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In cancer, neutrophils are an important part of the tumour microenvironment (TME).
Previous studies have shown that circulating and infiltrating neutrophils are associated
with malignant progression and immunosuppression in gliomas. However, recent studies
have shown that neutrophils have an antitumour effect. In this review, we focus on the
functional roles of neutrophils in the circulation and tumour sites in patients with glioma.
The mechanisms of neutrophil recruitment, immunosuppression and the differentiation of
neutrophils are discussed. Finally, the potential of neutrophils as clinical biomarkers and
therapeutic targets is highlighted. This review can help us gain a deeper and systematic
understanding of the role of neutrophils, and provide new insights for treatment in gliomas.
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INTRODUCTION

Gliomas are heterogeneous and primary malignant tumour in the brain. Glioblastoma (GBM) is the
most lethal form of glioma, accounting for 70-75% of all diagnoses of diffuse glioma and having a
median overall survival (OS) time of 14-17 months (1). The current standard of treatment includes
maximal surgical resection and combined radiochemotherapy (2, 3). The significance of Stupp
protocol has become the standard of care for the treatment of GBM. It consists of radiotherapy and
concomitant chemotherapy with temozolomide, an alkylating agent (4). Over the years, many arts
have been improved to aid the surgeon in the resection about the brain cancer. Improvements such
as surgical microscopes, high-resolution imaging, fluorescence-guided surgery and neuronavigation
are widely used in glioma treatment (5–7). Despite aggressive treatment strategies over the past few
decades, the OS of glioma patients has not improved significantly due to the rapid proliferation,
extensive invasion, and treatment resistance of gliomas (8). GBM tumours are highly resistant to
treatment and the resistance can be explained by characteristics of TME (9). The GBM
microenvironment contains many different non-cancerous cell types in addition to cancer cells,
including endothelial cells, pericytes, fibroblasts and immune cells. These cells interact with one
another and with tumour cells to perpetuate brain tumour growth (10). A state of
immunosuppression characterizes GBM’s TME, thanks to the secretion of several cytokines by
tumour cells, microglia, and tumour associated macrophages (TAMs) (11). In contrast to other
immune cells, comparatively less is known about the contributions of neutrophils.
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Neutrophils play various roles in different diseases.
Neutrophils exert antimicrobial and inflammatory functions
through phagocytosis, degranulation, release of neutrophil
extracellular traps (NETs) and antigen presentation (12, 13).
Neutrophils release decondensed DNA fibres and antimicrobial
peptides, known as NETs (14). These web-like structures trap
and kill different bacteria (14), fungi (15, 16), and parasites (17).
At present, the importance and role of neutrophils in cancer have
increased over the past decades (18). And neutrophils play an
oncogenic role primarily by increasing DNA damage,
angiogenesis and immunosuppression (19). The association
between tumour initiation and progression, cancer-associated
thrombosis and NETs has been reported (20–24).

Increasing evidence reveals that the numbers of circulating
and tumour-infi l trating neutrophils are relevant to
immunosuppression, poor survival and a poor prognosis in
patients with cancer (25–27). However, the role of neutrophils in
cancer is a controversial issue. The results of many studies have
shown that tumour-associated neutrophils (TANs) are able to
stimulate tumour cell migration and invasion (28–30).
Conversely, findings from many other studies have suggested
that TANs have various antitumour properties, such as direct
cytotoxicity against tumour cells and inhibition of metastasis
(31–33). Additionally, neutrophil classification in the TME, such
as N1/N2 neutrophils and polymorphonuclear myeloid-derived
suppressor cells (PMN-MDSCs), is also a controversial topic (34,
35). In gliomas, Using immuno-histochemical analysis of glioma
sections, Fossati G et al. reported that neutrophil infiltration into
tumours was significantly correlated with glioma grade (36).
Subsequently, researchers found that increased neutrophil
recruitment during antiangiogenic therapy promoted glioma
progression and might promote treatment resistance (37). In
addition, studies have found that the neutrophil-to-lymphocyte
ratio (NLR) of patients with glioma is valuable for prognosis and
diagnosis (38). We reviewed the recent association of neutrophils
with gliomas and found that gliomas are characterized by an
immunosuppressive TME. Pathologically activated neutrophils,
called PMN-MDSCs, are a type of myeloid-derived suppressor
cell (MDSC) and one of the major contributors to the
immunosuppressive properties of gliomas (39, 40). As a
consequence, neutrophils are now the subject of intense research
in gliomas.

