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Abstract 

Human peripheral blood mononuclear cells (PBMCs) originate from hematopoietic stem cells in the bone marrow, 
which mainly includes lymphocytes (T cells, B cells, and natural killer cells) and monocytes. Cryopreserved PBMCs 
providing biobank resources are crucial for clinical application or scientific research. Here, we used flow cytometry 
to explore the influence of long-term cryopreservation on the quality of PBMCs with the aim of providing important 
evidence for the effective utilization of biobank resources. The PBMCs were isolated from the peripheral blood, which 
was collected from volunteers in the hospital. After long-term cryopreservation in liquid nitrogen, we analyzed the 
changes in cell numbers, viability, and multiple subtypes of PBMCs and studied the apoptosis, proliferation, activation, 
function, and status of T cells in comparison with freshly isolated PBMCs by flow cytometry, and then further tracked 
the effects of long-term cryopreservation on the same sample. Although the different cell types in the PBMCs dynam-
ically changed compared with those in the freshly isolated samples, PBMC recovery and viability remained stable after 
long-term cryopreservation, and the number of most innate immune cells (e.g., monocytes and B cells) was signifi-
cantly reduced compared to that of the freshly isolated PBMCs or long-term cryopreserved PBMCs; more importantly, 
the proportion of T cell subtypes, apoptosis, proliferation, and functional T cells, except for Tregs, were not affected by 
long-term cryopreservation. However, the proportions of activated T, naïve T, central memory T, effector T, and effec-
tor memory T cells dynamically changed after long-term cryopreservation. This article provides important evidence 
for the effective utilization of biobank resources. Long-term cryopreserved PBMCs can be partly used as biological 
resources for clinical research or basic studies, but the effect of cryopreservation on PBMCs should be considered 
when selecting cell samples, especially in research relating to activating or inhibiting function.
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Introduction
Human peripheral blood mononuclear cells (PBMCs) 
are important biological resources that aid in improving 
our understanding of immunological disease and play 
a crucial role in immunotherapy. To address the limita-
tions of freshly isolated PBMCs, cryopreserved PBMCs 
are widely used in basic studies and clinical trials. Several 
clinical trials necessitate the high quality of functional T 
cell products and stable cell subtypes; consequently, large 
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numbers of cryopreserved PBMCs that were collected for 
years need to be evaluated in a suitable manner.

PBMCs are mixtures of multiple immune cells, which 
can be roughly divided into two immune cell subtypes, 
including innate immune cells (natural killer [NK] cells 
and monocytes) and adaptive immune cells (e.g., B cells 
and T cells). Furthermore, the discovery of innate lym-
phoid cells (ILCs) is critical for maintaining immune 
homeostasis or in response to inflammation [1]. T cells 
can be classified into CD4+ T (T helper cells) and CD8+ 
T (cytotoxic T cells), which can activate other immune 
cells and fight pathogens, respectively. Memory cells in 
CD4+ T cells respond rapidly to previously encountered 
antigens [2–5]. CD4+ T cells can also be divided into 
four functional subtypes: T helper (Th) 1 (interferon 
[IFN]-γ+), Th2 (interleukin [IL]-4+), Th17 (IL-17+), and 
regulatory T cells (Tregs), which express intracellular 
forkhead box P3 (FOXP3) and exhibit a strong suppres-
sive function [6, 7]. Cytokines produced by Th1, such as 
IFN-α, IFN-γ, IL-2, granulocyte-macrophage colony-
stimulating factor (GM-CSF), and tumor necrosis factor 
(TNF)-α, participate in cell immunity against pathogens 
and bacteria [8]. T helper 2 cell cytokines, including IL-4, 
IL-5, IL-6, and transforming growth factor (TGF)-β, 
enhance humoral immunity from allergens, bacteria, or 
toxins. T helper 17 cells secrete IL-17 and IL-23, which 
are involved in inflammatory responses or infection 
defense [9–11]. However, the cryopreservation process 
and storage time may affect the PBMC subtypes; thus, it 
is important to evaluate the quality of long-term cryopre-
served PBMCs.

