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The heart is a highly metabolic organ with extensive energy demands and

hence relies on numerous fuel substrates including fatty acids and glucose.

However, oxidative stress is a natural by-product of metabolism that, in excess,

can contribute towards DNA damage and poly-ADP-ribose polymerase

activation. This activation inhibits key glycolytic enzymes, subsequently

shunting glycolytic intermediates into non-oxidative glucose pathways such

as the hexosamine biosynthetic pathway (HBP). In this review we provide

evidence supporting the dual role of the HBP, i.e. playing a unique role in

cardiac physiology and pathophysiology where acute upregulation confers

cardioprotection while chronic activation contributes to the onset and

progression of cardio-metabolic diseases such as diabetes, hypertrophy,

ischemic heart disease, and heart failure. Thus although the HBP has

emerged as a novel therapeutic target for such conditions, proposed

interventions need to be applied in a context- and pathology-specific

manner to avoid any potential drawbacks of relatively low cardiac HBP activity.

KEYWORDS

metabolism, heart, hexosamine biosynthetic pathway, oxidative stress, diabetes,
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Introduction

Next to the brain, the heart is the most energy-intensive organ in the body (1). Fuel

substrate metabolism plays a key role to ensure optimal cardiac function. However, a fine

balance exists between over- and under-utilization and a shift in either direction

contributes towards cardiac dysfunction. Oxidation of a number of fuel substrates

ensures a constant supply of ATP for cardiac contractility and ion gradient regulation

(2). These energy substrates can be crudely divided into “preferred” (free fatty acids and

glucose), or “alternative” (branched-chain amino acids [BCAAs] and ketones) which

contribute 90% and 10%, respectively, towards cardiac ATP production (2). The
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dynamics between, and within, such substrate groups underlie

the development of various pathologies ranging from diabetes to

cardiac hypertrophy and heart failure (2, 3).

The switch from fatty acids to glucose as the main fuel

substrate for energy production is commonly observed in heart

failure, myocardial ischemia, cardiac hypertrophy, and increased

cardiac workload (4–6). However, elevated glucose uptake and

glycolysis rates in the hypertrophied heart do not necessarily

correlate with increased pyruvate oxidation (7). This suggests

that glucose enters glycolysis but that the rate of acetyl-CoA

turnover in the Krebs cycle does not change – thus providing

evidence for attenuated pyruvate dehydrogenase (PDH) activity.

The delinking of glycolysis from mitochondrial oxidative

phosphorylation promotes proton accumulation and a pro-

oxidative milieu (8, 9).

Oxidative stress is a natural by-product of metabolism that

can trigger intracellular damage ranging from DNA strand

breaks to lipid and protein peroxidation (10). The damage

mediated in this fashion leads to inhibition of glycolytic

enzymes, including hexokinase, glyceraldehyde-3-phosphate

dehydrogenase, and phosphofructokinase (PFK), through a

combination of poly-ADP-ribose polymerase-dependent and

independent mechanisms (11–16). This results in upstream

glycolytic intermediate accumulation (11–15). Such

intermediates are subsequently shunted into various non-

oxidative glucose pathways (NOGPs) such as the polyol

pathway, advanced glycation end-product (AGE) pathway,

pentose phosphate pathway, and the hexosamine biosynthetic

pathway (HBP). Although the NOGPs usually function at

relatively low basal levels of activity, enhanced flux can occur

with increased oxidative stress, or during hyperglycemic,

diabetic, and hypertrophic conditions (13–15).

The links between elevated protein O-GlcNAcylation due to

increased HBP flux and cardiac pathology are well established,

particularly in the context of diabetes (17–19). The goal of this

review is therefore not to reconsider the well-understood

pathological mechanisms linked to diabetes due to chronic

HBP activation. Rather, we aim to provide a contextualized

understanding of the HBP in terms of cardiac function – from its

acute and beneficial upregulation, to dysfunction induced by

chronic O-GlcNAcylation across numerous cardiac pathologies.

This includes a summary of available literature highlighting the

significant findings of clinical trials, in vivo, in vivo transgenic,

and in vitro studies regarding the impact of HBP regulation on

the heart’s function.
Hexosamine biosynthetic pathway
and the heart

Inhibition of PFK increases intracellular fructose-6-

phosphate which can be shunted into the HBP. Glutamine
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fructose-6-phosphate amidotransferase (GFAT) isoforms are

location-specific with GFAT1 expressed in skeletal muscle and

the heart, while GFAT2 is predominant in the heart, placenta,

and spinal cord (20, 21). Nabeebaccus et al. (2021) recently

found GFAT1 as the primary isoform in cardiomyocytes while

GFAT2 is predominantly expressed in fibroblasts (22). Upon

shunting into the HBP, GFAT1/2 converts fructose-6-phosphate

into glucosamine-6-phosphate, which is metabolized to uridine

diphosphate N-acetylglucosamine (UDP-GlcNAc) (23). O-

GlcNAc transferase (OGT) is the primary enzyme responsible

for catalyzing the reaction whereby O-GlcNAc binds to protein

serine or threonine residues often in direct competition with

phosphorylation (24). Binding to these sites may directly alter

protein function, or indirectly alter alternative activation sites

through steric or electrosteric actions (25). O-GlcNAcase (OGA)

exerts opposing effects on OGT by hydrolyzing O-GlcNAc

residues from proteins (24). The dynamics between OGT and

OGA (in addition to GFAT1/2 activity) underlie the shift away

from cardioprotection and towards cardiac pathology.

Detection of O-GlcNAc moieties on proteins can be crudely

divided into two categories: overall and site-specific. The use of

antibodies (particularly CTD110.6) designed to detect O-

GlcNAcylated serine and threonine residues are most

commonly utilized in Western blotting to determine the

overall change in specific (via immunoprecipitation) or total

protein modifications (26–29). The primary drawback of this

method is the antibodies themselves as they lack specificity and

may skew results based on protein abundance (30). Proteomic

techniques such as b-Elimination followed by Michael addition

(BEMAD) enable the identification of site-specific O-

GlcNAcylation, thus allowing for greater understanding

regarding the effects of O-GlcNAcylation in terms of protein

function (31). However, this technique is most often applied at

the peptide (versus full protein) level.

The HBP displays tissue and organ-specific expression

profiles that fluctuate according to circadian rhythm, substrate

availability, as well as age (32). Studies demonstrated the pivotal

role of the HBP and downstream O-GlcNAcylation on pre- and

post-natal cardiac development (33, 34). Complete OGT

deficient animals display overt cardiac failure with severe

cardiac fibrosis, apoptosis, and hypertrophy compared to wild-

type littermates (33). Although O-GlcNAcylation is essential for

normal cardiac development, Dupas et al. (2021) highlighted the

time-dependent decrease in cardiac O-GlcNAc from birth (34).

Such a decrease in O-GlcNAcylation suggests a shift away from

non-oxidative glucose metabolism in the heart. Conversely,

excessive protein O-GlcNAcylation is observed in multiple

organs with increasing age in rat and mouse models,

contributing to adverse clinical outcomes (35, 36). For

example, young mice subjected to cardiac arrest and

resuscitation displayed increased unfolded protein response

pathways and post-translational modifications including O-

GlcNAcylation, which corresponded with improved recovery
frontiersin.org
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not observed in aged animals (36, 37). The most accepted

rationale behind this increase is the gradual shift into cellular

senescence during the aging process and the subsequent decline

of proteostasis (35, 36).

The influence of the HBP on cardiac function is gaining

increasing attention and understanding (refer to Tables 1–4 for a

summary of currently available literature on the role of the HBP

in the cardiovascular system). Here a comprehensive literature

search was conducted using the search engines Scopus® and

PubMed, with keywords including “hexosamine biosynthetic

pathway”, “O-GlcNAc”, and “heart” with the focus on original

and clinical research article titles between the years 2000 and

2022. The most researched areas ofO-GlcNAc pathology include

the influence of altered glucose levels, ischemia-reperfusion

injury (IR/I), hypertrophy, hypertension, and heart failure.

