
Introduction

Machine learning algorithms are currently used in

medicine as a major component of consultation systems.

They make diagnostic decisions with quite high levels of

accuracy, significantly facilitating thereby the physician’s

work. However, some machine learning algorithms are

able to solve another no less important task: substantiat

ing diagnoses in a language understood by specialists.

This paper considers the question of substantiation of

diagnoses made using microwave radiometry.

Microwave radiometry is a biophysical method for

noninvasive investigations based on measurements of

internal and surface tissue temperatures from heat emis

sion in the microwave and infrared ranges [1, 2]. Recent

years have seen results in this area demonstrating the

effectiveness of this method in the diagnosis of a number

of diseases [2 10]. In particular, a number of studies have

proposed the following approach to solving this problem

[3 6]. Descriptive mathematical models characterizing

the distinguishing features of the temperature fields of

patients of different diagnostic classes are developed to

support diagnostic decision making. The resulting math

ematical models define a corresponding feature space,

which is used for classification. The feature space has two

functions: first, algorithms trained using these features

display high diagnostic accuracy; second, as the features

characterize the distinguishing properties of a disease, it

becomes possible to analyze and interpret them in a lan

guage understood by diagnosticians.

The problem of substantiation in machine learning is

far from new. However, it is ever more relevant. In partic

ular, means of interpreting classifiers using text data [1]

and images [11] have been considered by researchers. A

variety of general approaches have been discussed [12].

However, processing of quantitative features has its spe

cific characteristics. While in processing words and

images it is sufficient to highlight points typical of one

class or another, numerical data are more naturally ana

lyzed using mathematical models, as will be demonstrat

ed below. It is therefore appropriate to consider substan

tiation using quantitative data separately.

Substantiation methods can be divided into two

types. Methods of the first type do not use any informa

tion from the classifier other than the diagnosis proposed.

Substantiation in this case is built on the values of features

and their processing by statistical methods. However, this

substantiation often fails to correlate with diagnostic

algorithms. Methods of the second type use classifier data

with subsequent processing. For example, probabilistic

information from a na ve Bayesian classifier can be used.

In this case, substantiation corresponds to the principles

of operation of the classifier, and the specialist can see all

the grounds for making the diagnosis. In this work, only

algorithms of the second type are considered.

Despite the fact that substantiation is discussed in

the context of microwave radiometry, the methods pro

posed can also be used for diagnosis using other data. The
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key point in substantiation is a feature space suitable for

interpretation in a language understood by specialists.

Materials and Methods

Diagnosis of breast cancer was made based on meas

urements of skin and internal temperatures at 10 different

points in each breast, along with two further reference

points. The measurement scheme is shown in Fig. 1. In

this scheme, the central point corresponds to the nipple

and points 1 8 to the external radius of the breast. T1 and

T2 are reference points.

Thus, the database consisted of a set of internal tem

peratures (1) and a set of skin temperatures (2):

(1)

(2)

where i is the patient number, mw indicates temperatures

measured in the microwave range, and ir indicates tem

peratures measured in the infrared range. The first sub

script is the number of the point at which the temperature

was measured; the second subscript is the measurement

location: l – left breast, r – right breast, p – reference area.

The following characteristic features were identified

in the process of analyzing temperature measurements as

typical of healthy subjects and generally not of patients

without breast cancer: low levels of thermal asymmetry

(the difference between temperatures at symmetrical

measurement points in right and left breasts); uniform

distribution of temperature in the breast, i.e., absence of

“hot spots”; particular values for the skin to internal

temperature ratio.

These data were used to construct 62 different fea

tures [5]. The resulting feature space was classified using

various algorithms. Table 1 shows the results of computa

tional experiments. Algorithms were evaluated using two

parameters: sensitivity (the proportion of correctly diag

nosed patients in the risk group) and specificity (the pro

portion of correctly diagnosed healthy subjects). This

yielded a feature space effective for the diagnosis of breast

cancer and providing substantiation in a language under

stood by specialists.

Let us consider these algorithms one by one.