As a proven immunological assay, multi-parameter 
flow cytometry is widely used in cytobiology, immunol-
ogy, and clinical medicine, and can rapidly and effectively 
analyze the diversity of PBMC subpopulations; for exam-
ple, flow cytometry (FCM) can be used for disease diag-
nosis i.e., detecting the number of CD4+ T cells in the 
peripheral blood and monitoring the disease progression 
of human immunodeficiency virus (HIV) infection [12]. 
The human leukocyte antigen (HLA), HLA-B27, can also 
be detected by FCM for the diagnosis of ankylosing spon-
dylitis [13]. Flow cytometry can also be used to measure 
the proportion of lymphocyte subtypes and observe the 
differences between healthy individuals and patients with 
autoimmune diseases [14].

At present, the available literature focuses on the cell 
viability of fresh or frozen PBMCs from different sam-
ples in biobanks [15]. Moreover, published studies have 
usually focused on the cellular immunological status of 
certain PBMC subpopulations after cryopreservation, 
rather than conducting a comprehensive analysis of the 
cell samples. Thus, in this study, we aimed to analyze the 
total numbers of PBMCs and the different changes in the 

cell subtypes at different cryopreservation time points 
for the same sample and to comprehensively evaluate 
the impact of cryopreservation on immune status by 
tracing the total cell number, cell viability, and markers 
of each subtype of immune cells in the same sample to 
provide important evidence for the effective utilization of 
biobank resources.

Materials and methods
Study sample preparation
From 2019 to 2020, a total of 91 blood samples were col-
lected and tested from healthy adults. Four milliliters 
of peripheral blood was drawn from individuals using 
BD Vacutainer ethylenediaminetetraacetic acid (EDTA) 
tubes, which were then kept at 25  °C until the PBMCs 
were isolated within 4 h.

PBMC isolation and cryopreservation
First, the peripheral blood was diluted and mixed with 
RPIM1640 (Gibco, Germany) at a ratio of 1:1, and then 
gently layered on top of 4  mL of Ficoll-Hypaque 10,771 
(Sigma, USA). The tubes were centrifugated at 1600 rpm 
for 30 min at 25 °C. Then, the PBMC layer was aspirated 
and transferred into a new fresh 15 mL conical centrifuge 
tube. The PBMCs were mixed with RPIM1640 to wash 
twice at 1300 rpm for 10 min. After cell counting, fresh 
PBMCs were stained with different FCM antibodies and 
tested using a BD Canto II Flow Cytometry System. The 
remaining PBMCs were resuspended and cryopreserved 
with freezing media, including 10% dimethysulfoxide 
(DMSO) and 90% fetal bovine serum. The cell number 
was generally at least 5 × 106 per tube. Lastly, the frozen 
PBMC samples were transported into a liquid nitrogen 
container for long-time preservation after being stored in 
the freezing container at − 80 °C overnight. 5–10 samples 
were processed at a time and the subsequent freez thaw 
process followed every step of the protocol strictly.

Thawing the PBMCs
The cryopreserved PBMCs were placed in a 37 °C water 
bath for rapid thawing, and then transferred into a 
15  mL conical centrifuge tube filled with pre-warmed 
RPIM1640. The cells were washed at 1300  rpm for 
10  min, resuspended in culture medium, and incubated 
overnight.

Cell proliferation assay
The carboxyfluorescein diacetate succinimidyl ester 
(CFSE, Biolegend, USA) was used to label the prolif-
eration of the PBMCs. The cells were resuspended with 
5 μM CFSE working fluid and incubated in a carbon diox-
ide cell incubator for 20  min. Next, a five-time volume 
of the RPIM1640 medium containing 10% fetal bovine 
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serum was added to terminate the reaction, and then 
washed three times by RPIM1640 medium. After labeling 
with CFSE, the cells were incubated with human CD3/
CD28 T cell activator (Stem Cell, Canada) at a dose of 25 
µL/mL and IL-2 (Pepro Tech, USA) at a dose of 50 ng/mL 
for up to 3 d, and then analyzed by fluorescence-activated 
cell sorting (FACS).