However, our understanding of the roles of neutrophils in
gliomas is still limited to date. This article aims to review
neutrophil research in cancer patients. The search was focused
on the association of circulating neutrophils and tumour-
infiltrating neutrophils with prognosis in glioma patients. A
PubMed search using the keywords “neutrophils”, “gliomas”,
“tumour microenvironment”, “myeloid-derived suppressor
cells” and “neutrophil-to-lymphocyte ratio” was performed.
Reference lists were then searched for additional articles.
Available data were obtained from patients with glioma to
elucidate the roles of neutrophils with various phenotypes in
gliomas. In addition, we dissected the pathways that mediate the
transport of neutrophils to the tumour site, described their role
once they arrived in the tumour microenvironment, and
Frontiers in Immunology | www.frontiersin.org 2
integrated this with the current understanding of glioma
progression. A vast body of evidence supports the importance
of the neutrophils in the progression of gliomas, and the
possibility of neutrophils in the treatment of glioma is further
discussed in this paper in combination with recent studies.
Therefore, elucidating the mechanisms by which glioma cells
interact with neutrophils can uncover multiple potential
therapeutic targets for clinical applications.
CHARACTERISTICS OF NEUTROPHILS
IN CANCER

Neutrophils are derived from the bone marrow and give rise to
multiple granulocytic immune cell subsets (41). In a steady state,
normal adults produce more than 1×1011 neutrophils per day
(42). Neutrophils have long been considered as cells playing a
crucial role in the immune system. They participate in the
inflammatory response in the body and are the first line of
defense against pathogen invasion (12). Inflammation responds
to infection and carries out wound healing and tissue
regeneration. Inflammation plays an important role in
protecting the body. However, chronic inflammation induces
cancer by destroying tissues. For example, chronic hepatitis
increases the risk of liver cancer (43). Neutrophils provide a
link between inflammation and cancer.

In recent years, researchers found neutrophils within tumours
in the majority of solid tumour samples (44). Several studies have
revealed a correlation between the presence of neutrophils and a
poor prognosis in patients with early-stage melanoma, head and
neck cancer or hepatocellular carcinoma and demonstrated that
the presence of neutrophils is independently associated with a
poor prognosis (45–47). In an in-depth study of neutrophils, it
was found that neutrophils are an important component of the
TME (48). In the TME, neutrophils have varied functions and
have been classified using different terms, including N1/N2
neutrophils, TANs, and PMN-MDSCs (49–51). In 2009,
Fridlender et al. classified the types of antitumorigenic and
protumorigenic TANs, named N1 and N2, respectively. They
showed that transforming growth factor-b (TGF-b), an
immunosuppressive cytokine overexpressed by tumour cells,
polarized neutrophils into a protumorigenic phenotype (N2)
and that neutrophil depletion caused a small decrease in
tumour growth in mouse models. However, the presence of
interferon b (IFN-b) or blockade of TGF-b with SM16, an oral
inhibitor of TGF–b receptor kinase, led to the aggregation of
neutrophils with an antitumorigenic phenotype (N1) (52, 53). In
this case, TANs depletion led to increased tumour growth (35,
54). Despite the existence of functional differences, no definitive
surface markers have been identified to distinguish N1 and N2
TANs (35). Although there is no obvious surface marker of N1/
N2 at present, The classification of N1 and N2 used to refer to
antitumour and protumour neutrophils is important for our
understanding of the role of neutrophils in tumours. We hope
that interested readers can conduct follow-up studies to
distinguish the N1/N2 classification of neutrophils.
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TANs have important roles in cancer initiation and progression,
and high densities of neutrophils are correlated with more
advanced-stage disease in patients with gastric cancer and are
more likely to be detected in more aggressive pancreatic tumours
(55, 56). Several studies involving patients with early-stage
melanoma, head and neck cancer, and hepatocellular carcinoma
have revealed a correlation between presence of TANs and a poor
prognosis (45–47). However, other papers of mouse metastatic
renal cell carcinoma models have highlighted the antitumour
potential of neutrophils. The antitumour neutrophils recruited to
the lung by tumour-secreted chemokines build an antimetastatic
barrier (54, 57). Hepatocyte growth factor/MET proto-oncogene-
dependent nitric oxide release by antitumour neutrophils promotes
cytotoxicity, which abates mouse Murine Lewis lung carcinoma
cells, melanoma cells and human non-small-cell lung carcinoma
cells growth and metastasis (58). Interestingly, in the colorectal
cancer (CRC), the prognostic relevance of TANs is controversial.
Rao H.L et al. discovered that the presence of CD66b+ neutrophils
detected in 229 CRC patients using tissue microarray and
immunohistochemistry. And neutrophils were identified as an
independent factor for a poor prognosis in patients with CRC
(59). In contrast, data from early stages of colon cancers patients
have suggested that infiltration of CD66b+ neutrophils in the
tumour front is associated with a favourable prognosis in
patients with colon cancers (60). The differences in the
conclusions of these studies may differ from the selected study
patients, which included only colon cancers and not rectal cancers
in the second study. In addition, manual counting of neutrophils
according to their morphology may influence the results. The role
of neutrophils in lung cancer is also controversial. In a study
involving patients with early-stage (stage I–III) non-small cell lung
carcinoma (NSCLC), high CD66b+ neutrophil density had a
significantly effect on increased relapse following surgical
resection and had a trend toward decreased OS (61). The
presence of CD66b+ TANs show diverging prognostic effect in
NSCLC patients according to histological subgroups. CD66b+

