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USA; 3Departmet of Econometrics, Kirklareli University, 3 Kayalı Kampüsü Kofçaz, Kirklareli, Turkey; 4Department of Medicine, Division of Cardiology, University of North
Carolina at Chapel Hill, 160 Dental Circle, Chapel Hill, NC 27599, USA; 5Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd. NE
Atlanta, GA, 30322, USA; 6Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, 401 East River Parkway, Minneapolis, MN 55455, USA; and
7Internal Medicine, Epidemiological Cardiology Research Center, Sections on Cardiovascular Medicine, Wake Forest School of Medicine, 525 Vine Street, Winston-Salem, NC
27101, USA

Received 14 June 2021; revised 19 August 2021; editorial decision 31 August 2021; accepted 1 September 2021; online publish-ahead-of-print 9 October 2021

Aims Heart failure (HF) is a leading cause of death. Early intervention is the key to reduce HF-related morbidity and
mortality. This study assesses the utility of electrocardiograms (ECGs) in HF risk prediction.

...................................................................................................................................................................................................
Methods and
results

Data from the baseline visits (1987–89) of the Atherosclerosis Risk in Communities (ARIC) study was used.
Incident hospitalized HF events were ascertained by ICD codes. Participants with good quality baseline ECGs were
included. Participants with prevalent HF were excluded. ECG-artificial intelligence (AI) model to predict HF was
created as a deep residual convolutional neural network (CNN) utilizing standard 12-lead ECG. The area under
the receiver operating characteristic curve (AUC) was used to evaluate prediction models including (CNN), light
gradient boosting machines (LGBM), and Cox proportional hazards regression. A total of 14 613 (45% male, 73%
of white, mean age ± standard deviation of 54 ± 5) participants were eligible. A total of 803 (5.5%) participants
developed HF within 10 years from baseline. Convolutional neural network utilizing solely ECG achieved an AUC
of 0.756 (0.717–0.795) on the hold-out test data. ARIC and Framingham Heart Study (FHS) HF risk calculators
yielded AUC of 0.802 (0.750–0.850) and 0.780 (0.740–0.830). The highest AUC of 0.818 (0.778–0.859) was
obtained when ECG-AI model output, age, gender, race, body mass index, smoking status, prevalent coronary heart
disease, diabetes mellitus, systolic blood pressure, and heart rate were used as predictors of HF within LGBM. The
ECG-AI model output was the most important predictor of HF.

...................................................................................................................................................................................................
Conclusions ECG-AI model based solely on information extracted from ECG independently predicts HF with accuracy compar-

able to existing FHS and ARIC risk calculators.
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Introduction

There are�6.5 million adults, with more than 550 000 yearly diagno-
ses, in the USA that are reported to suffer or have suffered heart fail-
ure (HF).1,2 Heart failure is a progressive complex condition that is
often terminal and is a major public health concern and burden.3,4

Heart failure often results in structural or functional cardiac disorders
that impair the pumping of blood between cardiac compartments
and the rest of the body.5 Early signs and symptoms of HF can sub-
stantially vary between different groups of patients, which can further
complicate diagnosis and treatment.5,6

Heart failure was mentioned in 13.4% of all death certificates in the
USA in 2018. While there have been advances in diagnoses and man-
agement, outcomes in patients with HF are still largely variable, and
risks among different subgroups can substantially change over time.2,6

Early diagnosis and treatment can significantly improve HF progno-
sis,7 and subsequently help reduce the health and economic burdens
of HF. Although HF therapy has somewhat improved survival
rates, greater efforts are needed toward early detection of cardiac
disorders and prevention of HF.8 Thus, it is essential to develop HF
pre-screening tools that rely on a minimal amount of data that are
easy to obtain, low cost with accessibility and promise of future re-
mote applications. At this point, better utilization of electrocardio-
grams (ECGs) beyond their current clinical use and interpretation
has the potential to lead to the development of such HF pre-
screening tools.

Several recent studies have shown the utility of artificial intelli-
gence (AI) applied to digital ECGs (time-voltage signal) in detecting
and predicting cardiovascular disease. Specifically, such AI models
utilizing digital ECGs were used in prediction of atrial fibrillation,9

Graphical Abstract

Translational perspective
This study investigates whether electrocardiogram (ECG) alone, when processed via artificial intelligence, can accurately predict
the risk of heart failure (HF). ECG-artificial intelligence deep learning models using only standard 10 s 12-lead ECG data from 14 613
participants from the Atherosclerosis Risk in Communities (ARIC) study cohort could predict future HF with comparable accuracy
to the HF risk calculators from ARIC study and Framingham Heart Study. Artificial intelligence is capable of using ECG tracings
to predict incident HF. This can also enable pre-screening of large patient populations for risk of HF remotely when adapted into
smartwatches with ECG functionality.
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..cardiomyopathy,10,11 and all-cause mortality.12 We hypothesize that
standard 10 s 12-lead ECG alone can predict HF risk within 10 years
with moderately high accuracy. We utilized data from the
Atherosclerosis Risk in Communities (ARIC) study cohort to test this
hypothesis.

Methods

Cohort
The ARIC is an ongoing prospective epidemiologic study conducted in
four communities in the USA (Forsyth County, NC; Jackson, MS;
Washington County, MD; and the northwest suburbs of Minneapolis,
MN) and designed to investigate the aetiology of atherosclerosis and
its clinical outcomes, and cardiovascular risk factors associated with
demographics, race, gender, and time. From 1987 to 1989 (visit 1, the
baseline for our analysis), a total of 15 792 participants (8710 women
and 4266 of black race) were enrolled and completed a home inter-
view and clinic visit. In this analysis, we utilized data from visit 1 and
follow-up visit 2 to visit 4 (visit 2: 1990–92, visit 3: 1993–96, visit 4:
1996–98) in AI-based models while using the entire follow-up in sur-
vival analysis up to 2019.