Cell stimulation assay
The cell suspension (1 × 106) was placed into an Ultra-
Low Attachment 24-well plate (Corning, USA), and 
2 µL of the cell stimulating agent containing phorbol 
12-myristate 13-acetate/ionomycin/Golgi body inhibi-
tor was added to stimulate cell activation rapidly, and the 
plate was incubated at 37 °C in 5% CO2 for 4 h before the 
follow-up experiments.

Inductive and supressive assays of tregs
Inductive assay: The CFSE labeled PBMCs were stimu-
lated and induced by human CD3/CD28 T cell activator 
(Stem Cell, Canada) at a dose of 25 µL/mL, IL-2 (Pepro 
Tech, USA) at a dose of 150  ng/mL and TGF-β (Pepro 
Tech, USA) at a dose of 5 ng/mL for up to 3 d in 37 °C, 
5% CO2 incubator, and then analyzed by fluorescence-
activated cell sorting (FACS).

Supressive assays: The CFSE labeled PBMCs were 
cocultured with the Tregs isolated by Regulatory T Cell 
Isolation Kit II(Miltenyi Biotec, Germany) at the ratio of 
1:0, 2:1 respectively and stimulated with human CD3/
CD28 T cell activator (Stem Cell, Canada) at a dose of 25 
µL/mL for 4 d in 37 °C, 5% CO2 incubator, and then ana-
lyzed by fluorescence-activated cell sorting (FACS).

Flow cytometry
The PBMCs were washed twice and resuspended in 100 
μL of phosphate-buffered saline (PBS), and then stained 
with LIVE/DEAD Fixable Aqua Stain (Biolegend, USA) 
for the cell viability testing, and then incubated with 
surface markers in the dark for at least 30  min.Then, 
the PBMCs were fixed and permeabilized after surface 
marker staining and stained with intracellular cytokines 
such as IFN-r, IL-4, IL-17, or the transcription factor 
FOXP3. The cell gating strategies are shown in Fig. 1, and 
the color scheme and antibody information are shown 
in Additional file 1: Table S1. Data were acquired by BD 
Canto II Flow Cytometry and analyzed using the BD 
FACSDiva software or FlowJo.v10 software (BD, USA).

Statistical analysis
The total cell numbers were calculated through multiple 
comparison analysis testing in two-way analysis of vari-
ance (ANOVA), and the other data were calculated using 
one-way ANOVA multiple comparisons, wherein P < 0.05 

was considered statistically significant. Statistical analysis 
of the results was performed using GraphPad Prism 8.0 
(GraphPad Software Inc., USA).

Results
PBMC recovery and viability remained stable 
after long‑term cryopreservation
Fifty-seven peripheral blood samples were randomly 
obtained from the Xijing Hospital. After obtaining 
PBMCs by density gradient centrifugation, the cells 
of each patient were divided into five tubes, the fresh 
sample was used for subsequent experiments, and the 
remaining four samples were frozen for preservation to 
determine whether frozen time could affect the quality 
of PBMCs. The total cell numbers were detected using a 
Bio-Rad automatic cell counter, and the total number of 
frozen PBMCs was significantly reduced compared with 
that in fresh samples (P < 0.0001). However, there was 
no significant change after cryopreservation for 1, 3, or 
6  months, and the statistical results showed 1  m versus 
3 m, P = 0.48; 1 m versus 6 m, P = 0.84; 3 m versus 6 m, 
P = 0.11 (Fig.  2A). The viability of the PBMCs was also 
reduced significantly after cryopreservation (P < 0.0001) 
but remained stable during the different cryopreserva-
tion times, the statistical results showed that 1 m versus 
3 m, P = 0.99; 1 m versus 6 m, P = 0.10; 3 m versus 6 m, 
P = 0.05 (Fig.  2B), indicating that although cryopreser-
vation affects the cell recovery efficiency and viability of 
PBMCs, PBMCs still maintain a stable state during long-
term cryopreservation.