TANs described as a positive prognostic factor in patients with
squamous cell carcinoma but an adverse prognostic factor in those
with adenocarcinoma (62). Since there is no consensus on methods
for staining and identifying neutrophils in cancer tissues, the
prognostic implications of neutrophil infiltration in these patients
clearly require further investigation.
Frontiers in Immunology | www.frontiersin.org 3
Apart from the TANs, when describing the role and
importance of neutrophils in cancer, PMN-MDSCs cannot be
ignored. In 2007, MDSCs were confirmed and defined with this
canonical name. MDSCs are a heterogeneous population of
immature myeloid cells with immunosuppressive functions.
Granulocytic or polymorphonuclear MDSCs (G/PMN-MDSCs),
early-stage MDSCs (eMDSCs) and monocytic MDSCs (M-
MDSCs) are the main types of MDSCs that have been detected
(34, 63). Based on the typical suppressive functional characteristics
of MDSCs, it has been suggested that PMN-MDSCs are a
population of neutrophils with immunosuppressive activity (29,
64, 65). MDSC production follows the same differentiation
pathway as the production of neutrophils and monocytes, both
of which are produced by granulocyte colony-stimulating factor
(G-CSF) and macrophage colony-stimulating factor (M-CSF)
stimulation (39, 66, 67). Accumulating evidence indicates that
the ability to suppress T cells is an important characteristic of
MDSCs. The potent immunosuppressive activity of MDSCs is the
reason that the function of MDSCs is different from that of
monocytes and neutrophils. In addition, mature neutrophils
(CD14- CD15+ CD66b+ CD16+) express specific cell-surface
proteins (68). In mice, SiglecFhigh CD11b+ Ly-6G+ Gr-1+ cells
resemble neutrophils (69). MDSCs are generally characterized as
expressing the myeloid lineage differentiation antigen Gr-1 (Ly6G
and C); CD11b, M-MDSCs typically have the phenotype CD11b+

Ly6Chigh Ly6G−; and PMN-MDSCs are typically defined as
CD11b+ Ly6Clow Ly6G+ (70). A more complex panel of markers
is typically used to identify humanMDSCs (CD11b, CD14, CD15,
CD66b, HLA-DR and CD33), M-MDSCs (CD14+ CD15- HLA-
DR−/low) and PMN-MDSCs (CD14- CD15+ CD66b+ CD16+

CD11b+ CD33+ HLA-DR-) (71–73) (The markers summarized
in Table 1). These markers have also been shown to be expressed
by neutrophils. Therefore, we have concluded that the term PMN-
MDSCs actually describes a subset of neutrophils until more
definitive evidence is found.
FUNCTIONAL ROLES OF THE NLR AND
CIRCULATING NEUTROPHILS IN GLIOMA

Circulating neutrophils are non-negligible component of the
inflammation, which plays important roles in cancer development
TABLE 1 | Markers of neutrophils and MDSCs.

Neutrophils MDSCs G/PMN-MDSCs M-MDSCs

Human CD14-

CD15+

CD66b+

CD16+

CD11b
CD14
CD15
CD66b
HLA-DR
CD33

CD14-

CD15+

CD66b+

CD16+

CD11b+

CD33+

HLA-DR-

CD14+

CD15-

HLA-DR-/low

CD33

Mice CD11b+

Siglec-F–

Gr-1+

Ly6Ghigh

CD11b
Gr-1

CD11b+

Ly6G+

Ly6Clow

CD11b+

Ly-6G-

Ly6Chigh
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and progression (74). The NLR, a systemic cellular inflammation
marker, is a noninvasive biomarker for patients with cancer. We
calculated the NLR as follows: NLR = neutrophil count/lymphocyte
count (75). The NLR is a low-cost method, as lymphocyte and
neutrophil counts can be easily derived using the common complete
blood count (76). The NLR has become a prognostic indicator for
survival in many tumour types, including CRC, hepatocellular
carcinoma, breast cancer and gliomas (38, 77–79).

