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Graph theory methods: applications in brain 
networks
Olaf Sporns, PhD

Introduction

Some of the most daunting scientific challenges 
of the 21st century involve complex social, technological, 
and biological systems–from the stability of global fi-
nancial and economic networks to the spreading of epi-
demics, the web of biotic interactions in an ecosystem, 
and metabolic and transcriptional processes inside cells 
and tissues. An important theoretical foundation for un-
derstanding complexity is network science,1-3 which fo-
cuses on the structure and function of systems that are 
composed of numerous elements and their interactions. 
Over the past couple of decades, the network perspec-
tive has gained considerable ground in neuroscience.4-11 
Brain networks have become a fertile area of research, 
now called network neuroscience, ranging across differ-
ent scales, from interacting biomolecules all the way to 
social behavior. A major driving force has been the ap-
plication of mathematical and computational network 
science tools to neurobiological systems, especially 
models and measures of graph theory.1,5,9

	 Graph theory is a branch of mathematics that dates 
back to the 18th century. Today, applications of graph 
theory pervade all scientific disciplines as well as many 
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Network neuroscience is a thriving and rapidly expand-
ing field. Empirical data on brain networks, from mo-
lecular to behavioral scales, are ever increasing in size 
and complexity. These developments lead to a strong 
demand for appropriate tools and methods that model 
and analyze brain network data, such as those provided 
by graph theory. This brief review surveys some of the 
most commonly used and neurobiologically insightful 
graph measures and techniques. Among these, the de-
tection of network communities or modules, and the 
identification of central network elements that facili-
tate communication and signal transfer, are particular-
ly salient. A number of emerging trends are the grow-
ing use of generative models, dynamic (time-varying) 
and multilayer networks, as well as the application of 
algebraic topology. Overall, graph theory methods are 
centrally important to understanding the architecture, 
development, and evolution of brain networks.    	          
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modern information and computing technologies. The 
brain is a natural fit for graph theory approaches as it 
is readily represented as a network (a graph) of ele-
ments and their pairwise interconnections, also called 
nodes and edges. Comprehensive maps of brain con-
nectivity have given rise to the emerging field of con-
nectomics,12,13 a central focus of which is the systematic 
and quantitative study of brain networks and graphs. 
	 Graph theory methods, when applied properly, can 
offer important new insights into the structure and func-
tion of networked brain systems, including their archi-
tecture, evolution, development, and clinical disorders. 
This brief review surveys some of the most relevant 
graph theory methods and illustrates their application 
in various neurobiological contexts. Comprehensive 
coverage of the topic is beyond the scope of this article 
(see a recent textbook9). Instead, the emphasis here is 
on highlighting some new methodological trends, dis-
cussing their application to brain data, and suggesting 
future avenues for graphical models and measures.

Basic concepts

Networks or graphs are collections of elements (nodes, 
vertices) and their pairwise links (edges, connections) 
which, in their simplest form, can be summarized in 
the form of a connection (or adjacency) matrix. The 
complete set of all pairwise connections defines the 
graph’s topology, providing a complete map of all rela-
tions among nodes and edges. Brain nodes may be in-
dividual neurons or entire brain regions, depending on 
the measurement technique. Edges can take on binary 
or weighted values, and they can be directed or undi-
rected, depending on how interactions are estimated 
from empirical data. The selection of appropriate graph 
theory methods for modeling and analyzing empirical 
data requires that the nature of the edge representation 
is taken into account.6,9 Put differently, not all graph 
theory methods fit all purposes.
	 The two most common species of brain graphs de-
scribe structural and functional connectivity among 
neural elements. Structural graphs are generally sparse 
(most possible structural connections in a given ner-
vous systems do not exist) and temporally relatively 
stable (but subject to plasticity and development). In 
contrast, functional graphs record statistical dependen-
cies among neuronal time series, and hence are often 
dense and highly variable across time. The dichotomy of 