T cell subtypes in the pbmcs were not susceptible 
to long‑term cryopreservation
Peripheral blood mononuclear cells contain two kinds of 
immune cell subtypes, namely, innate immune cells and 
adaptive immune cells. To further elucidate the changes 
in the PBMC subtypes after cryopreservation, the expres-
sion of the immune cell markers between freshly isolated 
and cryopreserved PBMCs were detected by flow cytom-
etry. Firstly, the proportion of total leukocytes showed no 
significant difference during long-term cryopreservation. 
Then, the phenotypes of the innate immune cells were 
observed(Fig.  3A). Compared with the freshly isolated 
PBMCs, the number of monocytes and ILC were not only 
reduced significantly after cryopreservation (P < 0.01 for 
monocytes; P < 0.01 for ILC) but also changed dynami-
cally during long-term cryopreservation (1  m vs. 3  m, 
3 m vs. 6 m, P < 0.05, P < 0.05 for monocytes; 1 m vs. 6 m, 
3 m vs. 6 m, P < 0.05, P < 0.01 for ILC) (Fig. 3B, G). Fur-
ther analysis of the ILC subtypes showed that ILC1 and 
ILC3 were affected by long-term cryopreservation (1  m 
vs. 3 m, 1 m vs. 6 m, 3 m vs. 6 m, P < 0.05, P < 0.05, P < 0.01 
for ILC1; 1 m vs. 3 m, 1 m vs. 6 m, 3 m vs. 6 m, P < 0.01, 
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Fig. 1  Gating strategies by flow cytometry. A, B Gating strategies for PBMCs subtypes. C Gating strategies for Th, Tc and Tcm, naive T, Tem, effector T. 
D Gating strategies for T cell apoptosis and proliferation. E Gating strategies for functional T cell subtypes-Th1, Th2, Th17. F Gating strategies for Tfh, 
Tregs and naïve Tregs,memory Tregs
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P < 0.01, P < 0.01 for ILC3), except for ILC2 (Fig. 3G), and 
the proportions of these subtypes in ILC were changed 
either during long-term cryopreservation or in freshly 
isolated PBMCs(Fig. 3H). Although the number of natu-
ral killer (NK) cells decreased significantly compared 
with that of the freshly isolated cells (Table  1), the NK 
cells remained stable during long-term cryopreservation 
(Fig.  3C). The phenotypes of the adaptive immune cells 
were observed, and there was a significant change in the 
percentages of T cells and B cells between the fresh and 
cryopreserved adaptive immune cells (Fig.  3D, Table  1). 
However, there was no difference in the percentages of T 
cells and natural killer T (NKT) cells between the PBMCs 
cryopreserved at different times (Fig. 3E, F).

T cell proportion, apoptosis, and proliferation were 
not affected by long‑term cryopreservation
T cell response is an important part of cellular immunity 
and is involved in various types of biological functions 
against diseases and infections. Previous results have 
already confirmed the stability of T cell proportion after 
cryopreservation for 1, 3, and 6  months, respectively. T 
cells can be divided into CD4+ helper T cells and CD8+ 
cytotoxic T cells. The percentages of CD4+ T had no dif-
ference between the freshly isolated and cryopreserved 
PBMCs. Interestingly, the percentages of CD8+ T cells 
in the cryopreserved PBMCs were significantly reduced 
when compared with that in freshly isolated PBMCs 
(fresh vs. 1 m, 3 m, 6 m, P < 0.0001, P < 0.0001, P < 0.001; 
1 m vs. 3 m, 6 m, P < 0.0001, P < 0.0001), indicating that 
the number of T cells decreased after cryopreservation 
which was mainly influenced by CD8+ T cells (Fig. 4A).

Although the viability of PBMCs have been proven to 
remain stable during cryopreservation in previous stud-
ies, cryopreservation may disrupt the integrity of the 
cell membrane, change the mitochondrial membrane 