These data reveal that the HBP is intricately involved in

cardiac function and pathology and that O-GlcNAcylation

affects various pathways and proteins (Tables 1–4). Such

alterations may be protective or detrimental depending on the
Frontiers in Endocrinology 03
experimental and/or clinical contexts, and this often depends on

the dynamic cycling, extent, and duration of protein

O-GlcNAcylation.

The following sections aim to highlight the potential benefits

and harms of altered HBP and O-GlcNAcylation in both pre-

clinical and clinical studies (Tables 1–4). The benefits of acute

HBP flux on the heart will also be discussed, followed by the

effects of chronic activation.
HBP flux: Benefits of acute upregulation

While the majority of literature highlights the detrimental

effects of excessive HBP activation, increased flux can be

beneficial within an acute context. O-GlcNAcylation appears

to promote cellular survival, for e.g. exposure to bacterial

lipopolysaccharide or trauma events increases HBP activity.

Here, lipopolysaccharide increases O-GlcNAcylation of

calcium transporters (e.g. L-type subunits of the sarcoplasmic
TABLE 1 Summary of clinical studies (2000 – 2022) investigating the role of the HBP or O-GlcNAc in various pathological conditions.

Clinical studies

Pathology Average
age

Study description HBP Heart
function

Other significant findings Ref

T1DM n/a This study aimed to assess the efficacy of HHC in T1DM patients with
MI.

↑ ↓ Reduced miRNA-24. (38)

T2DM 55 ± 8
years

Endothelial cells were isolated from T2DM patients to elucidate the role
of O-GlcNAc modification in endothelial dysfunction.

↑ n.d. O-GlcNAc, Glc, and HbA1c are all
directly proportional to each other.

(39)

T2DM 58 ± 4
years

Left ventricle tissue samples were collected from diabetic and non-
diabetic patients.

↑ ↓ ↑ OGT and OGA in the
myocardium

(40)

PAH 53.7 ± 16.0
years

Endomyocardial biopsy samples were collected from PAH patients to
investigate the relationship between O-GlcNAcylation and RV function.

↑ ↓ Increased HbA1c. (41)

IPAH 38.3 ± 16.0
years

Human lung tissues from IPAH patient donor lung explants were used
to determine the relationship between altered glucose metabolism and
smooth muscle cell proliferation.

↑ n.d. (42)

IPAH n/a Human lung tissues from IPAH patient donor lung explants were
utilized to investigate the link between O-GlcNAc and eNOS function.

↑ n.d. (43)

Aortic
stenosis

63.9 ± 4.8
years

Left ventricular apical myocardial biopsies were collected during elective
aortic valve replacement, and from a non-ischemic area during coronary
artery bypass operation.

↑ ↓ (44)

Severe aortic
stenosis

70 ± 10
years

Patients undergoing aortic valve replacement were treated with HNC or
insulin to assess the efficacy of HNC as a treatment.

– – ↓ time-weighted mean [Glc] with no
evidence of increased glycolytic
pyruvate oxidation.

(45)

T2DM + HF 57 ± 4.9
years

Left ventricular biopsies were obtained from diabetic patients with end-
stage HF (EF < 20%) to assess ketone gene expression.

n.d. ↓ ↓ ketone utilization (46)

T2DM + HF 42 – 60
years

Failing hearts obtained during orthotopic heart transplantation. ↑ ↓ ↑ CaMKII O-GlcNAcylation (47)

HF 54 ± 4
years

The role of O-GlcNAcylation in cardiac hypertrophy was assessed in HF
patient (EF < 25%) samples.

↑ ↓ – (48)
frontiersin
Search results were obtained using Scopus® and PubMed; key words including “hexosamine biosynthetic pathway”, “O-GlcNAc”, and “heart” with focus on original, clinical research article
titles. The average age is expressed as Mean +/- standard deviation. Only studies that assess either the HBP or O-GlcNAc from human samples were included. CHF, congestive heart failure;
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TABLE 2 Summary of available literature (2000 – 2022) utilizing non-transgenic animal models to investigate the role of the HBP or O-GlcNAc in
various pathologies.

in vivo (non-transgenic animal models)

Animal
model

Study description HBP Heart
function

Downstream implications Ref

Obesity/MetS Influence of O-GlcNAc protein modifications
cardiac dysfunction.

↑ ↓ ns Δ ER stress and blood Glc; ↑ OGT/OGA ratio; ↓ FFA metabolism; ↑
ketones; protein O-GlcNAcylation more dependent on OGT and OGA
dynamics than HBP activity; ↑ REST O-GlcNAcylation; ↓ HDAC2 and a-
actin

(49–
53)

Diabetes/chronic hyperglycemia

- Sugar-
sweetened
beverages

Effects of chronic sugar-sweetened beverages
on cardiac function.

↑ – ↑ HbA1c; ↑ weight gain (no change in insulin resistance),
↑ O-GlcNAc (3 months)

(54)

- Induced
T1DM and
T2DM

Investigating the role of O-GlcNAc protein
modifications of several processes including
cell death pathways, nutrient sensing, DNA
repair, mitochondrial function, calcium
handling as well as excitation and contractility
of cardiomyocytes.

↑ ↓ ↑ Ca2+ sensitivity/capacity; ↑ apoptosis/autophagy ratio; ↑ interstitial
fibrosis; ↑ mitochondrial dysfunction; ↓ sodium channel function; ↑ ox.
Stress/inflammation; ↑ DNA damage; hypertrophy; ↓ ketone utilization/
production ratio; ↑ ERK1/2 and cyclin D2 expression; ↑ CaMKII O-
GlcNAcylation and autophosphorylation; ↑ p-CREB; ↓ p-cTnI; ↑ Nkx2.5
O-GlcNAcylation

(26,
29,
46,
47,
55–
72)

Hypertension Evaluating the influence of hypertension in the
absence of diabetes on HBP flux as well as RV
and endothelial function.

↓/↑ ↑/↓ Monocrotaline: ↑ p-AMPK → ↓ HBP and ↑ heart function.
DOCA-salt: ↑ HBP → ↓ eNOS → ↓ vasorelaxation

(41,
73)

IR/I:

- Intermittent
hypoxia

The impact of O-GlcNAcylation on
pathological cardiac remodeling and
dysfunction in intermittent hypoxia.

↑ n.d. ↑ apoptosis and inflammation; ↑ p- ERK1/2 and p38-MAPK; ↑ BP (74)

- Hypoxia vs
reperfusion

Variation in ischemic region O-GlcNAc
expression.

↑/↓ n.d. Hypoxia → ↓ ischemic O-GlcNAc expression; reperfusion O-GlcNAc
peaks at 1hr post reperfusion

(75)

- Hypoxic
acclimation

The impact of hypoxic acclimation on IR/I and
the mechanisms thereof.

↑ ↑ ↓ infarct size; ↓ ox. stress; ↑ O-GlcNAcylation → ↑ NADPH/NADP+ and
GSH/GSSG couples

(76)

-
Preconditioning

The cardioprotective capacity of IPC under
diabetic and non-diabetic conditions after IR.

↑ ↑ ↑ MGU; ↓ infarct size (77–
79)

- Hypoglycemia Impact of hypoglycemia in diabetic heart IR/I,
and the efficacy of IPC.

↑ n.d. ↑ MGU (80)

- Acute
Hyperglycemia

The role of O-GlcNAc in IR/I was observed
during acute hyperglycemia.

↑ ↓ ↑ apoptosis; ↑ IR/I (81–
83)

- Chronic
hyperglycemia

Investigating the underlying mechanisms of O-
GlcNAc PTMs in IR/I.

↑ ↓ ↑ HbA1c; ↓ antioxidant capacity; ↑ apoptosis (38,
54,
81,
82,
84)

Cardiac
hypertrophy

Influence of pressure overload on the HBP. ↑ ↓ HBP ∝ hypertrophy (44,
85–
87)

Septic shock Effects of O-GlcNAc stimulation using two
models of septic shock (LPS and CLP).