structural and functional graphs is important to consid-
er, as each domain draws on a specific subset of graph 
theory methods that are commensurate with the origin 
of the data.
	 The definition of nodes generally requires sophis-
ticated data-processing pipelines and is the subject of 
much methodological discussion. In whole-brain net-
works acquired with neuroimaging, nodes are often 
derived from a parcellation of the original voxel-level 
data, designed to extract coherent brain “areas” that 
form the building blocks of structural or functional 
brain networks. Some approaches leverage anatomical 
templates, others pursue parcellation in a data-driven 
manner, eg, by boundary detection and clustering pat-
terns of connectivity.14 A recent multimodal study em-
ployed machine learning to extract coherent brain re-
gions on the basis of several different anatomical and 
functional criteria.15 Node definition is considerably 
more straightforward in studies of circuits and neuro-
nal populations, where individual neurons are natural 
candidates for individual network nodes.
	 A major simplification inherent in most current ap-
plications of graph theory is the assumption that, within 
a given network representation, all nodes and edges 
are identical and homogeneous. Annotation of nodes 
and edges can address this limitation of simple graphs, 
by allowing additional layers of data to be linked to 
network elements, which can be useful for identify-
ing biologically meaningful network communities.16 A 
further elaboration of simple graphs is the inclusion of 
multidimensional relationships which can be expressed 
in multilayer networks,17 composed of different layers 
that encode different types of interactions (eg, synap-
tic links, temporal correlations, transmitter systems, or 
gene coexpression).
	 Graphs can be investigated at different levels of 
scale, and specific measures capture graph attributes at 
local (nodal) and global (network-wide) scales.6 Nodal 
measures include simple statistics such as node degree 
or strength, while global measures express network-
wide attributes such as the path length or the efficiency. 
Intermediate scales can be accessed via hierarchical 
neighborhoods around single graph elements,18 or by 
considering subgraphs or motifs.19,20 Motifs are defined 
as subsets of network nodes and their mutual edges 
whose patterns of connectivity can be classified into 
distinct motif categories. In empirical networks, these 
categories often occur in characteristic frequencies that 
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can be compared with distributions from appropriate 
(random) null models. In the brain, motif analysis has 
been applied to structural20 and functional graphs.21

	 Most highly resolved structural brain networks are 
not fully, or even densely, connected. In such sparsely 
connected graphs, the minimal topological distance be-
tween two nodes, ie, the length of the shortest path, often 
involves multiple steps. Network paths are composed 
of unique edges that are traversed only once, while the 
usually much more abundant walks between two nodes 
can use edges any number of times. Paths and walks are 
considered important for the flow of signals and com-
munication,22 and are the basis for popular graph met-
rics such as the so-called efficiency which defines the 
global capacity of a graph to pass information via short 
paths. Importantly, concepts of path lengths and effi-
ciency are most naturally applied to brain graphs that 
represent structural connectivity. In contrast, they have 
rather different (and potentially problematic) interpre-
tations when applied to functional connectivity. The 
distinction derives from the nature of functional con-
nectivity which reports statistical associations among 
neural time series rather than a web of physical links 
that propagates neural signals.

Modularity

Among the most widely encountered and biologically 
meaningful aspects of brain networks is their organiza-
tion into distinct network communities or modules6,10,23 

(Figure 1). Modules are useful to partition larger net-
works into basic “building blocks,” ie, internally densely 
connected clusters that are more weakly interconnected 
amongst each other. Modular partitions have neurobio-
logical significance as their boundaries separate func-
tionally related neural elements, define critical bridges 
and hubs that join communities, channel and restrict the 
flow of neural signals and information, and limit the un-
controlled spread of perturbations.23