Outcomes
Our main outcome was predicting new-onset HF events within 10 years
from visit 1 baseline examination. Heart failure was defined by hospitaliza-
tion and HF as a hospital discharge diagnosis [International Classification
of Disease, Ninth Revision, Clinical Modification (ICD-9-CM), code 428],
or in-hospital or out-of-hospital deaths attributed to HF (deaths coded as
ICD-9-CM code 428 or International Classification of Disease, Tenth
Revision, code 150, without a previous record of hospitalization with
ICD-9-CM code 428).13

Risk factors
We used a total of 12 risk factors which were used in the ARIC HF risk
calculator8 and Framingham Heart Study (FHS) HF risk calculator.3 These
clinical risk factors included in the ‘ARIC’ model in this study were gender,
race, age, diabetes, hypertension medication, body mass index (BMI; kg/
m2), systolic blood pressure (mmHg), prevalent coronary heart disease,
smoking status, and heart rate (beats per minute, b.p.m.). The clinical risk
factors included in the ‘Framingham’ model were age, diabetes, BMI (kg/
m2), systolic blood pressure (mmHg), prevalent coronary heart disease,
heart rate (b.p.m.), left ventricular hypertrophy (LVH), and valvular dis-
ease (see Table 1) (see Supplementary material online, Section S1 for
details).

Electrocardiogram data
Raw digital ECG data (time-voltage) for 12 leads from the baseline (visit
1) were used. A supine 12-lead ECG at 250 Hz frequency of 10 s at rest
was used. The ECGs were initially obtained from the MAC PC10 person-
al cardiogram (Marquette Electronics, Milwaukee, WI, USA). In this study,
ECG data are used as indicators for possible subclinical HF risk.

Inclusions/exclusion criteria
All ARIC participants with good quality ECG data at baseline as well as in-
formation on all relevant risk factors and HF events during the study’s
long-term follow-up were eligible for inclusion in this analysis.
Participants with prevalent HF (n = 739) at the baseline visit, missing HF
data during follow-up, and missing or poor-quality ECGs were excluded.

Study design
We randomly split our study cohort into 80% for model building and
20% as hold-out test data. Heart failure prediction models were built
using different machine learning and statistical methods with five-fold
cross-validation using the 80% model building dataset. During five steps
of five-fold cross-validation, we built five independent models from

......................................................................................................

....................................................................................................................................................................................................................

Table 1 Study cohort characteristics and risk factors

Risk factors n (%) or mean (SD) v2 or T-test

HF in 10 years (n 5 13 810) HF in 10 years (n 5 803) P-values

Gender (male)a 6179 (44.7) 456 (57.2) <0.001

Race (Black)a 3559 (25.8) 289 (36.0) <0.001

Age at visit 1a,b (years) 53.9 (5.7) 57.2 (5.2) <0.001

BMI (kg/m2)a,b 27.4 (5.2) 29.5 (6.3) <0.001

Smoking statusa <0.001

Former 4407 (31.9) 284 (35.4)

Current 3485 (25.2) 304 (37.9)

Prevalent coronary heart diseaseb 458 (3.3) 138 (17.2) <0.001

Diabetes mellitusa,b 1326 (9.6) 286 (35.6) <0.001

Systolic blood pressure (mmHg)a,b 120.5 (18.4) 131.2 (22.9) <0.001

Hypertension medicationa 3566 (25.8) 420 (52.3) <0.001

Left ventricular hypertrophyb 253 (1.9) 50 (6.4) <0.001

Valvular diseaseb 33 (0.2) 9 (1.1) <0.001

Heart rate (ventricular, beats per

minute)a,b

66.4 (10.0) 70.5 (12.3) <0.001

ARIC, Atherosclerosis Risk in Communities; FHS, Framingham Heart Study; HF, heart failure; SD, standard deviation.
aVariables used in ARIC risk calculator.
bVariables used in FHS risk calculator.

628 O. Akbilgic et al.
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scratch and did not transfer any learned parameter from one model to
another to avoid data leak. For each method, the model providing the
highest cross-validated area under the receiver operating characteristics
curve (ROC AUC) statistics were identified as the final models. The final
cross-validated models were then implemented on the 20% hold-out test
data. All model comparisons and evaluations were based on ROC AUC
statistics obtained on the 20% hold-out test dataset. The statistical signifi-
cance of the difference between the two AUC’s was compared using
DeLong test.14 The models and analyses were performed using the
Python programming language.

Prediction of heart failure via deep learning

using raw digital electrocardiograms
We implemented convolutional neural networks (CNNs), namely the
ECG-AI model, to predict HF from raw digital ECG data. We created a
CNN architecture by adapting ResNet15 that receives ECG leads as 1D
digital signals and outputs risk for HF (see Supplementary material online,
Section S2 and Figure S1 for details).

Prediction of heart failure using existing

Framingham Heart Study and

Atherosclerosis Risk in Communities heart

failure risk calculators
To compare our ECG-AI approach to more traditional risk calculators
we used two HF risk calculators; the FHS risk calculator3 and the ARIC
study risk calculator.8 Components of the ARIC and FHS risk calculators
are outlined in Table 1. We implemented FHS and ARIC risk calculators
on only 20% hold-out test data since we did not re-build the models.

Ensemble heart failure risk predictions
Up to this point, our analysis is based on either creating a novel CNN
model to predict HF from ECGs or based on currently available FHS and
ARIC HF risk calculators. However, we also investigated combinations
(or ensemble) of various HF risk predictions and risk factors using a fre-
quently used machine learning algorithm, light gradient boosting machines
(LGBM).16 In this ensemble approach, we build HF prediction models on
the same 80% model building data and evaluated the models on the same
20% hold-out test data for streamlined comparisons.