↑ ↑ normalized SERCA2a (88)

Trauma-
hemorrhage

Evaluating the effects of glucosamine on
inflammatory signaling.

↑ ↑ ↓ NF-kB nuclear translocation; ↓ ALT, AST, and LDH → improved
prognosis

(89–
93)

Heart failure

- Desmin Characterizing the interplay between desmin
phosphorylation and O-GlcNAcylation.

↓ n.d. ↑ p-desmin/desmin O-GlcNAc ratio; ns Δ in total desmin (94)

- TnT Effects of TnT phosphorylation and O-
GlcNAcylation.

↑ ↓ ↑ TnT O-GlcNAc/phosphorylation ratio; ↑ OGT/OGA activity (95)

- miRNA-539 Role of miRNA-539 in heart failure. ↑ ↓ ↑ miRNA-539 → ↓ OGA expression (96)
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TABLE 3 Summary of available literature (2000 – 2022) utilizing transgenic rat and mouse models to investigate the role of the HBP or O-GlcNAc
in various pathologies.

in vivo (transgenic)

Research
focus

Study Description HBP Heart
function

Other significant results Ref

Metabolic reprogramming

- DecorinKO Role of the extracellular matrix in cardiac fasting
metabolism.

↑ ↑ ↓ autophagy (97)

- Ivabradine
and metoprolol

Comparing treatment efficacy in dyslipidemia. ↑ ↓ ↑ p-Akt (98)

- G6PDH
deficiency

Effects of G6PDH in response to obesogenic or high-
fructose diets.

↓ ↑ ↓ G6PDH → cardioprotection under diet-induced metabolic
stress.

(99)

Diabetic cardiomyopathy

- Histone
modifications

Investigating the balance between adaptive and
maladaptive site-specific O-GlcNAc modifications of
HDAC4 and its regulators.

↑ ↑ O-GlcNAcylation at S642 inverse relationship with CaMKII
binding at S632

(100)

- Lipotoxicity Independent assessment of gluco- and lipo-toxicity in a
SeipineKO T2DM model of diabetic cardiomyopathy.

↑ ↓ ↓ p- phospholamban, ↓ O2 consumption; ↑ FOXO1 activity (101)

- Atrial
fibrillation

The interplay between O-GlcNAcylation and ROS-
mediated oxidative phosphorylation of CaMKII under
diabetic conditions.

↑ ↓ ROS and O-GlcNAc promote atrial fibrillation through
CaMKII-dependent and independent mechanisms,
respectively.

(102)

- AdOGA Influence of p53 O-GlcNAcylation cardiovascular
functionality.

↓ ↑ ↑ OGA → ↓ p53 (62)

- Substrate
utilization

The shift in substrate preference observed in the failing
heart through inducible GLUT4 and OGA-/- mouse
models.

↑ n.d. ↑ Glc and O-GlcNAc → ↓ ketone synthesis (46)

- Drosophila
model

A combination of diet, genetics, and physiology to
establish a model of chronic high sugar-induced heart
disease.

↑ ↓ ↑ fibrosis and fat deposition; ↓ insulin signaling; ↓ life
expectancy; HBP ∝ cardiac dysfunction

(103)

- rAAV6-OGA Investigating the role of OGA and OGT in the presence of
diabetes.

↓ ↑ Preserved PI3K-Akt signaling (40)

Intermittent
hypoxia

Investigating the effect of IH on HBP activity through
OGT overexpression.

↑ n.d. ↓ cardiac remodeling; ↑ GSK-3b and NF-kB p65 O-
GlcNAcylation; ↓ rate of ox. stress and apoptosis

(104)

IR/I

- OGTKO Contribution of OGA in a post-hypoxic setting. ↓ ↓ ↓ VDAC O-GlcNAc → ↑ mPTP (105)

- E2f1KO The effects of an E2f1 on O-GlcNAcylation and heart
function.

- ↑ ↑ heart size (106)

- BCAA Investigating the molecular mechanisms linking elevated
BCAAs on cardiac glucose metabolism and function.

↓ ↓ ↓ PDH, ↑ FFA oxidation/Glc oxidation, ↑ IR/I susceptibility (107)

- miR-24 The role of miR-24 overexpression on myocardial function
in diabetic and non-diabetic conditions.

↓ n.d. ↓ infarct size; ↓ fasting plasma glucose and insulin (38)

- Xbp1KO Investigating the influence of Xbp1 on HBP regulation. ↓ ↓ Xbp1 is required for HBP activation (108)

Hemodynamic
stress

The role of Nox4 in altered cardiac energy metabolism,
remodeling, and function.

↑ n.d. ↑ NOX4 → ↑ global O-GlcNAc; ↓ glycolysis; ↑ palmitate
oxidation

(109)

Hypertrophy

- OGTKO Investigating the influence of reduced HBP flux on heart
function.

↓ ↓ ↓ p-phospholamban and p-cardiac troponin I; ↑ TGF-b and
↓ GATA-4; ↑ PGC-1a

(48,
110,
111)

- AdGFAT Insight into the mechanisms underlying increased O-
GlcNAc PTMS observed in cardiac hypertrophy.

↑ ↓ ↑ hypertrophy; ↑ relative heart weight; ↑ fibrosis; ↑ mTOR (85)

- AMPKKO Elucidating the underlying mechanisms of cardiac
hypertrophy through an AMPKKO model.

↑ n.d. ↑ ANGII increases O-GlcNAc regardless of AMPK; ↑
AMPK → ↓ O-GlcNAc

(112)

- MycKO Investigating the dynamics between Myc, substrate
oxidation, and cardiac function in hypertrophy.

↑ - ↓ ketone and FFA contribution to Krebs cycle (113)

- LXRa The role of LXRa in cardiac hypertrophic pathogenesis. ↑ n.d. ↑ MGU → ↑ GATA4 and Mef2c O-GlcNAcylation; ↑ ANP (114)

Heart failure

(Continued)
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reticulum Ca2+-ATPases (LTCC)) and enhances cardiac

contractility (88, 141), whereas attenuated inflammation and

increased O-GlcNAcylation occur as a result of trauma-

hemorrhage events (89–93). Moreover, increased HBP activity
Frontiers in Endocrinology 06
is indirectly proportional to both inflammatory and oxidative

markers in an acute context, with the opposite observed in a

chronic setting (142–144). O-GlcNAcylation also influences

cardiomyocyte apoptosis. aB-crystallin is an intracellular
TABLE 3 Continued

in vivo (transgenic)

Research
focus

Study Description HBP Heart
function

Other significant results Ref

- OGA/OGT Relationship dynamic between O-GlcNAc and heart
failure.

↑/↓ ↓ O-GlcNAc ∝ autophagy and impaired mitochondrial
complex I activity; ↓ O-GlcNAc exacerbates dysfunction in
IR/I; ↓ OGA → ↑ early infarct damage

(115–
118)

- Hdac4-NT Therapeutic effects of the proteolytic fragment. ↓ ↑ Hdac4-NT inhibits HBP activity through NR4A1 (119)

- TnT Effects of TnT phosphorylation and O-GlcNAcylation. ↑ ↓ Inverse relationship between TnT O-GlcNAc and
phosphorylation

(95)
frontiers
Search results were obtained using Scopus® and PubMed; keywords including “hexosamine biosynthetic pathway”, “O-GlcNAc”, and “heart”with a focus on original research article titles. A
handful of studies could not be obtained due to limited access and were thus excluded. p-Akt, phosphorylated protein kinase B; ROS, reactive oxygen species; FOXO1, forkhead box protein
O1; CaMKII, Ca2+/calmodulin protein-dependent kinase II; PDH, pyruvate dehydrogenase; FFA, free fatty acid; HBP, hexosamine biosynthetic pathway; ANGII, angiotensin II; AMPK, 5'
adenosine-monophosphate-activated protein kinase; GFAT, glutamine fructose-6-phosphate amidotransferase; TGF-b, transforming growth factor-beta; GATA-4, GATA Binding Protein
4; mTOR, mammalian target of rapamycin; XBP1, X-box binding protein 1; VDAC - voltage-dependent anion channel; mPTP, mitochondrial permeability transition pore; GATA4, GATA
Binding Protein 4; Mef2c, myocyte-specific enhancer factor 2C; ANP, atrial natriuretic peptide; ↑, increase; ↓, decrease; -, no change; n.d., no data.
TABLE 4 Summary of available literature (2000 – 2022) utilizing in vitro models to investigate the underlying mechanisms between the HBP or
O-GlcNAc in various pathologies.

in vitro

Research
focus

Experimental Overview HBP Ox.
stress

Apoptosis Downstream effects Ref

PTMs:

- Histone Effects of Glc and O-GlcNAcylation on HDAC4. ↑ n.d. n.d. ↑ HDAC4 O-GlcNAcylation (100)

- Sarcomere Desmin phosphorylation and O-GlcNAcylation
dynamics.