Concerning gliomas, the NLR is a widely used parameter for
diagnosis and OS prediction (80, 81). The approach has shown
diagnostic value in differentiating isocitrate dehydrogenase-
mutant (IDH-mt) GBM from IDH-wild-type (IDH-wt) GBM
(82). Auezova et al. found lower NLR values in patients with
IDH-mt GBM (83). A systematic review found that high NLR
values were associated with lower overall survival and that
patients with a high NLR value were associated with high-
grade gliomas (38). In addition, a retrospective review reported
that a lower NLR was associated with longer OS during focal
radiotherapy and concomitant temozolomide treatment (84).
However, NLR can potentially be affected by bacterial or viral
infections or drug treatments (85). For example, bacterial
infections and steroid usage can increase neutrophil counts,
while viral infections may increase lymphocyte counts. The
effects of acute disease conditions on NLR may overlap with
chronic persistent inflammation. In addition, hypertension,
Frontiers in Immunology | www.frontiersin.org 4
diabetes mellitus, metabolic syndrome, left ventricular
dysfunction and hypertrophy, acute coronary syndromes,
cardiovascular diseases, abnormal thyroid function tests, renal
or hepatic dysfunction, previous history of infection (<3
months), inflammatory diseases, and some medications (e.g.
steroids) can potentially affect the measurement of NLR (76).
Therefore, the measurement of NLR should consider the
potential effects of other conditions or drug use.

The baseline neutrophil count is a current biomarker used to
predict the efficacy of bevacizumab in the treatment of GBM
(86). It has been found that an increased NLR has been
associated with increased peritumoral infiltration of
macrophages and upregulation of several cytokines, such as
interleukin (IL)-6, IL-7, IL-8, IL-9, IL-12, IL-17, and IFNg (87,
88). In the study of the immunosuppressive effect of GBM
patient peripheral blood, it was found that peripheral cellular
immunosuppression in GBM patients is correlated with
increased neutrophil degranulation and elevated levels of
serum arginase I (As shown on the right side of Figure 1)
(98). Neutrophil degranulation is the process by which
neutrophil cytoplasmic granules fuse with the cell membrane
or phagosomal membrane, leading to the exocytosis of soluble
granule proteins or exposure of membrane granule proteins to
the cell surface (99). And arginase I is a factor known to be
present within in granulocytes and has immunosuppressive
FIGURE 1 | The role of circulating neutrophils and neutrophils at the tumour site. Left: ① Glioma stem cells (GSCs) express S100A4 to promote the mesenchymal
transition of glioma cells (37). ② The release of reactive oxygen species (ROS) by neutrophils in the early stage of glioma development may be related to the antitumour
neutrophil effect (89). ③ Neutrophils secrete elastase, which destroys brain tissue and aids glioma invasion (90). Middle: ① Astrocytoma and GBM cells express IL-1 and
TNF and high levels of IL-8 under alpha stimulation, which recruit neutrophils (91). ② Neutrophils form high-mobility group box 1 (HMGB1) and bind to receptor for
advanced glycation end products (RAGE) expressed in glioma tissues, activates the NF-kB signaling pathway to secrete IL-8, and promote neutrophil infiltration (92).
③ Expression of FasL on glioma cells activates Fas signaling in the TME to express IL-8, leading to neutrophil aggregation (93). ④ LINC01116 promotes the expression of
IL-1b by recruiting the transcription regulator DDX5 to the IL-1b promoter, which promotes the recruitment of neutrophils (94). ⑤ The ectopic expression of CD133
induces an increase in IL-1b expression, which causes neutrophils to aggregate in the TME (95). Right: Neutrophil degranulation and elevated levels of serum arginase I
induce immunosuppression in GBM patients (96). Neutrophil expression of CD11b is an early predictor of tumour progression (97).
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activity (98). Arginase I expression suppress T cell function in
patients with GBM and T cell function can be restored by
targeting serum arginase I (96). Correlations of phenotypic
characteristics between neutrophils in the blood and high-
grade tumours have recently been reported. When compared
to healthy controls, individuals with glioma expressed a few
activation markers (CD11b, CD16, CD54, and CD63) and L-
selectin (CD62L) at lower levels on neutrophils. Moreover,
neutrophils showed higher expression of the surface receptor
CD16 in the context of grade III gliomas in GBM (100).
Activation of neutrophils expressing CD11b is an early
predictor of tumour progression in GBM patients (97).