Time dependence analysis
We also adapted our machine and deep learning-based models for sur-
vival analysis. To achieve this, we built a Cox proportional hazards regres-
sion model by using ML- or DL-based risk predictions as independent
variables of the Cox model. For a fair comparison, we then substituted t
with 10 years to obtain survival probability (the risk for HF in our case)
based on the 10-year risk predictions.

Results

Clinical characteristics
This analysis included 14 613 (age 54.1þ 5.8 years; 45.4% men, 36.0%
blacks) with no prevalent HF at baseline. A total of 803 (5.5%; cases)
developed HF within 10 years following baseline examination. The
average time of diagnosis of HF from the baseline visit was 6.0 6 2.8
years. The remaining 13 810 (94.5%) participants (controls) did not
develop HF within 10 years following baseline examination. The aver-
age follow-up time for controls was 23.6 ± 7.8 years. Differences in
baseline ECG abnormalities between cases and controls are pre-
sented in Supplementary material online, Table S1.

Among the 12 clinical risk factors considered, 8 variables did not
have any missing data. One patient had a missing BMI and this was
replaced with the study cohort average. There were 13 participants
with missing smoking status and were assumed to have never
smoked. There were 17 participants with missing valvular disease
data, and they were considered not to have a valvular disease. Lastly,
there were 331 participants with missing LVH data and were
assumed not to have experienced LVH. The detailed characteristics
of our study cohort in terms of clinical risk factors used were sum-
marized in Table 1.

Heart failure prediction
We ran 11 HF prediction models using CNN or LGBM utilizing vari-
ous predicting variable combinations. The AUC statistics obtained on
the same 20% hold-out data are summarized in Table 2 for four of the
models, while the rest of the models were presented in
Supplementary material online, Table S2.

..................................................................................................................................

....................................................................................................................................................................................................................

Table 2 Heart failure prediction results

HF risk prediction

method

Model inputs (‘X’ represents inputs used in corresponding method) AUC (95% CI) on

20% hold-out test

data
ECG-AI output ECG ARIC variablesa FHS variablesb

CNN (ECG-AI) X 0.756 (0.717–0.795)

ARIC risk calculator X 0.802 (0.750–0.850)

FHS risk calculator X 0.778 (0.740–0.830)

Cox X X X 0.818 (0.777–0.858)

ARIC, Atherosclerosis Risk in Communities; AUC, area under the receiver operating characteristic curve; BMI, body mass index; CI, confidence interval; CNN, convolutional
neural network; ECG-AI, electrocardiographic artificial intelligence; FHS, Framingham Heart Study; HF, heart failure.
aARIC variables: age, gender, race, BMI, smoking status, prevalent coronary heart disease, diabetes mellitus, systolic blood pressure, heart rate.
bFHS variables: age, BMI, prevalent coronary heart disease, diabetes mellitus, systolic blood pressure, left ventricular hypertrophy, valvular disease, heart rate.

ECG-AI for Heart Failure Prediction 629
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..ECG-AI CNN model which only uses digital 12-lead ECG data
alone as input, resulting in an AUC of 0.756 on hold-out dataset,
which was not significantly different than the AUC (0.778) of the FHS
risk calculator (DeLong test, P = 0.180). However, the AUC of the
ECG-AI model was lower than the AUC (0.778) of the ARIC risk cal-
culator (DeLong test, P = 0.034). In an additional analysis, we

experimented with applying the same ECG-AI architecture using
only lead I data. Interestingly, we obtained an AUC of 0.754 (0.709–
0.798), similar to the 12-lead version.

We also built traditional Cox proportional hazards regression to
model time from baseline to incident HF up to 2018 follow-up. Cox
model, utilizing all ARIC and FHS risk calculator variables as well as

....................................................................................................................................................................................................................

Table 4 Response of electrocardiographic artificial intelligence and Cox proportional hazards regression models to
follow-up electrocardiograms

Mean Drisk with 95% CI as a percentage Controls Cases

ECG-AI model 0.235 (0.178–0.291) 1.414 (0.912–1.917)

Cox model 0.061 (0.031–0.0915 2.568 (1.883–3.252)

CI, confidence interval; ECG-AI, electrocardiographic artificial intelligence.

....................................................................................................................................................................................................................

Table 5 Response of electrocardiographic artificial intelligence and Cox proportional hazards regression models to
follow-up electrocardiograms

Scenarios ECG time TP FP TN FN Specificity Sensitivity Negative predictive value Positive predictive value

1 Baseline 116 764 1819 2 0.7042 0.9831 0.9990 0.1318

Follow-up 116 764 1819 2 0.7042 0.9831 0.9990 0.1318

2 Baseline 108 515 2068 10 0.8006 0.9153 0.9952 0.1734

Follow-up 116 528 2055 2 0.7956 0.9831 0.9990 0.1801

3 Baseline 93 261 2322 25 0.8990 0.7881 0.9893 0.2627

Follow-up 111 258 2325 7 0.9001 0.9407 0.9970 0.3008

4 Baseline 77 127 2456 41 0.9508 0.6525 0.9836 0.3775

Follow-up 95 123 2460 23 0.9524 0.8051 0.9907 0.4358

ECG, electrocardiogram; FN, false negative; FP, fasle positive; TN, true negative; TP, true positive.

....................................................................................................................................................................................................................