↑/↓ n.d. n.d. No Δ IP desmin/total desmin (94)

- Contractile
proteins

Co-localization of O-GlcNAc and proteins. ↑ n.d. n.d. ↑ ZASP O-GlcNAcylation (120)

- aB-crystallin Influence of O-GlcNAcylation on translocation
and function.

↑ n.d. ↓ ↑ aB-crystallin translocation (121)

-
Phospholamban

Relationship between phospholamban, SERCA2a,
and O-GlcNAc.

↑ n.d. n.d. ↑ phospholamban O-GlcNAcylation → ↓ p-
phospholamban → ↓ cardiac function

(122)

- b1AR Effects of OGT on b1AR function. ↑ n.d. ↓ ↑ b1AR O-GlcNAcylation → ↓ cAMP and p-
phospholamban

(123)

Mitochondrial

- BCAAs Effects of BCAAs and O-GlcNAc cycling. ↓ n.d. n.d. ↓ PDH activity; ↓ mitochondrial membrane
potential

(65, 107)

- OGAKO Impact of O−GlcNAc on mitochondria. ↑ n.d. n.d. ↑ fission; ↓ mass; ↓ ETC activity (124)

Inflammation Influence of O-GlcNAc on oxidative stress with a
focus on iNOS expression, A20 PTM, as well as
the effects of glucosamine on NF-kB signaling.

↑ ↓ n.d. ↓ pro-inflammatory cytokines; O-GlcNAc levels
inversely proportional to inflammatory stimuli
response

(34, 89,
90)

Diabetic
arrhythmia

Effects of Nav1.5 and CaMKII O-GlcNAcylation
on the progression of diabetic cardiomyopathy to
arrhythmias.

↑ n.d. n.d. ↓ sodium channel function; CaMKII serine280 O-
GlcNAc not required for activation but serine279 O-
GlcNAc mediates activity

(57, 58,
125)

Glucose levels

(Continued)
in.org

https://doi.org/10.3389/fendo.2022.984342
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Cairns et al. 10.3389/fendo.2022.984342
chaperone that prevents the toxic accumulation of misfolded

proteins and inhibits apoptosis when active. While the majority

of post-translational modifications (PTMs) decrease aB-
crystal l in ’s function as a molecular chaperone, O-
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GlcNAcylation on threonine170 attenuates cardiomyocyte

apoptosis through increased aB-crystallin activity and

translocation (121). While this is beneficial in an acute

context, chronic HBP activation is associated with increased
TABLE 4 Continued

in vitro

Research
focus

Experimental Overview HBP Ox.
stress

Apoptosis Downstream effects Ref

- Glc
deprivation

The effect of Glc deprivation on O-GlcNAc levels. ↑ n.d. n.d. ↓ CaMKII → ↓ O-GlcNAc (126)

- Acute
hyperglycemia

Role of O-GlcNAc post-translational protein
modifications on cardioprotective enzyme activity
as well as cardiac Glc uptake, apoptosis, and ion
channel polarization.

↑ ↑ ↑ ↑ IR/I; ↓ insulin-mediated Glc uptake; ↑ aldehydes;
↑ IK1 and Ito recovery via CaMKIId-S280 O-
GlcNAcylation; ↓Ito amplitude; ↓ autophagic
signaling

(28, 29,
81, 82,

127, 128)

- Chronic
hyperglycemia

Investigating the influence of O-GlcNAc in serval
processes including mitochondrial dysfunction, ion
channel polarization, DNA repair machinery,
nutrient sensing, fibrosis, as well as antioxidant
defense and apoptotic systems.

↑ ↑ ↑ ↑ IR/I; ↓ p-AMPK; ↑ aldehydes; ↓ K+ channel
expression and function; ↓ eNOS activation; ↓
autophagic flux, ↑ collagen, ↓ mitochondrial
respiration, and ↑ fragmentation; ↓ Ca2+ cycling; ↑
SGLT1 Glc transport → ↑ NOX2 activation

(27, 39,
40, 50, 55,
60, 68, 81,
82, 127,
129–134)

IR/I:

- Hypoxia Investigating the effect of IH on HBP activity and
mitochondrial function.

↑ ↓ ↓ ↓ GSK-3b and NF-kB activity; ↑ OGA → ↑ ROS but
no change to Ca2+ overload; ↑ Bcl-2

(75, 104,
105, 135)

- Xbp1 Investigating the regulatory actions of Xbp1 on
HBP flux.

↑ n.d. ↓ Xbp1 ∝ GFAT1 expression; ↑ ER stress (108)

- miRNA-24 The role of miR-24 overexpression in diabetic
conditions.

↓ n.d. ↓ ↓ ATG4a (38)

- OGA Contribution of OGA on cardioprotection. ↓ n.d. ↑ ↓ mitochondrial YM recovery (136)

- ER stress Role of O-GlcNAc in ER stress signaling. ↑ ↓ ↓ CHOP activation (137)

PAH Role of O-GlcNAc, eNOS, and cellular
proliferation.

↑ ↑ n.d. ↑ cell proliferation (41–43)

Hypertrophy

- ↑ HBP Molecular mechanisms linking the HBP to cardiac
hypertrophy through GFAT overexpression, high
Glc, phenylephrine, NOX4, and STIM1 models.

↑ n.d. - ↑ mTOR; ↑ cell cross-section area; ↑ FFA ratio; ↓
hypertrophic response to ANG and PE; ↑ ERK1/2
and cyclin D2 expression; NFAT O-GlcNAc
required for hypertrophy; ↑ STIM1 O-GlcNAc → ↓
SOCE; ↑ p-CREB

(57, 58,
69, 85, 87,
109, 138)

- ↑ OGA The role of O-GlcNAc in cardiac hypertrophy
signaling.

↓ n.d. n.d. ↑ TGF-b and ↑ PGC-1a; ↓ GATA-4; ↓ ANP (48, 111)

- AMPK The dynamic between AMPK and O-
GlcNAcylation.

↓/↑ n.d. n.d. ↑ AMPK → ↓ O-GlcNAc → ↓ hypertrophy (112)

Heart failure

- miRNA-423-
5p

The relationships between miR-423-5p and
downstream targets such as OGT, and apoptosis.

↓ n.d. ↑ ↑ AMPK/p-AMPK ratio; ↑ 26S proteasome activity (139, 140)

- miRNA-539 The relationship between mRNA-539 and OGA. ↑ n.d. n.d. Hypoxia-reoxygenation → ↑ miRNA-539 → ↓ OGA (96)

- siOGT The relationship dynamic between O-GlcNAc and
nutrient-sensing observed in heart failure.