	 There are numerous computational techniques for 
extracting communities and modules from complex 
networks.24,25 One of the most widely used approaches 
in network neuroscience is modularity maximization 
which aims to divide a given network into a set of non-
overlapping communities by maximizing a global ob-
jective function, the modularity metric.26 Originally, this 
metric was formulated to detect communities whose 
internal density of connections is maximal, relative to 

a degree-preserving null model. More recently, vari-
ants of the metric that can be applied to directed27 and 
signed28 networks have been proposed. Of special note 
are variants of the scheme that are designed to deal 
with correlation matrices,29 a data type that is often en-
countered in studies of functional connectivity. 
	 Modularity maximization faces important meth-
odological limitations that need to be addressed. One 
limitation refers to the existence of several, often quite 
numerous, distinct partitions that are almost equally 
optimal (ie, degenerate) under the modularity metric. 
Given the inherent noisiness of empirical estimates of 
the network topology, it seems arbitrary to pick a single 
“optimal” partition as the sole representative of the 
network’s community structure. Instead, multiple de-
generate solutions should be aggregated into consensus 
partitions, for example by forming an agreement ma-
trix that can then be reclustered until a single consensus 
partition emerges.30 The application of such a consensus 
approach can also reveal additional facets of communi-
ty organization, including the degree to which individu-
al nodes are affiliated with their host community.28,31

	 Another fundamental limitation is the inability of 
the original modularity metric to detect modules below 
a certain size. This resolution limit32 can be addressed in 
a number of ways. One common avenue is the inclusion 
of an additional resolution parameter into the modu-
larity metric that rescales the intrinsic null model and 
allows the detection of smaller or larger communities.33 
Varying the resolution parameter is important since 
many brain networks exhibit communities across differ-
ent scales,34 which renders the selection of a single scale 
of analysis potentially problematic. The issue becomes 
of fundamental neurobiological importance when com-
munity detection methods are used to identify, for ex-
ample, specific partitions of the brain into resting-state 
functional networks or “functional systems.” While sev-
eral landmark studies have proposed canonical parti-
tions of such networks;35,36 that are now widely applied 
in the field, it should be noted that other partitions at 
both finer and coarser scales may represent additional 
levels of organization. Up to date, most studies circum-
vent full multiscale analysis by selecting one or a few 
settings of the resolution parameter, usually based on 
some criteria of partition stability.
	 One way to preserve and represent the full multi-
scale structure of brain networks is to perform consen-
sus clustering across multiple spatial resolutions,37 an 
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Figure 1. �Modularity. (A) Schematic network plot showing a set of nodes and edges interconnected to form two relatively distinct modules (com-
munities). Note that the two modules are linked via a single hub node (black) that maintains two bridges between the two modules. Panels 
(B) to (E) use a 77-node data set from reference 74, representing the 77 areas and directed weighted projections of the rat cerebral cortex. 
(B) The plot at the top illustrates the varying number of modules as the value of the resolution parameter is increased from 0.1 to 4.0. The 
number of detected modules increases from 1 to 22 within this range. (C) The matrix plot represents the variation of information between 
all detected partitions within the range of the resolution parameter plotted above. Dark blue corresponds to a variation of information 
(distance) of zero, ie, identity. The region around gamma=0.7 is the most homogeneous region within the range. (D) The rat cerebral cortex 
connection matrix (weights displayed on log-scale), reordered by module assignment for gamma=0.7. The three modules are indicated 
with white boundaries. (E) The multiscale co-assignment matrix, computed using the method described in ref. 37. Co-assignment var-
ies between 1 (node pair in same module at all scales) to 0 (node pair never co-assigned at any scale). Tree plot at the bottom shows all 
hierarchically clustered solutions, with the top one corresponding to the same three modules shown in panel (C). Within each of the three 
modules, additional modular structure is detected.
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approach that combines sampling the entire range of 
possible spatial resolutions with a hierarchical consen-
sus clustering procedure. The approach returns a coas-
signment matrix that captures the probability that each 
node pair remains associated within the same commu-
nity as the scale is varied, together with a hierarchy that 
illustrates their mutual relations. Multiresolution con-
sensus clustering delivers a more complete picture of 
community structure than is provided by single parti-
tions, and avoids complicated and often rather arbitrary 
models for selecting relevant scales in brain networks.
	 Finally, many extensions of the above framework 
for detecting communities in brain networks should 
be noted. While modularity maximization detects non-
overlapping communities, it may also be useful to define 
modules as overlapping communities (eg, see ref 38), ie, 
sets of nodes where some, or all, nodes maintain mul-
tiple affiliations. Other methods, eg, multislice modular-
ity,39 are designed to track modular partitions, and their 
nodal memberships, across time. Yet another promising 
avenue, with deep historical roots in the social sciences, 
is the use of block models.40 Block modeling attempts 
to fit a statistical model for generating networks to em-
pirical data to identify those model parameters that 
provide the best match. For example, those parameters 
may correspond to a number of blocks and the corre-
sponding within and between block connection prob-
abilities. Since block models are not limited to strictly 
modular arrangements (maximizing within-module 
density while minimizing between-module density) 
they can detect more complex block structure in net-
works,41 including the existence of a dense core and a 
more weakly connected periphery. In addition to ver-
satility, block models offer the advantage of fitting a 
generative model to data (see below), which may of-
fer insight into the processes that underlie the observed 
network topology.