Table 3 Cox proportional hazards regression model modelling heart failure risk

Covariate Coefficient Hazard ratio 95% CI P-value

ECG-AI outcome 5.05 155.61 58.93–410.92 <0.01

Gender 0.31 1.37 1.14–1.65 <0.01

Race 0.14 1.15 0.94–1.40 0.176

Age 0.08 1.09 1.07–1.11 <0.01

Diabetes 0.96 2.60 2.14–3.17 <0.01

Hypertension medication 0.49 1.62 1.35–1.96 <0.01

BMI 0.04 1.04 1.02–1.05 <0.01

Systolic blood pressure 0.01 1.017 1.00–1.01 <0.01

Prevalent coronary heart

disease

0.89 2.44 1.89–3.14 <0.01

Ventricular rate 0.02 1.02 1.02–1.03 <0.01

Left ventricular

hypertrophy

0.35 1.42 1.00–2.02 0.049

Valvular disease 1.35 3.86 1.98–7.53 <0.01

Smoking status 0.56 1.75 1.56–1.96 <0.01

BMI, body mass index; CI, confidence interval; ECG-AI, electrocardiographic artificial intelligence.

630 O. Akbilgic et al.
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the outcome of ECG-AI, resulted in a concordance of 0.826 (0.804–
0.848). For a fair comparison with the other three models, we set
t = 10 and calculated the cumulative risk for HF within 10 years and
obtained an AUC of 0.821 (0.781–0.861), sensitivity of 0.711, sensitiv-
ity of 0.752, positive predictive value of 0.132, and negative predictive
value of 0.980. The AUC of the Cox model was higher than both
AUC of the FHS risk calculator (DeLong test, P < 0.01) and the ARIC
risk calculator (DeLong test, P < 0.01). The details of the Cox model
provided in Table 3 revealed that the ECG-AI outcome was the most
important predictor of HF. This is also confirmed by the variable im-
portance analysis on the LGBM model utilizing the outcome of the
ECG-AI model and ARIC variables as inputs, which provided an AUC
of 0.818 (see Supplementary material online, Figure S2 and Section S3).

Subgroup analysis
Cox model yielded an AUC of 0.818 (0.781–0.858) for black, 0.816
(0.776–0.857) for white, 0.828 (0.788–0.868) for male, and 0.810
(0.769–0.851) for female participants.

Sensitivity analysis over time
Our analysis was based on ECGs recorded at baseline exams.
However, we also had access to ECGs recorded over follow-up
exams. We used these follow-up exams to assess the sensitivity of
our model on follow-up ECGs closer to the HF events. For the 20%
hold-out dataset, we run our ECG-AI and final Cox models on the
ECGs collected after baseline yet still preceding HF event. For con-
trols, we used the latest available ECG. Next, for each patient with
available follow-up ECGs, we calculated Drisk as the difference be-
tween risk from original and follow-up ECG divided by the time be-
tween two ECGs. Therefore, Drisk represents the change in
predicted risk per year for each patient (Table 4).

Clinical utility
We further assess the possible clinical utility of our final Cox model
to identify patients at risk for HF who may benefit from cardiac imag-
ing. Table 5 presents four different scenarios of specificity (0.70, 0.80,
0.90, 0.95) and corresponding accuracy metrics.

The results in Table 4 show that for scenario 1 corresponding
to the specificity of 0.7, 32.5% (880 of 2701) patients would be
predicted at high risk for HF, and among these high risk predicted
patients, 13.2% (116 of 880) would develop HF within 10 years.
For Scenario 4 corresponding to a specificity of 0.95, our model
would identify 7.5% (204 of 2701) of the general population at
high risk for HF where 37.7% (77 of 204) of them indeed would
develop HF. Interestingly, if we would use follow-up ECGs for the
same scenario, we could identify 8.1% (218 of 2701) of the
patients at high risk for HF and 43.6% (95 of 218) of them indeed
would develop HF.

Discussion

Heart failure prevalence is increasing globally and is more commonly
experienced by older persons. This can cause both monetary and
personal burden. It is not uncommon for HF to be diagnosed at a
late-stage, past pharmacological intervention.7 It is therefore of high
importance to predict HF at early stages and provide timely interven-
tions. If detection and/or prediction are performed early, it can

substantially reduce the overall burden. The FHS and ARIC HF risk
calculators3,8 examined existing HF risk factors and proposed simple
and effective HF risk calculators that would facilitate the primary pre-
vention and early diagnosis of HF in general practice. More complex
models were then developed using additional data that can add to
the potential of early identification of HF. The FHS HF calculator3

uses a standard pooled logistic regression model to identify the risk
of HF within 4 years, while the ARIC HF risk calculator8 uses a Cox
regression model. The latter was also applied in this study. In addition
to using clinical variables, this research also used 12-lead ECGs to
predict HF within 10 years, aiming to obtain comparable results to
that using clinical risk factors.

Several recent studies have shown the utility of AI on digital ECGs
(time-voltage signals) in the detection and prediction of arrhythmias
and cardiovascular disease.17,18 A range of AI models has been devel-
oped to predict the risk of abnormal heart conditions, including HF,
atrial fibrillation.19–21 There has also been an effort to use machine
learning models to diagnose22,23 and predict the possibility of re-
admission and mortality following HF using solely risk factors.22

While some recent research proposes the use of AI in the prediction
of HF using both or a collection of risk factors and 12-lead ECG infor-
mation, there is rarely a comparative time window, and if so, it is
within a relatively short period of time, e.g. present to 5 years.24–26

Recent studies have used ECG waveform data to develop AI net-
works to identify specific cardiac abnormalities such as ejection frac-
tion,27 left ventricular systolic dysfunction,28 and mitral
regurgitations29 all of which are directly or indirectly related to HF.
However, a key component not addressed is the time window for
early identification of the possibility of HF. A meta-analysis by Grün
et al.30 involving five main publications31–33 reported an almost per-
fect prediction of congestive HF using a 2 s ECG (ROC > 0.98).
These studies, however, do not provide information on the time win-
dow considered in developing the model and how early it can detect
HF. This is a very important component to achieve the best results
for diagnoses and precision medicine as opposed to identifying
whether a person already has developed HF. It is thus essential to de-
velop models that consider a trade-off of accuracy with timeliness of
early diagnosis.