↓ n.d. n.d. OGT required for autophagy (116)

- HDAC4KO Mechanisms linking heart failure to HBP activity. ↑ n.d. n.d. ↑ Nr4a1 → ↑ STIM1 O-GlcNAcylation → ↓exercise
capacity

(119)
fron
Although the table below contains a large proportion of available literature, not every original research paper could be included. Articles investigating the HBP on endothelial function were
not included. Search results were obtained using Scopus® and PubMed; keywords including “hexosamine biosynthetic pathway”, “O-GlcNAc”, and “heart” with a focus on original research
article titles. A handful of studies could not be obtained due to limited access and were thus excluded. PTM, post-translational modifications; HBP, hexosamine biosynthetic pathway; IP,
immunoprecipitated; Glc, glucose; IR/I, ischemia-reperfusion injury; CaMKII, calcium-calmodulin protein-dependent kinase II; GIK, glucose-insulin-potassium; SCN, suprachiasmatic
nucleus; ER, endoplasmic reticulum; PFK2, phosphofructokinase 2; b1AR, b1-adrenoceptor; NFAT, nuclear factor of activated T-cells; Phe, phenylephrine; NOX4, NADPH oxidase-4; p-
CREB, phosphorylated cAMP response element-binding protein; MGU, myocardial glucose uptake; NOX2, NADPH oxidase 2; SGLT1, sodium/glucose cotransporter; PAH, pulmonary
artery hypertension; ETC, electron transport chain; A20, tumor necrosis factor a-induced protein 3; ZASP, Z-band alternatively spliced PDZ motif protein; ↑, increase; ↓, decrease; -, no
change; n.d., no data.
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apoptosis and diminished autophagy (17, 74, 145, 146). Findings

from our laboratory showed higher apoptosis under simulated

hyperglycemic conditions that were linked to O-GlcNAcylation

of the pro-apoptotic protein Bad, with a concomitant decrease in

its phosphorylation (27). This further highlights the context-

specific, dual nature of HBP activity in the heart.

With diminished autophagic and apoptotic signaling,

cardiac cells should face increased hypertrophic stimuli. In

contrast, enhanced O-GlcNAcylation of histone deacetylase 4

(HDAC4) serine642 elevates its activity and hinders gene

transcription, ultimately lowering transforming growth factor-

beta (TGF-b) myoblast differentiation and hypertrophy (100).

While this may appear to prevent cardiomyocyte differentiation

and hypertrophy in an acute context, O-GlcNAc also binds to

the theonine63 residue of mothers against decapentaplegic

homolog 4 (SMAD4), stabilizing it and preventing its binding

to glycogen synthase kinase 3b, and ultimately augmenting

downstream TGF-b signaling (147). Thus a combination of

SMAD-independent (i.e. mammalian target of rapamycin) and

SMAD-dependent signaling may compensate for reduced TGF-

b/glycogen synthase kinase 3b pathway activity in the long term

and thereby contribute to cardiac hypertrophy.

Acute HBP upregulation can therefore confer cardioprotection

against hypertrophy and apoptosis, as well as improved

functionality. Although various proteins require O-

GlcNAcylation for activation or repression under normal

physiological conditions, constant O-GlcNAcylation can

potentiate protein dysfunction and cardiac pathology, for

example in the context of ischemia-reperfusion.
Dual role of O-GlcNAcylation in
ischemia-reperfusion

Depending on the duration and frequency of the ischemic

event, O-GlcNAcylation is either protective or detrimental to

cardiac function and health (Figure 1). For example, increased

HBP flux is often observed during ischemic preconditioning,

intermittent hypoxia, and acute IR/I episodes where it confers

cardioprotection (77, 78). Here, increased myocardial glucose

uptake elevates myocardial O-GlcNAc levels during ischemic

preconditioning and improves mitochondrial function through

increased calcium sensitivity and reduced mitochondrial

transition pore opening (mPTP) (148). Subsequently, this will

minimize myocardial infarct damage following reperfusion

under experimentally induced diabetic and non-diabetic

conditions (77, 78, 148, 149). Acute upregulation of X-box

binding protein 1 (Xbp1) due to endoplasmic reticulum stress

during IR/I increases HBP flux and confers cardio-protection by

increasing autophagy of misfolded proteins (108).

Exposure to intermittent hypoxia also upregulates the HBP

which can either suppress inflammatory and hypertrophic genes
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(i.e. nuclear factor kappa-light-chain-enhancer of activated B

cells (NFkB) and nuclear factor of activated T cells (NFAT)), or

promote apoptotic and inflammatory signaling depending on

the duration of the ischemic event (74, 104). Consistent O-

GlcNAcylation of mitochondrial proteins such as voltage-

dependent anion channels (VDAC), carnitine-palmitate

transferase 1B (CPT1B), and fatty acid oxidase (FAO)

contributes to attenuated fatty acid b-oxidation, impaired

calcium handling, increased mitochondrial fragmentation, and

overall mitochondrial dysfunction (55, 56, 150). Moreover,

elevated O-GlcNAcylation further hinders cardiac function

through inflammatory and apoptotic signaling, and promotes

hypertension (38, 54, 81, 82). This is further highlighted in

diabetic studies, where chronically elevated glucose conditions

exacerbate ischemic injury. Whilst the exact mechanisms remain

unclear, Liu et al. (2017) suggested that the reduction in

mitochondrial aldehyde dehydrogenase 2 (ALD2) activity due

to its O-GlcNAcylation, impedes its protective effects and

augments myocardial injury (82).

Although downregulating HBP activity should abate the

negative consequences of chronic HBP activation, this is not

always the case. Repression of OGT or OGA upregulation are

primary intervention targets that are influenced by E2F

transcription factor 1 (E2f1). E2f1 promotes entry into the S-

phase of the cell cycle and alters metabolism by increasing

pyruvate dehydrogenase kinase 4 activity which delinks glycolysis

from mitochondrial oxidative phosphorylation (151). Increased

E2f1 activity also potentiates phosphatase and tensin homolog-

induced kinase 1 (PINK1) downregulation through miRNA-421

transcription, resulting in mitochondrial fragmentation and

attenuated cardiomyocyte energetics (152). However, some like

Dassanayaka et al. (2019) demonstrated that the lowering of E2f1

activity improved myocardial injury and cardiac remodeling

without any effects on the HBP (106). This suggests that

alternative NOGPs may utilize the accumulating glycolytic

intermediates upstream of PDH, as opposed to the HBP.

Various interventions attempted to harness the potential

benefits of an upregulated HBP in the context of ischemia (refer

Figure 1). The most frequently reported compounds include

salidroside, glucosamine, and glutamine as well as OGA

inhibitors such as NAG-thiazoline due to their anti-hypoxia

and pro-survival properties (135, 153–156). These treatments

increase flux into the HBP through upregulated myocardial

glucose uptake or as substrate intermediates within the HBP,

as well as facilitating protein O-GlcNAcylation through OGT/

OGA dynamics (135, 153–156). Although the exact mechanisms

have not been fully elucidated, evidence suggests that protein O-

GlcNAcylation influences Bcl-2 translocation (an intrinsic part

of cell-death machinery) and cytoplasmic calcium concentration

which mitigate injury following reperfusion (135, 155).

However, the protective effects of glucosamine are diminished

in obesity where increased HBP activity prevents insulin-
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dependent protein kinase B (Akt) signaling, thus hindering cell

survival post-infarction (84).