Centrality and communication

Empirical networks have architectures that differ sig-
nificantly from those of classic random graph models 
– most importantly, their nodes and edges are not equal 
in the way they are connected with the rest of the net-
work. Far from being “equipotential,” the ways in which 
nodes and edges are embedded within the overall to-
pology play a major role in determining their specific 
contributions to network function. Thus, network the-

ory reconciles functional specialization with distrib-
uted processing–a dichotomy that has in the past led 
to strongly polarized theories of brain function, to the 
detriment of scientific progress. 
	 Indeed, a major rationale for mapping brain con-
nectivity arises from the idea that connectivity drives 
the functional specialization of local network elements. 
This idea is inherent in the notion that different brain 
regions have unique connectivity fingerprints that are 
indicative of their network embedding and predictive 
of their functional roles.42 Similarities among connectiv-
ity fingerprints can be informative of functional group-
ings of areas and their mutual relations.
	 Numerous measures quantify the potential of in-
dividual nodes and edges to influence the global state 
of the network. Many of them allow the identification 
of network hubs,43,44 generally defined as highly central 
parts of the network. The number of connections main-
tained by a node (its degree) or the combined weight of 
these connections (its strength) often provides a strong 
indicator of influence or centrality. Other measures of 
centrality take advantage of the layout of the short-
est paths within the network, and record the number 
of such paths that pass through a given node or edge, 
a measure called the betweenness. Yet another way to 
approach centrality is by referencing the relation of 
nodes and edges to a network’s community structure. 
The participation coefficient quantifies the diversity of 
a given node’s connections across multiple modules–
high participation indicates that many of these connec-
tions are made across modules, thus linking structurally 
and functionally the distinct communities. This measure 
is particularly useful in brain networks, as it can be ap-
plied to both structural and functional network data.45

	 Most measures of node centrality are mutually re-
lated (and hence statistically correlated); for example, 
in most (but not all) networks nodes with many con-
nections (high degree) also serve as intermediaries on 
many short paths (high betweenness). Since different 
measures of centrality index different aspects of net-
work organization, it can be beneficial to rank nodes by 
aggregating multiple centrality measures.43

	 Centrality measures can be useful tools for charting 
the global architecture of a brain network. Of particu-
lar neurobiological interest is the mutual association 
among highly central (eg, high degree) nodes. If these 
nodes maintain interconnections that are found to be 
denser than expected by chance (ie, a suitable null 
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model) the network is said to exhibit so-called rich club 
organization46 (Figure 2). Rich clubs have been found in 
virtually all structural connectivity data, from the con-
nectomes of humans47 to those of invertebrates.48,49 Rich 
club organization tends to centralize network traffic, as 
the dense core formed by interconnected high-degree 
nodes attracts the bulk of short network paths that link 
lower degree nodes to each other.50 This important role 
in network communication is thought to boost network 
communication and efficiency, thus trading off against 
the high wiring cost involved in linking spatially distrib-
uted hub regions.
	 While much of the interest in centrality is based on 
the putative role of hubs in network communication, it 
should be noted that the mechanisms by which brain 
networks communicate remain obscure. Most models 
and their associated graph theory metrics assume that 
communication unfolds along the most efficient and 
shortest paths available. However, this idea ignores the 
fact that these paths cannot be discovered by neural 
elements or signals in the absence of global informa-
tion about the network topology.22 Hence, alternative 
models based on spreading and diffusion51 and path en-
sembles52 are important to explore in future work.