Results obtained in this research show that existing ARIC and FHS
HF risk calculators utilizing a total of 12 clinical risk factors can predict
HF with AUCs of 0.80 (0.75–0.85) and 0.78 (0.74–0.83), respectively.
Our ECG-AI model (model 2) utilizing solely 12-lead ECGs yielded a
comparable AUC of 0.756 (0.717–0.795) and AUC of 0.780 (0.737–
0.823) when combined with age and gender (Model 3 in
Supplementary material online, Table S1). Also, the lead I version of
ECG-AI provided a comparable accuracy to the standard 12-lead-
based ECG-AI model. Although our solely ECG-based model does
not improve performance over existing ARIC and FHS risk calcula-
tors, our proposed ECG-AI model may be more applicable in a clinic-
al setting since it relies only on ECG data. Considering the
widespread use and availability of ECGs, such models can facilitate fu-
ture automated pre-screening tools running on cardio-servers or
electronic health records (EHR). This helps identify patients who may
benefit from close monitoring or cardiac imaging, such as an echocar-
diogram or cardiac magnetic resonance imaging (MRI). The develop-
ment of these AI-based models may ease the burden on healthcare
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systems by reducing the number of follow-up exams. Furthermore,
we speculate that the model built on solely ECG data can predict HF
at similar accuracy to clinical data-based risk calculators because the
clinical risk factors may subtly affect the heart’s pacemaker cells and
conductive pathways. This in turn affects the action potential associ-
ated with contractile response and translated into minute changes in
an ECG. An advanced CNN model could capture these ECG
changes.

Our research showed that the best performing model was
obtained when the CNN-based ECG-AI model output was com-
bined with risk factors used in the ARIC and FHS risk calculators in
Cox proportional hazards regression. The performance of this model
was significantly higher than the performances of well-known ARIC
and FHS risk calculators, where ECG-AI outcome had the largest
hazards predicting HF. Furthermore, a variable importance analysis
on the second-best performing model (see Supplementary material
online, Figure S2), LGBM, also confirms that ECG-AI output is the
most important predictor of HF. These findings imply that the infor-
mation extracted from ECG via AI generates subclinical indicators
more predictive of HF than the clinical risk factors in the ARIC and
FHS risk calculators.

The second-best model (Model 5 in Supplementary material online,
Table S1) was obtained via LGBM utilizing ECG-AI outcome and the
variables of ARIC risk calculators. As detailed in Supplementary mater-
ial online, Section S3, variable importance analysis showed that ECG-AI
model output is the most important predictor of HF, followed by age,
BMI, diabetes, and systolic blood pressure. Analysis of direction of ef-
fect showed that individuals with coronary heart disease have about
5.4% increased risk of developing HF when all other factors are un-
changed. In addition, individuals with diabetes can have an increased
risk of 4.8%, while those with hypertension have a 1.9% increased risk.

Previous research has also applied a novel probabilistic symbol pat-
tern recognition approach to identify congestive HF patients using R–R
intervals from ECG.34,35 Several cohort studies, including ARIC, have
shown that various ECG markers are associated with incident HF.10,36–

44 These findings also suggest that applying machine and deep learning
approaches to ECGs can be used in developing automated HF predic-
tion tools for early recognition of patients at risk. As a deep learning
method, CNNs are applied on the classification of atrial fibrillation,45

several heart rhythms,46 left ventricular ejection fraction,47 as well as
prediction of future cardiomyopathy.10 There were also efforts to
show the association of known ECG characteristics with risk for HF,41

yet the digital ECGs have not been utilized. However, to the best of
our knowledge, our study is the first attempt to solely utilize digital
ECG data via deep learning to predict risk for HF.

Sensitivity analysis and prospective validation on additional follow-
up ECG showed that both ECG-AI and the final Cox model produce
significantly higher risk for ECGs closer to HF events. This may suggest
that follow-up of patients at high risk via low-cost ECG can assess HF
risk changes. The patients whose predicted risk exceeds a certain
threshold may be followed up echocardiogram and cardiac MRI for
timely diagnosis to initiate preventive therapeutics to advance patients
to Stages C and D HF. As a result, such low-cost screening-based pre-
ventive strategies may improve health outcomes and reduce healthcare
costs due to HF. Interestingly, our ECG-AI model performed as well
using only lead I ECG compared to results obtained on 12-lead. Future

work may focus on validity of our ECG-AI model on lead I ECG
obtained via mobile technologies such as smartwatches.

Our study has several strengths. The performance of AI-based
predictive models is severely affected by the accuracy of the outcome
variable. Our study utilizes the data from one of the largest cohort
studies of atherosclerosis, the ARIC, where the follow-up on HF is
significantly more accurate compared to data that would be
extracted from an EHR of a single institution. Also, our results show
that ECG markers alone can provide HF risk prediction as accurately
as established HF risk calculators relying on multiple clinical risk fac-
tors. Therefore, it can be embedded into EHR for efficient and auto-
matic pre-screening for HF at a large scale.