Clinical and pre-clinical studies demonstrate the dual nature

of the HBP during ischemic events. Increased HBP activity

during mild ischemic or ischemic preconditioning protects the

heart against ischemic injury. However, these effects do not

extend to prolonged ischemic conditions that are associated with

chronic HBP upregulation. Under such conditions, the HBP

appears to be detrimental to cardiac health and function by

disrupting normal cardiac metabolism and mitochondrial

bioenergetics. Consistent O-GlcNAcylation of key proteins

involved in these processes potentiate cardiac dysfunction and

contribute towards increased IR/I.
Chronic HBP upregulation: Development
of hypertension and cardiac hypertrophy

Clinical studies on idiopathic pulmonary artery

hypertension observed increased HBP activity and circulating

HbA1c levels with decreased heart function (41–43). In vivo

experiments suggest increased HBP activation contributes to the

lowered cardiac function observed in the clinical context

(Tables 2, 3). Although the mechanisms underpinning such

observations vary, elevated O-GlcNAcylation regulates

adenosine monophosphate-activated protein kinase (AMPK)

and endothelial nitric oxide synthase activity (eNOS) (43,
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157). Here, O-GlcNAcylation of AMPKa and g subunits

increases its activity, which in turn results in AMPK

phosphorylation of GFAT1/2 and OGT (threonine144), and

creates a negative feedback loop in terms of HBP activity (112,

157). This bi-directional relationship improves heart function

and limits cardiac hypertrophy in the event of increased AMPK

activity and attenuated HBP flux (41, 73, 112). Interestingly,

angiotensin II increases O-GlcNAcylation in the presence of

active AMPK although the exact mechanism remains

unclear (112).

Site-specific PTMs regulate eNOS synthase activity function,

i.e. activated by serine1177,615,633 phosphorylation and inhibited

by threonine495 phosphorylation (158). O-GlcNAc targets

serine1177 and 615 without influencing other phosphorylation

sites and lowering eNOS activity (43, 158). As a result, less

nitric oxide is produced to subsequently lower vasodilatory

capabilities and contributes to decreased vascular tone.

Increased HBP flux promotes intracellular oxidative stress and

cellular proliferation, further augmenting vascular dysfunction

(41–43, 73). Nabeebaccus et al. (2017) observed that higher

NAD(P)H oxidase 4 (NOX4) expression levels increased global

O-GlcNAcylation through an activating transcription factor 4

(ATF4)-mediated increase in GFAT1 expression while shifting

cardiac metabolism towards free fatty acid (FFA) b-oxidation
versus glycolysis (109). Moreover, protein and mRNA analyses

revealed a marked increase in cluster of differentiation 36

(CD36) O-GlcNAcylation (a major transporter of FFAs into
FIGURE 1

Influence of the HBP on ischemia-reperfusion injury. Glc, glucose; HBP, hexosamine biosynthetic pathway; Xbp1, X-box–binding protein-1; Ca2+,
calcium; VDAC, voltage-dependent anion channels; CD36, cluster of differentiation 36; CPT1, carnitine palmitoyltransferase-1B; OGT, O-GlcNAc
transferase; OGA, O-GlcNAcase; NAG, 1,2 dideoxy-2’-methyl-a-D-glycopyranoso-[2,1-d]-Δ2’-thiazoline. Created with BioRender.com.
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the cytosol) which increases its activity and FFA influx into

cardiomyocytes (109). Increased FFA b-oxidation can attenuate

glycolysis via the Randle cycle enhancing HBP flux through

upstream glycolytic substrate accumulation, and/or by higher

GFAT1/2 expression. Although increased FFA b-oxidation is

less efficient than glucose oxidative phosphorylation,

mitochondrial bioenergetics and cardiac function were

preserved in this case (109). This suggests that increased FFA

b-oxidation may not be as detrimental to cardiac function in a

hypertensive context, but that this may not hold when combined

with other pathological complications such as ischemic events

(reviewed by (159)).

Although cardiac hypertrophy is commonly observed under

persistent hypertension, its development under diabetic and

non-diabetic conditions remains a contentious topic. For

example, under non-diabetic conditions, some indicated that

the attenuated cardiac function observed in the hypertrophied

heart (with increased HBP flux) is directly proportional to

mammalian target of rapamycin (mTOR) activity (85). This

resulted in increased protein synthesis and cellular growth,

ultimately potentiating cardiac hypertrophy and fibrosis (85).

However, others who characterized HBP flux in an ex vivo

murine heart concluded that neither acute changes in glucose

availability nor cardiac workload influenced its flux in a healthy

heart (160). In vivo diabetic studies concluded that increased

HBP activation blunted the hypertrophic response, although

relatively high in vivo glucose levels and downregulated seipin

increased extracellular signal-regulated kinase 1/2 (ERK1/2)

mediated cyclin D2 expression (cell cycle progression), as well

as repressor element 1-silencing transcription factor (REST) and

forkhead box proteins of class O subgroup (FOXO) O-

GlcNAcylation, ultimately promoting hypertrophic gene

expression (49, 57, 58, 101). This suggests that although the

stress-hypertrophy signaling may be blunted, the HBP can

promote cardiac hypertrophy independent of stress signaling.

The method by which diabetes is experimentally induced, and

the condition of the heart (pre-intervention) may also be

influencing factors. Genetically modified rodents such as the

leptin receptor-deficient (db/db) mice and those injected with

streptozotocin display distinct pathophysiological alterations

that result in diabetes but may slightly alter their susceptibility

to hypertrophy (161). Moreover, the duration of high glucose

treatment (in vitro) or pressure overload intervention (in vivo/ex

vivo) also contributes to the degree of dysfunction observed

(Tables 2–4).

In summary, increased HBP activity and O-GlcNAcylation is

observed in the context of cardiac hypertrophy and

hypertension. Increased substrate availability combined with

reduced antioxidant defense systems promotes flux into the

HBP and O-GlcNAcylation of proteins such as AMPK and

CD36. However, the effects of the HBP are not entirely clear

under conditions where hypertension and cardiac hypertrophy

exist in combination with diabetes. The degree by which the
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HBP influences all three pathologies centers around the duration

and intensity of the stimulus (i.e. glucose overload, oxidative

stress) as well as the experimental conditions.
Chronic HBP upregulation:
Diabetic context

The greatest proportion of research work done thus far on

the role of the HBP has focused on the diabetic context. In

support, ~ 30% of articles cited in Tables 1–4 include either

glycemic conditions, contributing factors (e.g., consumption of

sugar-sweetened beverages), or diabetes-related pathology

within a clinical/experimental context. For example, Wang et

al. (2018) investigated the effects of a hyperinsulinemic

hypoglycemic clamp in type 1 diabetes mellitus patients with

myocardial infarction. Here, increased O-GlcNAc together with

lowered miRNA-24 expression levels were found in patients with

attenuated cardiac function (38). Increased miRNA-24

contributes to decreased apoptosis, lowered fasting glucose and

insulin levels, and attenuated autophagy-related gene 4a (ATG4a

– required for autophagy), as well as attenuated O-GlcNAc and

OGT expression, thus conferring cardioprotective effects.

Therefore, increasing miRNA-24 levels in circulation may

prove a beneficial therapeutic target for both diabetic and

ischemic heart conditions.

Experimental studies highlighted possible mechanisms for

the blunted cardiac function observed in diabetic patients (38–

40). Higher circulating glucose (indicated by elevated glycated

hemoglobin levels) increases insulin-independent myocardial

glucose uptake (39, 54). As the Krebs cycle possesses a limited

capacity to convert pyruvate into reducing equivalents, glycolytic

intermediates accumulate and are shunted into NOGPs such as

the HBP (as discussed previously). Increased HBP flux promotes

atrial fibrillation through calcium-calmodulin-dependent

protein kinase II-dependent (CaMKII – cardiomyocyte

calcium homeostasis) and independent mechanisms,

respectively (59, 102). Elevated O-GlcNAcylation of key

enzymes can increase oxidative stress, impair DNA repair

machinery (8-oxoguanine DNA glycosylase (Ogg1)), increase

apoptotic/autophagic stimuli, and promote mitochondrial stress.

The combination of such PTMs contributes towards cardiac

fibrosis, hypertrophy, and increased susceptibility to ischemic

injury (26–29, 39, 46, 50, 55–65, 81, 82, 100, 127, 129–132, 134).

Proteomic analysis suggests a potential role of O-GlcNAcylation

in regulating myocardial actin (serine54) and troponin

(serine150) functionality (162). While this may improve

function in an acute context, chronic O-GlcNAcylation

observed in conditions such as diabetes may result in

decreased submaximal force development and reduced cardiac

contractility (162). Increased HBP flux is also associated with

metabolic derangements, lowered ketone utilization in the

presence of enhanced production and availability, and
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increased aldehydes and FFAs (46, 50–53). Decreasing O-

GlcNAcylation through OGA overexpression can lower p53

(“Guardian of the Genome”) expression thus inhibiting

apoptotic signaling and improving cardiac function (62).