Neural Networks

This model consists of a set of artificial neurons

combined into layers. Neurons from one layer send their

information to neurons in the next layer. Each neuron is a

combination of neurons in the preceding layers. The first

layer consists of neurons whose values correspond to the

input feature. This type of classifier is often highly accu

rate, though it has one major drawback – uninterpretabil

ity. Because of the constant transformation of features,

the model becomes a “black box,” in which it is not pos

sible to evaluate the contributions of each feature to the

diagnosis and the corresponding diagnostic grounds. It is

important to note that this applies to numerical data. As

already noted in the Introduction, these have their specif

ic characteristics. In particular, neural networks operating

with images are interpretable.

Logistical Regression

This algorithm is a probabilistic model. Diagnoses are

established in accordance with the logistical function

(3)

where

Fig. 1. Temperature measurement scheme.

TABLE 1. Classifier Accuracy

Classifier

Neural network

Logistical regression

Decision tree

Na ve Bayesian classifier

Sensitivity

0.930

0.894

0.886

0.860

Specificity

0.908

0.913

0.889

0.867

Left breast Right breast
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is a linear combination of features, xi are features, and ci

are regression coefficients. If the value of the linear com

bination is negative, the subject is regarded as healthy.

Conversely, a positive value is indicative of a disease. Work

reported in [13] describes the process of substantiation of

diagnoses by logistical regression. However, we believe

that it is important to note some drawbacks and limita

tions of the algorithm.

The principle of operation of the algorithm is such

that the substantiation is based on the values of products

cixi. If the product is negative, feature xi is typical of

healthy subjects. However, in practice, features often

have exclusively positive or negative values. That is,

sign(cixi) = const, so that the feature becomes typical of

only one diagnosis. To solve this problem, the feature

needs to be transformed such that a negative value stays

for one diagnosis and a positive value, for another. Such

transformation of features requires a separate study and

is not addressed here.

Decision Tree

This algorithm is a conditional model. The condi

tions are organized into a tree like structure whose nodes

represent conditions of the type “Feature i ≤ x.” Each

node is connected with the next two. The final node is the

diagnosis. Figure 2 presents an example of a decision tree.

The key point in substantiation is that the structure

of the decision tree is static, so each node can be given a

verbal description. For example, in Fig. 2, the first node

might correspond to the following descriptions:

– if the condition at the node is fulfilled, then “The

value of the feature 1 is normal;”

– if the condition at the node is not fulfilled, then

“The value of the feature is 1 is significantly elevated.”

The principle of assessing the “significant elevation”

is analogous to the applications of the na ve Bayesian

classifier considered below. However, the nodes of the tree

are described manually, as the values of each subsequent

node depend on the context of the previous node.

1. For each node in the decision tree:

2. If the patient being classified “falls” into the node

under consideration, then:
3. If the condition at the node is fulfilled for the

patient, then: display the information for the node when

the condition is fulfilled.

4. Else: display information for the node, when the

condition is not fulfilled.

Na ve Bayesian Classifier

This algorithm is a probabilistic model that makes

diagnoses on the basis of the object’s features being typi

cal of one or another class of patients. In our opinion, it

is convenient for substantiation purposes. The formula for

computation of the class is:

(4)

where ŷ is the final class; P(y) is the probability of class y,

i.e., the proportion of the class in the training set; and

P(xi | y) is the conditional probability.

Thus, if P(x2 | sick) > P(x2 | healthy), this means that

feature x2 is characteristic of subjects of the “sick” class.

The substantiation is based on this knowledge.

The substantiation algorithm in more details is:

1. For each feature i of [feature 0 to feature m]:

2. If P(feature i | 1) > P(feature i | 2), then: Feature i

is characteristic of class 1 (healthy subjects).

3. Else: Feature i is characteristic of class 2 (patients

in the risk group).

4. Determine the deviation of feature i from normal.

As probabilistic evaluation of the classifier provides

no information as to what is specific about the feature for

a given class, additional analysis of features is required.

One approach to this analysis consists of comparing the

value of the feature with its distribution in healthy sub

jects. Let us compare the feature with four percentiles

(25th, 40th, 60th, and 75th):

Fig. 2. Example of decision tree structure.

Feature 1 ≤ 2

Feature 2 ≤ 1

Class 2

Class 2

Class 1

Correct

False

^
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– if below the 25th percentile, it is significantly

below normal;

– if between the 25th and 40th percentiles, it is

slightly below normal;

– if between the 40th and 60th percentiles, it is with

in the normal range;

– if between the 60th and 75th percentiles, it is

slightly greater than normal;

– if greater than the 75th percentile, it is significant

ly greater than normal.