Our study also has some limitations. Although the ARIC cohort is
relatively representative by gathering participants from four commun-
ities in the USA, an external validation on a more representative cohort
is needed to ensure generalizability for the general population. There
are also limitations in understanding why ECG alone can predict HF
and models utilizing many clinical risk factors. This limitation stems
from the non-parametric nature of deep learning models. Further ana-
lysis is needed to uncover the black box nature of deep learning mod-
els. We do not have information on the aetiology of HF events. Hence,
our results should not imply causality between ECG and HF. Another
important limitation of our study is that the diagnosis of HF during
follow-up included only hospitalized patients. There may be HF
patients who are compensated and stable, therefore, not required hos-
pitalization within 10 years of the baseline. Hence, despite these
patients are ‘cases’, they could be coded as ‘controls’. Despite our
study does not provide evidence to support that, however, a future
study could focus on whether some of the false positives indeed had
HF yet not require hospitalization. There are also technical limitations
in implementing our ECG-AI model in clinical practice. Another limita-
tion is the definition of HF based on ICD codes, whereby HF subtype
by ejection fraction was not available. Similar prediction accuracy may
be expected in cohorts where HF is diagnosed/defined in a similar way
as it was in ARIC. Furthermore, future work is needed to show how
well our model would predict HF with preserved ejection fraction.

To conclude, sole utilization of raw digital ECG data via deep learn-
ing results in HF prediction with moderately high accuracy, which is
comparable to existing FHS risk calculator. Such ECG-based HF risk
assessment can pre-screen larger patient populations by analysing
existing ECGs in cardio-servers linked to EHRs. This pre-screening
may help identify people who may benefit from more advanced car-
diac healthcare. Furthermore, such models and technology may be
adapted to smartwatches with ECG recording functionality to facili-
tate remote screening.

Acknowledgements
We would like to thank The Atherosclerosis Risk in Communities
study consortium for providing data for this study (ARIC Proposal
ID: 3678). We also thank the staff and participants of the ARIC study
for their important contributions.

Funding
The Atherosclerosis Risk in Communities study has been funded in
whole or in part with Federal funds from the National Heart, Lung, and

632 O. Akbilgic et al.

https://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztab080#supplementary-data
https://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztab080#supplementary-data
https://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztab080#supplementary-data
https://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztab080#supplementary-data
https://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztab080#supplementary-data
https://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztab080#supplementary-data


..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
Blood Institute, National Institutes of Health, Department of Health
and Human Services, under Contract nos. (HHSN268201700001I,
HHSN268201700002I, HHSN268201700003I, HHSN268201700005I,
HHSN268201700004I). Additional funding was supported by grant
K24HL148521.

Conflict of interest: none declared.

Data availability
The data used in this study may be obtained directly from
Atherosclerosis Risk in Community Study via manuscript proposal
mechanism.

References
1. Akintoye E, Briasoulis A, Egbe A, Orhurhu V, Ibrahim W, Kumar K, Alliu S, Nas

H, Levine D, Weinberger J. Effect of hospital ownership on outcomes of heart
failure hospitalization. Am J Cardiol 2017;120:831–837.

2. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP,
Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, Elkind
MSV, Ferguson JF, Fornage M, Jordan LC, Khan SS, Kissela BM, Knutson KL, Kwan
TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL,
Martin SS, Matsushita K, Moran AE, Mussolino ME, O’Flaherty M, Pandey A, Perak
AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah
SH, Spartano NL, Stokes A, Tirschwell DL, Tsao CW, Turakhia MP, VanWagner
LB, Wilkins JT, Wong SS, Virani SS; American Heart Association Council on
Epidemiology and Prevention Statistics Committee and Stroke Statistics
Subcommittee. Heart disease and stroke statistics—2019 update: a report from
the American Heart Association. Circulation 2019;139:e56–e528.

3. Kannel WB, D’Agostino RB, Silbershatz H, Belanger AJ, Wilson PW, Levy D.
Profile for estimating risk of heart failure. Arch Intern Med 1999;159:1197–1204.

4. Tripoliti EE, Papadopoulos TG, Karanasiou GS, Kalatzis FG, Goletsis Y,
Bechlioulis A , Ghimenti S, Lomonaco T, Bellagambi F, Trivella MG, Fuoco R,
Marzilli M, Scali MC, Naka KK, Errachid A, Fotiadis DI. A computational approach
for the estimation of heart failure patients status using saliva biomarkers. Annu Int
Conf IEEE Eng Med Biol Soc 2017;2017:3648–3651.

5. Rosamond WD, Chang PP, Baggett C, Johnson A, Bertoni AG, Shahar E, Deswal
A, Heiss G, Chambless LE. Classification of heart failure in the Atherosclerosis
Risk in Communities (ARIC) study: a comparison of diagnostic criteria. Circ Heart
Fail 2012;5:152–159.

6. Rahimi K, Bennett D, Conrad N, Williams TM, Basu J, Dwight J, Woodward M,
Patel A, McMurray J, MacMahon S. Risk prediction in patients with heart failure: a
systematic review and analysis. JACC Heart Fail 2014;2:440–446.

7. Yang H, Negishi K, Otahal P, Marwick TH. Clinical prediction of incident heart
failure risk: a systematic review and meta-analysis. Open Heart 2015;2:e000222.

8. Agarwal SK, Chambless LE, Ballantyne CM, Astor B, Bertoni AG, Chang PP,
Folsom AR, He M, Hoogeveen RC, Ni H, Quibrera PM, Rosamond WD, Russell
SD, Shahar E, Heiss G. Prediction of incident heart failure in general practice: the
Atherosclerosis Risk in Communities (ARIC) study. Circ Heart Fail 2012;5:
422–429.

9. Jalali A, Lee M. Atrial fibrillation prediction with residual network using sensitivity
and orthogonality constraints. IEEE J Biomed Health Inform 2020;24:407–413.

10. Gunturkun F, Davis RL, Armstrong GT, Jefferies JL, Ness KK, Green DM, Lucas
JT, Srivastava D, Hudson MM, Robison LL, Mulrooney DA, Soliman EZ, Karabayir
I, Akbilgic O. Deep learning for improved prediction of late-onset cardiomyop-
athy among childhood cancer survivors: a report from the St. Jude Lifetime
Cohort (SJLIFE). J Clin Oncol 2020;38:10545.