potential, and cause cell apoptosis. The results indicated 
that the apoptosis of CD4+ T and CD8+ T cells were 
not affected by cryopreservation (Fig. 4B). On the other 
hand, proliferation of CFSE-labeled T cells was assessed, 
and the proliferation capacity between the freshly iso-
lated and cryopreserved PBMCs changed significantly 
after stimulation with T cell activator and IL-2 (fresh 
vs. 1 m, 3 m, 6 m, P < 0.05, P < 0.05, P < 0.05), but no sig-
nificant change was observed after prolonging the freez-
ing time. This change in T cells was mainly caused by 
the CD4+ T cells, and the proliferation of CD8+ T cells 
was unchanged between the freshly isolated and cryo-
preserved PBMCs during cryopreservation (Fig.  4C). 
Although the proliferation ratio of the T cells was not 
affected by the extension of freezing time, it seemed that 
the passages of the T cells were changed, and after 72 h 
of stimulation under the same conditions, the number 
of proliferating cells cryopreserved for 3 or 6  months 
was significantly less than that of the cells cryopreserved 
for 1 month (Fig. 4D). In the experiment, we also found 
that sufficient cell numbers had a great influence on the 
results of proliferation (data not shown).

Proportions of the activated T cells, naïve T cells, central 
memory T cells, effector T cells, and effector memory 
T cells were dynamically changed after long‑term 
cryopreservation
Further study is necessary as there are several T cell sub-
types according to their status and activation. Propor-
tion of activated CD3+ T cells decreased significantly 
not only between the freshly isolated and cryopreserved 
PBMCs but also in the different cryopreservation times 
(fresh vs. 6 m, P < 0.01; 1 m vs. 3 m, 3 m vs. 6 m, P < 0.01, 
P < 0.0001). This change was mainly caused by CD8+ T 
cells (Fig. 5A, Table 2).

(A) (B)

Fig. 2  PBMCs recovery and viability. A total cells of PBMCs after cryopreservation(n = 57) and B proportions of live PBMCs (n = 20) in fresh isolated 
and cryopreserved (1, 3 and 6 mo, respectively) PBMCs



Page 6 of 14Li et al. BMC Immunology           (2022) 23:30 

T cells, whether expressing C–C chemokine recep-
tor type 7 (CCR7) and CD45RA or not, can be divided 
into naïve T cells, central memory T cells, effector T 
cells, and effector memory T cells, and can be further 
divided into CD4+ T or CD8+ T cells. Compared with 
that in freshly isolated cells, the proportions of naïve 
CD4+ T cells and naïve CD8+ T cells both decreased 
after cryopreservation for 6 months, and these changed 
dynamically at different freezing times. Although the 
proportion of CD4+ T central memory (Tcm) and 
CD8+ Tcm decreased significantly at 3  months, there 
was no significant change in 6 months as compared to 

that in freshly isolated cells. The proportions of effec-
tor memory cells (Tem) in both the CD4+ or CD8+ T 
cells, which decreased slightly after 1  month of cryo-
preservation, increased significantly with the extension 
of the freezing time (Fig.  5B, C, Table  2). The effector 
CD4+ and CD8+ T cells also tended to increase after 
a decrease in the cryopreservation time (Fig.  5B, C, 
Table  2). These results suggest that cryopreservation 
resulted in a significant reduction in the proportion of 
naïve T cells and that other subtype T cells increased 
after long-term cryopreservation but still differed from 
that in freshly isolated samples.
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Functional T cells remained stable after long‑term 
cryopreservation, expect for tregs
To determine whether functional T cells were affected 
by long-term cryopreservation, the Th cells were marked 
with IFN-γ, IL-4, and IL-17, the T follicular helper cells 
(Tfh) were marked with CD45RO and C-X-C motif 
chemokine receptor 5 (CXCR5), and the Tregs were 
marked with CD25, CD127, and FOXP3. As expected, the 
functional T cells remained stable after long-term cryo-
preservation, and compared with that in freshly isolated 
PBMCs, the percentage of inflammatory T cells Th17 
remained stable both before and after cryopreservation, 
Th1 and Th2 increased after 1  month of cryopreserva-
tion, and then remained stable after longer cryopreser-
vation (Fig. 6A, Table 3). The number of Tfhs decreased 
slightly after cryopreservation for 1 month and remained 
unchanged after 3  months or longer (Fig.  6B, Table  3). 
The CD4+ T cells, which express the surface marker 
CD25 together with intracellular FOXP3, are Tregs. 
Down-modulated IL-7 receptor CD127 is also used to 
identify Tregs. Percentages of the CD25+CD127low Tregs 
reduced significantly after cryopreservation, but there 
was no noticeable change after long-term cryopreser-
vation. The results of CD25+FOXP3+Tregs led to the 
same conclusion (Fig. 6C, Table 3). Moreover, the func-
tion of cryopreserved Tregs were tested. It was showed 
that the frequency of Tregs, actived Tregs, proliferated 
Tregs increased significantly when 1 year cryopreserved 
PBMCs were induced into Tregs.The result of suppres-
sive experiment also indicated that cryopreserved Tregs 
maintained suppressive function after long-term cryo-
preservation, especially the capacity of suppressing the 
proliferation of CD8+T. (Fig. 6D, E, Additional file 4: Fig. 
S3)The percentages of naïve Tregs and memory Tregs 
in the CD4+ T cells that were identified with CD45RO 
decreased significantly after cryopreservation and 