The majority of interventions in the context of diabetes are

not preventative, and instead, focus on mitigating the effects of

the HBP under established diabetic conditions. An interesting

discrepancy is observed when comparing the findings of swim-

exercised streptozotocin diabetic mice and treadmill-exercised

db/db mice. Exercise significantly decreased cardiac O-GlcNAc

in streptozotocin mice through increased OGA activity and

expression, despite chronic hyperglycemia (163). However, db/

db mice subjected to treadmill-exercise displayed increased

cardiac protein O-GlcNAcylation and an upregulated

hypertrophic response (125). Exercise was also investigated in

the context of cardiac hypertrophy, where a single bout was

sufficient to downregulate cytosolic protein O-GlcNAcylation

and promote adaptive hypertrophic signaling (164). The

discrepancy in findings may be in part due to the type of

diabetic animal model utilized as well as the intensity and

duration of the exercise protocol. Alternative interventions

include vitamin D which lowers flux into NOGPs such as the

HBP and AGE-RAGE pathways, mitigating protein O-

GlcNAcylation and inflammation, respectively (66).

There is extensive evidence supporting increased HBP

activity under diabetic conditions, regardless of the

experimental induction. Increased O-GlcNAcylation of various

proteins predisposes the heart to pathology through several

mechanisms as highlighted in Tables 1–4. Combined with

increased oxidative stress potentiating greater HBP activation,

such dysfunctionality predisposes the heart to impaired

contractility, hypertrophy, and fibrosis. These hallmarks of

heart failure observed at a high frequency in diabetic patients,

provide a mechanistic link between the two pathologies.
Heart failure: Role of the HBP

Clinical studies highlight increased O-GlcNAc levels in the

myocardial tissue of patients with heart failure (ejection fraction

< 20%) which provides a final clinical endpoint for enhanced

HBP flux over an extended period (48). Moreover, reduced

cardiac function under diabetic and non-diabetic conditions

may be attributed to increased cardiac O-GlcNAcylation of

target proteins (46–48). Diabetic patients diagnosed with heart

failure also displayed attenuated ketone utilization, suggesting

that alternative fuel substrates enter the heart, yet their potential

energy is not harnessed (46).

Umapathi et al. (2021) highlighted the role of excessive O-

GlcNAcylation in cardiac failure and sudden death (115).

Transgenic mice overexpressing OGT developed significant
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cardiac pathologies including arrhythmias and dilation (115). Of

note, crossing OGT transgenic mice with those overexpressing

OGA, negated the detrimental effects of increased HBP activity.

One key finding was that the O-GlcNAcylation of mitochondrial

complex I impaired its function and activity (115). Mitochondrial

complex I is considered the rate-limiting component of oxidative

respiration and without sufficient activity, energy production is

severely attenuated. Subsequently, cardiomyocytes are unable to

contract efficiently, and the ejection fraction is ultimately reduced

– thus returning to the diagnostic feature of heart failure.

A recently emerging biomarker of heart failure is miRNA-423-

5p as congestive heart failure patients displayed increased plasma

levels (139, 140). OGT is a downstream target with its expression

significantly lowered in cardiomyocytes with increased expression

of this miRNA. While this may appear beneficial in reducing O-

GlcNAcylation, apoptotic stimuli and ubiquitin proteosome

activity are elevated, thus contributing to cardiomyocyte death

independently of chronic O-GlcNAcylation. Another diagnostic

marker for heart failure is the increased serine phosphorylation of

insoluble desmin (94). Desmin is a target of O-GlcNAcylation and

is intricately involved in cardiac contractility (165, 166). Although

site-specific O-GlcNAcylation can indirectly promote enzymatic

activity by allosterically activating the phosphorylation site, this is

not the case with desmin. Here, increased desmin O-

GlcNAcylation does not alter its phosphorylation status but does

confer improved cardiac function (94). These data indicate that

this may not be solely attributed to desmin O-GlcNAcylation (no

significant changes in expression) and instead likely be due to the

acute upregulation of other O-GlcNAcylation targets during

heart perfusion.

Autophagy plays a substantial role in the progression of heart

failure and is also influenced by O-GlcNAcylation. Although pre-

clinical work resulting in the downregulation of OGT expression

indicates the role of O-GlcNAcylation in the initial phases of

autophagy, chronic HBP upregulation hinders this process by

modifying synaptosomal-associated protein 29 (SNAP29 –

involved in the formation of the autophagolysosome) (60).

Misfolded proteins and damaged organelles are subsequently

unable to be degraded and interfere with intracellular

homeostasis thus increasing the heart’s susceptibility to ischemic

and hemodynamic injury (116). In support, therapeutic

interventions aimed at increasing autophagy (e.g. spermidine)

showed an improvement in cardiac health and function.

The role of O-GlcNAcylation in heart failure is somewhat

controversial. Increased O-GlcNAcylation levels are observed in

patients with heart failure and may contribute to autophagic

dysregulation, impaired mitochondrial respiration, and altered

ketone metabolism (Tables 1–4). However, diagnostic markers

of heart failure (e.g. miRNA-423-5p) decrease O-GlcNAcylation

which should provide protection; yet miRNA-423-5p promotes

cardiomyocyte apoptosis independently of the HBP (139, 140).
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Thus, the HBP is not the sole contributor to a decreased ejection

faction in the context of heart failure.
Regulating the HBP: Benefits and
drawbacks

Substrate availability, circadian rhythm, and intracellular

oxidative status all govern the activity of the HBP (32).

Increased glycolytic flux with limited mitochondrial oxidative

phosphorylation feeds glycolytic intermediates into the HBP,

which results in a plethora of downstream PTMs. As the

majority of such PTMs are detrimental to cardiovascular

health in a chronic setting, there are emerging interventions to

mitigate such detrimental effects.

Dietary supplementation with BCAAs influences cardiac

glucose metabolism in a ratio-specific manner regarding its

preferred substrates. A low BCAA/FFA ratio and glucose

metabolism (enhanced catabolism) is beneficial while higher

BCAA levels (lowered catabolism) can be damaging (107). Pre-

clinical data highlight the effects of BCAA catabolic alterations

(107, 167). Accumulation of BCAAs (lowered catabolism)

inhibits the HBP and decreases O-GlcNAc PTMs, lowers PDH

activity and myocardial glucose uptake, and promotes heart

failure under conditions of pressure overload (107, 167).
Frontiers in Endocrinology 12
Decreased O-GlcNAc combined with lowered PDH activity

suggest that glycolytic intermediates move into alternative

NOGPs such as the AGE-RAGE or polyol pathway (Figure 2).

Due to PDH inactivation, aerobic and anaerobic glycolysis are

delinked, and the heart is therefore forced to rely on FFAs for

mitochondrial ATP production. This results in increased injury

during anoxic conditions due to reduced glucose catabolism,

while excessive FFA utilization increases susceptibility to

ischemic damage upon reperfusion – further compounding

ischemic damage (107, 167). Promoting glucose metabolism by

upregulating glucose transporter 1 (GLUT1) receptors rescues

the heart from these damaging metabolic alterations and lowers

ischemic damage (107). In contrast, enhanced BCAA catabolism

is beneficial under certain circumstances, for e.g. it promotes

survival through improving anti-oxidant defense systems and

mitochondrial biogenesis in the heart following dietary

supplementation (168). Therefore, the beneficial effects of

BCAAs regarding the attenuation of HBP flux depends on

various factors and the intracellular milieu at the time. This

suggests that the downstream implications of proposed

interventions to lower HBP activity need to be weighed against

their potential benefits in a context-specific manner.