11. Gunturkun F, Akbilgic O, Davis RL, Armstrong GT, Howell RM, Jefferies JL, Ness
KK, Karabayir I, Lucas Jr JT, Srivastava DK, Hudson MM, Robison LL, Soliman EZ,
Mulrooney DA. Artificial intelligence assisted prediction of late onset cardiomyop-
athy among childhood cancer survivor. JCO J Clin Cancer Inform 2021;4:459–468.

12. Raghunath S, Ulloa Cerna AE, Jing L, vanMaanen DP, Stough J, Hartzel DN,
Leader JB, Kirchner HL, Stumpe MC, Hafez A, Nemani A, Carbonati T, Johnson
KW, Young K, Good CW, Pfeifer JM, Patel AA, Delisle BP, Alsaid A, Beer D,
Haggerty CM, Fornwalt BK. Prediction of mortality from 12-lead electrocardio-
gram voltage data using a deep neural network. Nat Med 2020;26:886–891.

13. Rautaharju PM, Prineas RJ, Wood J, Zhang ZM, Crow R, Heiss G.
Electrocardiographic predictors of new-onset heart failure in men and in women
free of coronary heart disease (from the Atherosclerosis in Communities [ARIC]
Study). Am J Cardiol 2007;100:1437–1441.

14. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two
or more correlated receiver operating characteristic curves: a nonparametric ap-
proach. Biometrics 1988;44:837–845.

15. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. arXiv
2015;e-pring 1512.03385.

16. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T-Y. LightGBM: a
highly efficient gradient boosting decision tree. In: von Luxburg U, Guyon I,
Bengio S, Wallach H, Fergus R (eds). Proceedings of the 31st International
Conference on Neural Information Processing Systems. Long Beach, CA, USA:
Curran Associates Inc.; 2017. p3149–3157.

17. Rahimi K, Bennett D, Conrad N, Williams TM, Basu J, Dwight J, Woodward M,
Patel A, McMurray J, MacMahon S. Risk prediction in patients with heart failure: a
systematic review and analysis. JACC Heart Fail 2014;2:440–446.

18. Banerjee A, Chen S, Fatemifar G, Zeina M, Lumbers RT, Mielke J, Gill S, Kotecha
D, Freitag DF, Denaxas F, Hemingway H. Machine learning for subtype definition
and risk prediction in heart failure, acute coronary syndromes and atrial fibrilla-
tion: systematic review of validity and clinical utility. BMC Med 2021;19:1–14.

19. Hammad M, Maher A, Wang K, Jiang F, Amrani M. Detection of abnormal heart
conditions based on characteristics of ECG signals. Measurement 2018;125:
634–644.

20. Kwon J-m, Kim K-H, Jeon K-H, Kim HM, Kim MJ, Lim S-M, Song PS, Park J, Choi
RK, Oh BH. Development and validation of deep-learning algorithm for
electrocardiography-based heart failure identification. Korean Circ J 2019;49:
629–639.

21. Akbilgic O, Butler L, Karabayir I, Chang P, Kitzman D, Alonso A, Chen L ,
Soliman E. Artificial intelligence applied to ECG improves heart failure prediction
accuracy. J Am Coll Cardiol 2021;77(18_Suppl_1):3045.

22. Guo A, Pasque M, Loh F, Mann DL, Payne PR. Heart failure diagnosis, readmis-
sion, and mortality prediction using machine learning and artificial intelligence
models. Curr Epidemiol Rep 2020:1–8.

23. Choi D-J, Park JJ, Ali T, Lee S. Artificial intelligence for the diagnosis of heart fail-
ure. NPJ Dig Med 2020;3:1–6.

24. Kannel WB, D’Agostino RB, Silbershatz H, Belanger AJ, Wilson PW, Levy D.
Profile for estimating risk of heart failure. Arch Intern Med 1999;159:1197–1204.

25. Tohyama T, Funakoshi K, Kaku H, Enzan N, Ikeda M, Matsushima S, Ide T,
Todaka K, Tsutsui H. Artificial intelligence-based analysis of payment system data
can predict one-year mortality of hospitalized patients with heart failure. Eur
Heart J 2020;41(Suppl_2). 10.1093/ehjci/ehaa946.3492.

26. Nakajima K, Nakata T, Matsuo S, Doi T, Jacobson A. Machine learning model for
predicting sudden cardiac death and heart failure death using 123I-metaiodoben-
zylguanidine. Eur Heart J Cardiovasc Imaging 2019;20(Suppl_3). 10.1093/ehjci/
jez145.003.

27. Verbrugge FH, Reddy YN, Attia ZI, Friedman PA, Noseworthy PA, Lopez-
Jimenez F, Kapa S, Borlaug BA. Artificial intelligence predicts atrial fibrillation de-
velopment from the 12-lead electrocardiogram in heart failure with preserved
ejection fraction. J Card Fail 2020;26:S76.

28. Adedinsewo D, Carter RE, Attia Z, Johnson P, Kashou AH, Dugan JL, Albus A,
Sheele JM, Bellolio F Friedman PA, Lopez-Jimenez F, Noseworthy PA. Artificial
intelligence-enabled ECG algorithm to identify patients with left ventricular sys-
tolic dysfunction presenting to the emergency department with dyspnea. Circ
Arrhyth Electrophysiol 2020;13:e008437.

29. Kwon J-m, Kim K-H, Akkus Z, Jeon K-H, Park J, Oh B-H. Artificial intelligence for detect-
ing mitral regurgitation using electrocardiography. J Electrocardiol 2020;59:151–157.