remained unchanged with increasing freezing time, and 
the proportions of naïve Tregs and memory Tregs in the 
Tregs dramatically changed (Fig. 6F, Table 3).

Discussion
Peripheral blood mononuclear cells, which contain vari-
ous immune cell types, play a crucial role in peripheral 
circulation; therefore, the quality of PBMCs needs to be 
controlled for clinical application or scientific research 
to obtain large numbers of samples to assess changes in 
the immune microenvironment during disease progres-
sion; that is, PBMCs should be cryopreserved for long 
periods of time [16]. Several reports have suggested that 
both isolation techniques and temperature fluctuations 
may affect cell viability and lymphocyte subtypes [17–
19]. Cryopreservation is a relatively violent process in 
which freezing and thawing methods may cause physical 
and chemical stress on cells, resulting in changes in the 
cell surface markers [5]. In this study, autologous serum 
was used for cryopreservation, and cell numbers, viabil-
ity, and subpopulations divided by different antibodies 
were assessed between freshly isolated and long-term 
cryopreserved PBMCs. Compared with freshly isolated 
PBMCs, both the number and viability of PBMCs were 
reduced after cryopreservation, but there was no signifi-
cant difference during long-term cryopreservation; this 
result was consistent with the research that confirmed 
that PBMCs frozen from 2006 to 2015 maintained a high 
quality after recovery [15].

Peripheral blood mononuclear cells contain multiple 
immune cell types and perform different functions in the 
body. Although, in the research mentioned above, the 
PBMCs lasted a long period of time, the cryopreserva-
tion efficiency of the PBMC subtypes were not assessed 
further. For this purpose, we assessed innate immune 
cells and adaptive immune cells in PBMCs and concluded 

Table 1  The effect of fresh isolation and cryopreservation on innate and adaptive immune cells

Fresh (%) 1 m (%) 3 m (%) 6 m (%)
Mean (range) Mean (range) Fresh versus 1 m

P
Mean (range) Fresh versus 3 m

P
Mean (range) Fresh versus 6 m

P

Lymphocytes 86.6 (72.2–94.9) 87.8 (80–94.6) ns 87.5 (79.3–94.1) ns 89.3 (81.9–95.7) ns

T 73.9 (59.4–80.7) 82.2 (67.1–89.5)  < 0.0001 81.3 (68.2–87.6)  < 0.0001 81.0 (67.3–88.6)  < 0.0001

B 5.77 (2.5–7.3) 4.56 (2.4–7.0) 0.0004 5.51 (3.0–7.7) ns 4.19 (1.7–7.9) 0.0004

NK 12.3 (6.8–24.6) 10.0 (4.1–23.0) 0.0136 7.6 (3.2–19.0)  < 0.0001 8.9 (3.9–18.7)  < 0.0001

NKT 1.7 (0.1–9.3) 1.8 (0.1–10) ns 1.3 (0.1–10.3) ns 1.6 (0.1–12) ns

Monocyte 3.9 (0.5–12.4) 0.2 (0.0–0.8) 0.0004 0.6 (0.0–1.9) 0.0008 0.2 (0.0–0.8) 0.0004