Emerging trends

This final section briefly reviews several new directions 
that have great potential for future applications in brain 
networks.

Generative models

Most current graph theory methods applied to brain 
data deliver descriptive statistics that capture various as-
pects of network architecture. While such measures can 
be informative about the topological characteristics of a 
specific empirically measured network, their estimation 
should always be accompanied by some estimate of sta-
tistical significance or evidence. Every graph, even one 
generated by an entirely random process, will exhibit 
some graph attributes, including some chance level of 
clustering and modularity. Null models are important 
adjuncts of descriptive graph analysis as they allow dis-
criminating which graph attributes are due to chance, 
and which exceed the expected values given by the null 
model. The choice of a proper null model is crucial for 
any descriptive analysis, as it will determine which graph 

features survive statistical comparison. Classic null mod-
els involve the rewiring of an empirical graph by swap-
ping connections such that local degree is preserved 
while the global graph architecture is randomized. Other 
null models preserve subgraph frequencies to estimate 
the significance of larger subgraph distributions, or null 
models that preserve spatial locations of nodes.
	 Null models that fix a number of different factors 
such as local node measures, spatial locations, and wir-
ing cost effectively become generative models of the 
empirical data. They generate graphs that may become 
indistinguishable from the empirical network, and in 
that sense can account for its topological properties. 
Hence, generative models can provide important in-
sights into the factors that have shaped the emergence 
of specific architectural or performance characteristics. 
As such they are important reminders that not all graph 
attributes are the product of adaptation, and instead 
may have arisen as “spandrels” along the way,53 a mere 
by-product of other more basic generative factors such 
as degree distributions or spatial embedding. Another 
important insight that can be gleaned from the design 
of generative models is that many graph attributes are 
mutually dependent and arise jointly from a common 
set of driving factors. For example, high clustering is in-
variably linked to particular statistics of subgraphs that 
favor triangles, and strongly favored by spatial embed-
ding and wiring conservation.
	 Spatial embedding as an important generative 
principle behind the organization of brain graphs de-
serves special mention, as it is a fundamental constraint 
on brain architecture.54,55 Much evidence points to 
distance-dependence as a major rule that governs the 
topology of anatomical brain connectivity within local 
circuits in single brain regions as well as for inter-areal 
projections. Generative models that combine spatial 
embedding with other, nonspatial, topological rules 
have suggested that their mutual trade-off may more 
fully account for characteristics of brain topology than 
any single (spatial or topological) factor alone.56

	 Generative models are also crucial for understanding 
the emergence of dynamic states and functional connec-
tivity.57 Many classic models explored in computational 
neuroscience are generative models, in that they at-
tempt to generate neuronal activity and dynamics from 
simple biophysical and structural ingredients. In human 
neuroimaging, the relationship between structural and 
functional connectivity has been illuminated by the use 
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of computational models that can capture some of the 
patterns exhibited in brain dynamics. Some of these gen-
erative models are simple, as they can be computed ana-
lytically on top of structural graphs,58 or make minimal 
assumptions (eg, linearity) about the nature of neuronal 
dynamics.59 Other models utilize detailed biophysical 
mechanisms to generate neuronal time series and pop-
ulation activity.60 Implementation of large numbers of 
generative models with varying model parameters com-
bined with model selection are central to estimate varia-
tions in network parameters, including causal effects, in 
the course of varying conditions of stimulus and task.  