30. Grün D, Rudolph F, Gumpfer N, Hannig J, Elsner LK, Von Jeinsen B, Hamm CW,
Rieth A, Guckert M, Till Keller Till. Identifying heart failure in ECG data with arti-
ficial intelligence—a meta-analysis. Front Dig Health 2020;2:67.

31. Sudarshan VK, Acharya UR, Oh SL, Adam M, Tan JH, Chua CK, Chua KP, Tan RS.
Automated diagnosis of congestive heart failure using dual tree complex wavelet
transform and statistical features extracted from 2 s of ECG signals. Comput Biol Med
2017;83:48–58.

32. Acharya UR, Fujita H, Oh SL, Hagiwara Y, Tan JH, Adam M, Tan RS. Deep con-
volutional neural network for the automated diagnosis of congestive heart failure
using ECG signals. Appl Intell 2019;49:16–27.

33. Lih OS, Jahmunah V, San TR, Ciaccio EJ, Yamakawa T, Tanabe M, Kobayashi M,
Faust O, Acharya UR. Comprehensive electrocardiographic diagnosis based on
deep learning. Artif Intell Med 2020;103:101789.

34. Akbilgic O, Howe JA. Symbolic pattern recognition for sequential data. Seq Anal
2017;36:528–540.

35. Mahajan R, Viangteeravat T, Akbilgic O. Improved detection of congestive heart
failure via probabilistic symbolic pattern recognition and heart rate variability
metrics. Int J Med Inform 2017;108:55–63.

36. Rautaharju PM, Zhang ZM, Haisty WK Jr, Prineas RJ, Kucharska-Newton AM,
Rosamond WD, Soliman EZ. Electrocardiographic predictors of incident
heart failure in men and women free from manifest cardiovascular disease
(from the Atherosclerosis Risk in Communities [ARIC] study). Am J Cardiol
2013;112:843–849.

ECG-AI for Heart Failure Prediction 633



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..37. Zhang ZM, Rautaharju PM, Soliman EZ, Manson JE, Martin LW, Perez M,
Vitolins M, Prineas RJ. Different patterns of bundle-branch blocks and the risk
of incident heart failure in the Women’s Health Initiative (WHI) study. Circ
Heart Fail 2013;6:655–661.

38. Zhang ZM, Rautaharju PM, Prineas RJ, Loehr L, Rosamond W, Soliman EZ.
Usefulness of electrocardiographic QRS/T angles with versus without bundle
branch blocks to predict heart failure (from the Atherosclerosis Risk in
Communities Study). Am J Cardiol 2014;114:412–418.

39. Zhang ZM, Rautaharju PM, Prineas RJ, Loehr L, Rosamond W, Soliman EZ.
Ventricular conduction defects and the risk of incident heart failure in the
Atherosclerosis Risk in Communities (ARIC) study. J Card Fail 2015;21:
307–312.

40. Almahmoud MF, O’Neal WT, Qureshi W, Soliman EZ. Electrocardiographic ver-
sus echocardiographic left ventricular hypertrophy in prediction of congestive
heart failure in the elderly. Clin Cardiol 2015;38:365–370.

41. O’Neal WT, Mazur M, Bertoni AG, Bluemke DA, Al-Mallah MH, Lima JAC,
Kitzman D, Soliman EZ. Electrocardiographic predictors of heart failure with
reduced versus preserved ejection fraction: the multi-ethnic study of athero-
sclerosis. J Am Heart Assoc 2017;6:e006023.

42. O’Neal WT, Sandesara PB, Samman-Tahhan A, Kelli HM, Hammadah M,
Soliman EZ. Heart rate and the risk of adverse outcomes in patients with

heart failure with preserved ejection fraction. Eur J Prev Cardiol 2017;24:
1212–1219.

43. Qureshi WT, Zhang ZM, Chang PP, Rosamond WD, Kitzman DW,
Wagenknecht LE, Soliman EZ. Silent myocardial infarction and long-term risk of
heart failure: the ARIC study. J Am Coll Cardiol 2018;71:1–8.

44. Ilkhanoff L, Liu K, Ning H, Nazarian S, Bluemke DA, Soliman EZ, Lloyd-Jones
DM. Association of QRS duration with left ventricular structure and function
and risk of heart failure in middle-aged and older adults: the Multi-Ethnic Study
of Atherosclerosis (MESA). Eur J Heart Fail 2012;14:1285–1292.

45. Kamaleswaran R, Mahajan R, Akbilgic O. A robust deep convolutional neural net-
work for the classification of abnormal cardiac rhythm using single lead electro-
cardiograms of variable length. Physiol Meas 2018;39:035006.

46. Zhu H, Cheng C, Yin H, Li X, Zuo P, Ding J, Lin F, Wang J, Zhou B, Li Y, Hu S,
Xiong Y, Wang B, Wan G, Yang X, Yuan Y. Automatic multilabel electrocardio-
gram diagnosis of heart rhythm or conduction abnormalities with deep learning:
a cohort study. Lancet Digit Health 2020;2:e348–e357.

47. Adedinsewo D, Carter RE, Attia Z, Johnson P, Kashou AH, Dugan JL, Albus M ,
Sheele JM, Bellolio F, Friedman PA, Lopez-Jimenez F, Noseworthy PA. Artificial
intelligence-enabled ECG algorithm to identify patients with left ventricular sys-
tolic dysfunction presenting to the emergency department with dyspnea. Circ
Arrhythm Electrophysiol 2020;13:e008437.

634 O. Akbilgic et al.


	tblfn1
	tblfn2
	tblfn3
	tblfn4
	tblfn5
	tblfn6
	tblfn8
	tblfn9
	tblfn7