ILC 44.1 (29.9–60.2) 19.1 (11.8–28.6) 0.0002 16.6 (11.6–30.1) 0.0004 31.1 (13.6–55.6) ns

ILC1 36.0 (25.1–54.6) 14.4 (9.4–21.4) 0.0013 10.3 (6.2–21.1) 0.0012 28.0 (11.1–53.0) ns

ILC2 4.3 (1.8–8.1) 1.7 (0.7–3.7) 0.0176 1.7 (0.9–2.9) 0.0148 1.6 (0.8–2.1) 0.0308

ILC3 3.9 (1.7–6.3) 3.0 (1.4–5.6) ns 4.5 (2.1–6.1) ns 1.5 (1.0–2.2) 0.0088
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Fig. 4  Effects of long-term cryopreservation on Tc, Th, apoptosis and proliferation (n = 20, 12, 12 respectively). A The proportion of Th and Tc in 
total T cells and B the proportion of apoptosis and C proliferation in fresh isolated and cryopreserved (1, 3 and 6 mo, respectively) PBMCs. D The 
proliferation results of flow cytometry in fresh isolated and cryopreserved (1, 3 and 6 mo, respectively) PBMCs.*P < 0.05, **P < 0.01,***P < 0.001
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that the T, NK, and NKT cells did not change after long-
term cryopreservation, while B cells, monocytes, and ILC 
changed significantly. In agreement with this, a previous 
study found that the number of B cells decreased and 
induced a higher total immunoglobulin (Ig) G production 
after 12  months of storage [20]. Although we confirmed 
that the proportion of T cells was not reduced during 
cryopreservation, the proportions of T cell subtypes and 
their status or functions may be affected by long-term 
cryopreservation, and the process of ice recrystallization 
or changes in osmotic pressure may damage the cytoskel-
eton and cell membrane [21]. The results of this study 
were similar to those of previous studies, which showed 
that T cells, especially CD4+ T cells, were not significantly 
affected by cryopreservation, regardless of cell propor-
tion, active station, apoptosis, or proliferation [7, 22, 23].

Naive T cells, effector T cells, and Tem cells both in 
the CD4+ T and CD8+ T cells, which were not only 
compared with freshly isolated PBMCs but also in 

different cryopreserved times, were affected by cryo-
preservation. Some studies have reported that the 
number of Tcm increases and that of Tem decreases 
after 12  months of cryopreservation, and it could be 
concluded that these types of T cells seem to be more 
sensitive to the length of cryopreservation [7, 24, 25]. 
T follicular helper cells that express CXCR5 partici-
pate in information transmission or activation of B 
cells and maintain the humoral immune response 
for a long period of time [26]. Although our results 
showed significant changes in the B cells, Tfh was not 
affected by long-term cryopreservation after a slight 
decrease compared with fresh isolated PBMCs. Some 
studies have reported that the freeze–thaw process 
can result in a three to five-fold reduction of malaria 
antigen-specific IFN-γ-producing CD3+CD4+ effec-
tor populations, and others have suggested that cryo-
preservation in general leads to increased cytokine and 
chemokine responses, which is expected for IFN-γ in 

Fig. 5  Effects of long-term cryopreservation on actived T cells and the T cell subtyes expressing CCR7 and CD45RA(n = 20). AThe proportion of 
CD38+HLA-DR+ T cells,Th and Tc. B The proportion of Th Naïve(CD45RA+CCR7+)Tcm(CD45−CCR7+)Tem(CCR7−CD45RA−)effector T(CD45RA+CCR​
−). C The proportion of Tc Naïve(CD45RA+CCR7+)Tcm(CD45−CCR7+)Tem(CCR7−CD45RA−)effector T(CD45RA+CCR​−) in fresh isolated and 
cryopreserved (1, 3 and 6 mo, respectively) PBMCs. *P < 0.05, **P < 0.01,***P < 0.001
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cultured PBMC supernatants [5, 27]. A recent report 
also suggested that there were no significant differ-
ences in the ratio of IFN-γ, IL-4, and IL-17 positive T 
cells between cell preparation tubes (CPT) and bar-
rier-based tube option-Lymphoprep (LP) [28]. In our 
study, cytokines stimulated with phorbol 12-myristate 
13-acetate remained stable after long-term cryopreser-
vation, regardless of pro-inflammatory IFN-γ and IL-17 
or anti-inflammatory IL-4. Several reports noted that 
cryopreservation was detrimental for the suppres-
sive function and downregulated the key molecular 
features of Tregs; this was determined by single-cell 
RNA-sequencing [29, 30]. Our study found that both 
CD127low Tregs and Foxp3+ Tregs were sensitive, and 
the ratio of cells rapidly decreased after initial cryo-
preservation. Then, the percentage of Tregs remained 
stable at a lower level after long-term cryopreserva-
tion, which agreed with the results of previous studies 

