, autoimmunity and
inflammation. Although anti-tumor immune responses triggered
and propagated from TLS are important pathways for
controlling tumor growth, TLS are often associated with
Frontiers in Immunology | www.frontiersin.org 5
maladaptive autoimmune reactivity and tissue destruction in
an array of autoimmune, alloimmune and chronic inflammatory
diseases. The identification of ApoExo released by dying
apoptotic cells as novel inducers of TLS biogenesis provides
new insights into the mechanisms of cross talk that contribute to
TLS formation at sites of injury.
FIGURE 2 | Tissue injury, ApoExo release, and TLS formation. Step 1: Vascular injury and apoptosis of endothelial cells foster the release of apoptotic exosome-like
vesicles (ApoExo) carrying active 20S proteasome. Step 2: ApoExo activate gd T cells that migrate to the site of injury. Genetic deficiency of gd T cells decreases TLS
formation and autoantibody production. Step 3: gd T cells produce IL-17 and favor the formation of tertiary lymphoid structures at sites of injury. Inhibition of
proteasome activity within ApoExo blocks TLS biogenesis and autoantibody formation. Step 4: Tertiary lymphoid structures produce proinflammatory cytokines and
autoantibodies, therefore favoring complement activation and further vascular injury.
July 2021 | Volume 12 | Article 696311
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