Dynamic networks

Brain networks are not immutable, static constructs–
rather, their structural and functional connectivity 
patterns change on multiple time scales. Data on time-
varying brain graphs generally takes on the form of 
time series (or stacks) of graphs that form an ordered 
series of snapshots, for example recorded in the course 
of learning or across developmental stages. Changes in 
network topology can be tracked by computing graph 
measures on each time point followed by the subse-
quent examination of the resultant time courses of 
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 Figure 2.  Paths and rich club organization. (A) Schematic network plot illustrating an optimally short path (length three steps) that links the two 
nodes shown in black; intermediate nodes are shown in gray. (B) Left: Using the rat cerebral cortex data set from ref 74, this plot shows 
the density of subgraphs, compared with a degree-sequence preserving null model, with subgraphs increasing in size from 1 to N (N=77) 
and with nodes arranged by total degree. Subgraph of size 1 comprises the single node with highest degree, subgraph size 2 the one 
comprising the two highest degree nodes, and so forth. Red data points indicate subgraphs for which the density is signifi cantly above 
that of the null model (P<0.001, false discovery rate-corrected). Middle: Rat cerebral cortex connection matrix, with node arranged by total 
degree (highest degree node in the top row and left-most column). Note dense (nearly full) connectivity among the top 15 high-degree 
nodes (white lines). Right: Edge betweenness displayed in the same node ordering as middle panel. Note that there are numerous edges 
with high edge betweenness in upper left section of the matrix. These edges link high-degree nodes and they also participate in a large 
number of shortest paths across the network.
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graph metrics. Another analysis approach involves ar-
ranging this stack into a series of time slices that are 
mutually coupled and can be analyzed as a single graph 
construct.39 This allows the derivation of nodal mea-
sures of flexibility which can pinpoint parts of the net-
work that are more variable across learning or develop-
ment.61 
	 Much effort has recently been expended to track fast 
changes in graph topology and organization of func-
tional networks recorded with fMRI.62 Most commonly, 
a long time series of fMRI activations is partitioned 
into shorter “windows” that are then analyzed sepa-
rately. Possible confounds are measurement artifacts 
such as physiological noise and increased uncertainty 
of estimating the magnitudes of functional connections 
on short samples.63 In resting state, fMRI networks ap-
pear to undergo fluctuations between states of higher 
integration and segregation,64 or modularity.65 Similar 
transitions between different network states occur dur-
ing task switching66 and in the course of cognitively de-
manding spontaneous stimulation.67

Multilayer networks

The arrival of multiomic data has enabled the joint 
analysis of networks between elements of neurobiolog-
ical systems at different levels of organization. Prime 
examples are recent studies that combine maps of ana-
tomical and functional networks, as well as studies that 
combine large-scale brain connectivity data with spa-
tially registered data on patterns of gene expression. 
The latter have yielded important insights into rela-
tions between the centrality of network elements, for 
example their membership in a dense core or rich club, 
and distinct genetic signatures in energy metabolism.68 
In most studies so far, graph theoretic analysis proceeds 
through simple comparison or correlation of graph 
metrics across different levels (eg, anatomy and genet-
ics). In the future, more explicit use of a multi-layer 
graphical framework is likely to occur. A few early ex-
amples are studies that place structural and functional 
connectivity into a multilayer model, eg, with data from 
human neuroimaging69 and magnetoencephalography.70

Algebraic topology

All graph theory approaches discussed so far build on 
networks that are composed of pairwise (dyadic) in-

teractions. However, higher-order interactions can be 
highly informative for understanding non-random at-
tributes of brain networks. Such higher-order relations 
can be represented with tools from applied algebraic to-
pology, such as so-called simplicial complexes or simpli-
ces.71 Simplices reframe the problem of relational data 
in terms of collections of vertices: a 0-simplex is a node, 
a 1-simplex is an edge, and a 2-simplex is a filled (con-
nected) triangle. Simplices can be used to locate cliques 
(all-to-all connected subgraphs) or cavities. Recent ap-
plications of simplices to human connectome data have 
shown the utility of the approach for identifying both 
densely connected groups of nodes as well as other pat-
terns of connectivity (eg loop-like paths) that would 
facilitate parallel processing.72 Finally, the related area 
of topological data analysis attempts to detect, quantify 
and compare mesoscale structure present in complex 
network data. Essentially, the approach attempts to em-
bed the data in a way that provides an optimal summary 
of its global structure. A recent example used topologi-
cal data analysis to reveal dynamical organization in 
multitask fMRI time series, by creating graphical rep-
resentations of relations among single image frames at 
the level of individual participants.73 These representa-
tions allow a comparison of how individuals transition 
among multiple cognitive tasks and states and could 
provide useful markers for clinical diagnosis and treat-
ment. Overall, the arrival of these topological methods 
capitalizes on higher-order and high-dimensional fea-
tures in brain data that have so far been inaccessible 
with simple graph methods, and are therefore promis-
ing avenues for future investigation.