The impact of the HBP on in vitro cell differentiation is a

lesser investigated area of research. The HBP is integral in

mesenchymal stromal cell differentiation which extends to
FIGURE 2

The benefits and drawbacks of altering cardiac O-GlcNAcylation. BCAA, branched-chain amino acid; FFA, free fatty acid; NOGPs, non-oxidative
glucose pathways; K+, potassium; ROS, reactive oxygen species; CaMKII, calcium-calmodulin dependent protein kinase II; GATA4, GATA binding
protein 4; ANP, atrial natriuretic peptide; PGC-1a, peroxisome proliferator-activated receptor-gamma coactivator-1a; OGT, O-GlcNAc
transferase; OGA, O-GlcNAcase. Created with BioRender.com.
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adult and embryonic cardiac stem cells (169–171). Evidence

supports the shift away from oxidative metabolism and towards

biosynthetic pathways to provide substrates for anabolic

processes (170). However excessive O-GlcNAcylation hinders

cardiac cell differentiation and may potentiate cardiomyopathy

(171). Increased HBP activity decreases Nkx2.5 and connexin 40,

whilst increasing smooth muscle actin expression (169). Nkx2.5

is heavily involved in cardiomyocyte cell fate during embryonic

development and mutations within this gene are associated with

congenital heart defects (172). Increased O-GlcNAcylation

inhibits Nkx2.5 promotor activation thus attenuating its

expression. Connexin 40 is a gap-junction protein intricately

involved in the electrical conducting system of the heart (173)

and lowered expression observed under conditions of increased

HBP activity may occur as a direct or indirect result of O-

GlcNAcylation, or Nkx2.5 expression (169). The combination of

decreased Nkx2.5 and connexin 40 expression due to increased

O-GlcNAcylation in adult cardiac mesenchymal cells limits their

ability to differentiate and thus lower their efficacy as a cell-based

therapeutic intervention (Figure 2). However, increased HBP

activity in cardiac stem cells augments their regenerative

capabilities and enhances cellular survival post-transplant

(174). This further highlights the potential benefits and

drawbacks of targeting increased HBP flux.

Aside from HBP activity regulated by GFAT1/2, the

dynamics between OGT and OGA also determine its influence

on cardiac function. For example, an increased OGA/OGT ratio

lowers overall O-GlcNAcylation together with increased TGF-b
and peroxisome proliferator-activated receptor-gamma

coactivator-1a (PGC-1a) expression and activity, and

decreased GATA binding protein 4 (GATA4), atrial natriuretic

peptide (ANP), p-phospholamban, and p-cardiac troponin I

levels (48, 110, 111). Increased TGF-b and PGC-1a expression

and activity promote myoblast differentiation and mitochondrial

biogenesis, respectively (111). While this appears beneficial,

increased PGC-1a activity also enhances the heart’s reliance

on FFAs for energy production, thus potentiating oxygen

wastage, reactive oxygen species production, and NOGP flux.

Decreased GATA4, ANP, p-phospholamban, and p-cardiac

troponin I expression collectively promote cardiovascular

inotropy and lusitropy, fibrosis, and hypertrophy (110). Thus,

the combination of events following targeted OGT inactivation

or OGA hyperactivation may promote more damage than relief,

depending on the context of the intervention (Figure 2). This

targeted therapeutic approach would be beneficial to the heart in

the event of established HBP overactivation, and not as a

preventative or preemptive measure.

Phospholamban plays an integral role in cardiac contractility

through its interactions with the sarcoplasmic/endoplasmic

reticulum Ca2+ ATPase (SERCA) (175). Phosphorylation of

phospholamban on serine16 renders it inactive and alleviates

any inhibitory effects on SERCA, thus allowing for increased

cardiac contractility and relaxation (175). However, O-GlcNAc
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targets the serine residues that alter phospholamban’s function,

for e.g. Yokoe et al. (2010) demonstrated an increase in O-

GlcNAcylated phospholamban with a concurrent decrease in

phosphorylated phospholamban and cardiac function (122).

Additionally, interactions of SERCA and phospholamban were

increased in PUGNAc treated cells, suggesting that increased

phospholamban O-GlcNAcylation promotes its negative

regulation on SERCA. However, OGTKO models indicate

reduced phosphorylated phospholamban with no effect of

SERCA calcium handling (110). Further studies are required to

understand this dynamic relationship of phospholamban O-

GlcNAcylation and phosphorylation. CaMKII is another protein

heavily involved in cardiac contractility and the addition of O-

GlcNAc moieties regulate its activity in a residue-specific manner.

For example, serine280 O-GlcNAcylation is not required for

activation yet influences potassium channel activity, while O-

GlcNAcylation of serine279 autonomously activates CaMKII (57,

58, 125). Increased O-GlcNAcylation of CaMKII thus augments

its activity and facilitates numerous downstream effects ranging

from altered ion channel function and inflammatory gene

transcription, culminating in the development of cardiac

arrhythmias and reduced heart function (47, 127, 176).

While an increased OGA/OGT activity ratio does influence

cardiac O-GlcNAcylation, the localization of OGA and OGT

also impacts cardiac function. Under normal conditions, OGT is

primarily localized to the Z-line of myofilaments with OGA to

the A-band (61). The delocalization of such enzymes correlates

to increased cardiac O-GlcNAc levels and an impaired calcium

response (61). This suggests that OGT and OGA localization, as

well as their activity and expression, influence their respective

roles in cardiac dysfunction. Without a sufficient response to

physiological calcium levels, the heart struggles to meet the

required ejection fraction for normal bodily function.

Compensatory mechanisms to increase cardiac output include

an increase in left ventricular wall mass which contributes to

cardiac hypertrophy. Therefore, the potential effects of targeted

therapies to lower O-GlcNAcylation need to be weighed against

the HBP’s physiological role.
Conclusion

The HBP can be considered a double-edged sword in the

context of the heart (Figure 3). Various proteins require O-

GlcNAc moieties for activation or repression and can confer

cardioprotection against hypertrophy and apoptosis. However,

consistent HBP upregulation either due to intrinsic factors (i.e.

circadian rhythm), substrate availability, or elevated intracellular

oxidative status, contribute towards chronic protein O-

GlcNAcylation and subsequent cardiac dysfunction (Figure 3).

Clinical, in vivo, and in vitro studies highlighted excessive HBP

activity in a number of cardiac pathologies ranging from diabetic

cardiomyopathy to hypertrophy, hypertension, and heart failure
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(Figure 3). Thus, the HBP has a emerged as a promising

therapeutic target, although the extent of such downregulation

needs to be carefully considered as basal levels are required for

optimal cardiac function.
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FIGURE 3

Summary of HBP role on cardioprotection and pathological effects. LTCC, L-type calcium channel; HDAC4, histone deacetylase 4; NFAT -
nuclear factor of activated T-cells; Xbp1, X-box binding protein 1; GLUT1/4, glucose transporter 1/4; AMPK, 5ʹ-adenosine monophosphate-
activated kinase; FOXO - forkhead box transcription factors; HBP, hexosamine biosynthetic pathway; OGT, O-GlcNAc transferase; NOX4,
NADPH oxidase 4; ATG4a, autophagy related 4A cysteine peptidase; Ogg1 - 8-Oxoguanine glycosylase; SNAP29, synaptosomal-associated
protein 29; mTOR, mammalian target of rapamycin; DNA, deoxyribonucleic acid; REST, repressor element 1-silencing transcription factor;
SMAD2, mothers against decapentaplegic homolog 2; CaMKII, calcium-calmodulin dependent protein kinase II eNOS, endothelial nitric oxide;
ALDH2, aldehyde dehydrogenase 2; ROS, reactive oxygen species; EF, ejection fraction; CD36, cluster of differentiation 36; CPT1, carnitine
palmitoyltransferase-1/2; FAO, fatty acid b-oxidation enzymes; VDAC, voltage-dependent anion channels; ATP, adenosine triphosphate; ADP,
adenosine diphosphate. Created with BioRender.com.
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