Thus, substantiation of the type “Mean temperature

of the left breast is significantly greater than normal,

which is characteristic of patients with cancer” is

obtained. The number of threshold values and their

description can be altered depending on the specific

details and context of the subject area.

Results

We will present an example of substantiation using

the “na ve Bayesian classifier” and “decision tree” algo

rithms. The feature space will consist of four functions

characterizing a number of hypotheses:

– insignificant thermal asymmetry (feature F1):

– uniform temperature distribution (feature F2):

– internal temperature variation. Increased values

indicate the presence of a “hot spot” (feature F3):

– skin temperature variation. Increased values indi

cate the presence of a “hot spot” (feature F4):

Let us first consider the na ve Bayesian classifier.

The values of the features for a subject undergoing dia

gnosis and their conditional probabilities are given in

Table 2.

It can be seen from Table 2 that the probability of the

subject belonging to the class of patients is evidently

greater in terms of all features than the probability of

belonging to the group of healthy subjects. We will con

sider this using the first feature as an example. Figure 3

shows a box and whisker plot. The box at left shows the

distribution of values for healthy subjects and the box at

right shows values for patients. The dotted line shows the

value of the feature in the subject concerned. It can be

seen from Fig. 3 that such values for features are encoun

tered more frequently in patients. This also applies to

other features.

Thus, we obtain the following substantiation accord

ing to this algorithm:

– all features are typical of the “sick” class;

– thermal asymmetry values are significantly greater

than normal;

– nipple temperature is slightly greater than normal;

– internal temperature variation is significantly

greater than normal; internal “hot spots” may be present;

– skin temperature variation is slightly greater than

normal.

Let us consider a decision tree using the same exam

ple. Using the training set, the algorithm constructed a

tree structure shown in Fig. 4.

On diagnosis, the subject checks conditions from left

to right. Thus, grey cells in Fig. 4 are those complying

with the corresponding rules for the subject. In the case

under consideration, increased thermal asymmetry indi

cates that the subject is sick. Feature F3 – the magnitude

of variation in deep temperature – is not included in the

substantiation. This is because the value of 3.85 for this

feature is significantly greater than normal. The fact that

TABLE 2. Na ve Bayesian Classifier

Feature

Value

P(Feature | class “healthy”)

P(Feature | class “sick”)

F1

8.7

4.3·10−7

0.1

F2

1.5

0.26

0.42

F3

3

0.1

0.17

F4

0.89

0.18

0.29

Feature

V
al

u
e

Fig. 3. Box and whisker plot for the first feature: 1) healthy; 2) sick.
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the value of a feature is below a specified level does not

characterize it. It could be either at the normal level or

significantly different from normal. However, this piece of

information is not used in the diagnosis. It is sufficient for

the classifier that the subject has elevated thermal asym

metry.

Let us consider a healthy subject correctly identified

by both classifiers. According to the na ve Bayesian clas

sifier, the values of each feature are more characteristic of

healthy subjects. Comparison of features with normal

gave the following results: thermal asymmetry is in the

normal range, nipple temperature is slightly below nor

mal, internal temperature variation is slightly below nor

mal, and skin temperature variation is significantly below

normal.

Substantiation using a decision tree yielded the fol

lowing: thermal asymmetry is not increased, and nipple

temperature is low.

It is important to note that substantiation using dif

ferent algorithms does not guarantee obtaining similar

results, as seen in the examples given.

Conclusions

It should be noted in conclusion that selection of a

substantiation method depends primarily on the dia

gnostic accuracy of the classifier. If diagnostic accuracies

of all classifiers differ insignificantly, the choice is based

on the specific characteristics of the substantiation

methods. In one area it might be important to report

probabilistic information, while in another it may be

more important to have relative statistical information,

i.e., increases or decreases in feature values relative to

normal.

In our opinion, further studies should address other

algorithms and the development of methods for substan

tiating these algorithms using numerical data. Based on

the classification algorithms considered here, we see no

opportunity for building a general approach to substan

tiation, as substantiation is significantly influenced by

the specific characteristics of operation of each algo

rithm.
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