Conclusion

The growth of network neuroscience over the past de-
cade or two has been nothing short of astonishing. A 
major driving force for this rapid expansion is the avail-
ability of relational data recording couplings and in-
teractions among elements of neural systems. For now, 
most studies remain descriptive and focus entirely on 
pairwise interactions resulting in graphs composed of 
dyadic links. But graph theory is much more powerful 
than current methods applied to brain networks sug-
gest. Generative models, dynamic networks, multilayer 
models, and algebraic topology are just a few of the 
promising directions that are currently pursued. With 
time, these new approaches will likely find applications 

118



Graph theory methods - Sporns	 Dialogues in Clinical Neuroscience - Vol 20 . No. 2 . 2018

not only in basic, but also in clinical and translational 
research. For years to come graph theory methods will 
remain indispensable tools to further our understand-
ing of the brain as a complex interconnected system. o
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Métodos de la teoría de grafos: aplicaciones en 
las redes cerebrales

La neurociencia de la red es un campo próspero y de 
rápida expansión. Los datos empíricos sobre las redes 
cerebrales, desde niveles moleculares hasta niveles con-
ductuales, son cada vez más grandes en tamaño y com-
plejidad. Estos desarrollos llevan a una fuerte demanda 
de herramientas y métodos apropiados que modelen 
y analicen los datos de la red cerebral, como los pro-
porcionados por la teoría de grafos. Esta breve revisión 
examina algunas de las medidas y técnicas gráficas más 
comúnmente empleadas y neurobiológicamente más 
discriminadoras. Entre estas, son particularmente impor-
tantes la detección de módulos o comunidades de redes, 
y la identificación de elementos de redes centrales que 
facilitan la comunicación y la transferencia de señales. 
Algunas tendencias emergentes son el empleo creciente 
de modelos generativos, de redes dinámicas (de tiempo 
variable) y de multicapa, así como la aplicación de topo-
logía algebraica. En general, los métodos de la teoría de 
grafos son especialmente importantes para comprender 
la arquitectura, el desarrollo y la evolución de las redes 
cerebrales. 

Méthode de la théorie des graphes et ses 
applications dans les réseaux cérébraux 

La neuroscience des réseaux est un domaine florissant 
qui s’étend rapidement. Les données empiriques sur les 
réseaux cérébraux, de l’échelle moléculaire à comporte-
mentale, ne cessent d’augmenter en volume et en com-
plexité. Ces développements génèrent une demande 
forte d’outils et de méthodes appropriés pour modéliser 
et analyser les données des réseaux cérébraux, comme 
celles fournies par la théorie des graphes. Dans cette ra-
pide analyse, nous examinons certaines des techniques 
et mesures de graphes les plus couramment utilisées et 
les plus signifiantes neurobiologiquement. Parmi elles, 
la détection des modules ou communautés de réseaux 
et l’identification des éléments de réseau central qui 
facilite la communication et le transfert du signal, 
sont particulièrement marquantes. Dans les tendances 
émergentes, on note l’utilisation croissante de modèles 
génératifs, dynamiques (variables avec le temps) et les 
réseaux multi-couches, ainsi que l’application de la to-
pologie algébrique. Globalement, les méthodes de la 
théorie des graphes sont essentielles pour comprendre 
l’architecture, le développement et l’évolution des ré-
seaux cérébraux.