[31, 32]. Further studies confirmed that different states 
of Tregs, such as naïve Tregs and memory Tregs, sig-
nificantly decreased in the CD4+ T cells and also dra-
matically changed in the Treg subpopulations after 
long-term cryopreservation. Although cryopreserva-
tion has a greater impact on Tregs, Tregs still maintain 
suppressive function after long-term cryopreservation. 
Notably, althougt Foxp3 is a highly specific marker 
for Treg cells, some effector CD4+ T cell can upregu-
late the expression of Foxp3 but have no regulatory/
suppressive function[33]. The heterogeneity of human 
Foxp3+ regulatory T cells is an enssential and worthy 
issue in subsequent researches.

Finally, we truly considered the certain cell popu-
lation loss may effect the frequency of other subsets 
during the experiment. So we counted absolute cell 
numbers and the results showed the similar trends 
to the frequency of cell subsets (Additional file  2: Fig. 

Fig. 6  Effects of long-term cryopreservation on functional T cells-Th1, Th2, Th17(n = 12)and Tfh, Tregs(n = 18).The proportions of 
IFN-γ+Th1,IL-4+Th2,IL-17+Th17 (A) and CXCR5+Tfh (B) in fresh isolated and cryopreserved (1, 3 and 6 mo, respectively) PBMCs. C The proportions 
of CD4+CD25+Tregs expressing CD127− or Foxp3+. D The frequency of Tregs, actived Tregs, proliferated Tregs after long-term cryopreservation. E 
Suppressive experiment using the CFSE label PBMCs cocultured with cryopreserved Tregs. F CD45RO−Naïve Tregs,CD45RO+Tregs in total CD4+T 
cells or in Tregs in fresh isolated and cryopreserved (1, 3 and 6 mo, respectively) PBMCs. *P < 0.05, **P < 0.01,***P < 0.001
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S1;  Additional file  3: Fig. S2), which futher illustrated 
the reliability of the results in this manuscript.

Conclusions
In the present study, we comprehensively evaluated the qual-
ity of long-term cryopreserved PBMCs and explored changes 
in the cell numbers, viability, and subtypes of PBMCs before 
and after cryopreservation. Particularly, changes in T cell 
apoptosis, proliferation, activation, and function were inves-
tigated and the effects of long-term cryopreservation on the 
same sample were analyzed. The results showed that long-
term cryopreservation affected the activation of T cells and 
the function of Tregs, which are essential to the occurrence 
and development of immune diseases, and the imbalance 
of the ratio of effector T cells and Tregs will cause abnormal 
immune regulation in the body [34, 35]. Overall, the long-
term cryopreservation of PBMCs can be partly used as a 
biological resource for clinical research or basic studies, but 
the effect of cryopreservation on PBMCs should be consid-
ered when selecting cell samples, especially in studying the 
function of activation or suppression. This study emphasized 
a comprehensive assessment of PBMC status after long-
term cryopreservation without further exploring the effects 
of sample collection, including the concentration of cryo-
preserved cells, cryopreservation method (such as the con-
centration of cryoprotectant DMSO or fetal bovine serum), 
warming process, and even the use of anticoagulants. It is 
well known that the standardized management of PBMC 
biobanks is essential for the cell-based immune therapy in 
worldwide clinical trials; this study motivated us to pay more 
attention to the profound influence of cryopreservation 
itself on PBMCs in scientific research or clinical trials while 
improving the standard of biobank establishment.
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