Taken together, these findings illustrate that circulating
neutrophils play important roles in the diagnosis, OS,
immunosuppression, tumour growth promotion, and
treatment resistance of patients with glioma. Data demonstrate
the association between elevated peripheral blood NLR levels and
increased TANs infiltration (101). However, the molecular
mechanisms by which the NLR is associated with TANs
remain unknown.
DIFFERENT IMMUNE COMPOSITIONS IN
THE GLIOMA MICROENVIRONMENT

The normal brain has traditionally been recognized as an
immune-privileged organ due to the presence of the endothelial
blood-brain barrier (BBB) and the absence of a conventional
lymphatic system (102). However, this viewpoint has recently
been challenged, as even in the presence of an intact BBB, adaptive
immune cells can traffic into the central nervous system (CNS)
(103). Functional lymphatic vessels lining the dural sinuses were
recently reported. These structures can carry immune cells from
the cerebrospinal fluid and are connected to the cervical lymph
nodes (104). Kipnis et al. described the cellular and molecular
orchestration of the dural sinuses as a unique interface where the
CNS and the immune system communicate with one another
(105). Indeed, cells from the bone marrow, including neutrophils
and monocytes, may directly from nearby bone marrow cavities in
the skull and vertebrae (106–108). Moreover, in certain brain
tumours, BBB dysfunction can be accompanied by increased
leukocyte infiltration from the peripheral circulation (109).
Nonetheless, the microenvironment of the glioma is generally
immunosuppressive, with essentially no trafficking or patrolling by
peripheral immune cells (110).

GBM cells produce cytokines, chemokines, growth factors
and extra-cellular matrix modifying enzymes, extracellular
vesicles and proteins to construct a favourable tumour
microenvironment (111). Also, cells in TME interact with each
other and with the neoplastic cells through different suppressor
receptors like programmed cell death protein-1 (PD-1), T-
lymphocyte-associated protein 4 (CTLA-4), CD70 and
gangliosides that increase the tumour immune escaping (112,
113). The modulation of these cell populations in the brain
TME could improve the efficacy of immunotherapy against
brain malignancies.
Frontiers in Immunology | www.frontiersin.org 5
In the case of glioma, the inflammation-enriched TME
has many tumour-promoting effects (114). The glioma
microenvironment exhibits a diverse immune cell landscape
with substantial infiltration of resident microglia (115),
circulating blood monocytes (macrophages) (116), dendritic
cells (DCs), lymphoid cells, and neutrophils (117, 118).
Microglia are tissue-resident macrophages that arise from
embryonic yolk sac precursors (119). These cells regulate the
innate immune response in the brain and play a major role in
normal brain development (120–122). Few studies have
investigated other populations of immune cells in the brain.
Indeed, a recent discovery identified small populations of T cells
and B cells that regulate microglial maturation and promote
oligodendrocyte precursor cell proliferation, respectively (123,
124). TAMs consist of bone marrow-derived macrophages and
tissue-resident microglia (125). In GBM, TAMs have a
protumour role, and increased TAM accumulation is
associated with increased tumour grade (126–129). There is
increasing evidence that TAMs promote glioma growth and
invasion (130). DCs are myeloid-derived cells that can
stimulate T lymphocytes and natural killer (NK) cells to
become potent antitumour effectors (131). Recent studies have
reported the clinical effectiveness of DC-based vaccine therapy in
malignant glioma (132). T cells, B cells, and NK cells migrate
through the lymphatic system. Low levels of CD4+ T helper (Th)
cells and CD8+ cytotoxic T lymphocytes (CTLs) within the T cell
population have been shown to infiltrate gliomas (133). High
levels of CD8+ CTLs are commonly regarded as having
antitumoral activity, whereas high levels of CD4+ Th cells are
related to favouring tumour development (134). NK cells are
known to play a role in the apoptotic killing of both tumour cells
and virus-infected cells (134). The role of B cells in glioma
development is unclear. A comprehensive understanding of the
complex glioma microenvironment will greatly expand the range
of therapeutic strategies for this deadly disease.

Growing evidence has highlighted the role of neutrophils in
promoting tumour progression in the brain TME. Neutrophil
functions in the glioma microenvironment are described in more
detail below. The modulation of neutrophils in the brain TME
could improve the efficacy of therapy against brain malignancies.
NEUTROPHIL RECRUITMENT

Neutrophils are generated under steady-state conditions from
haematopoietic stem and progenitor cells in the bone marrow.
However, during infection or cancer, neutrophils are used up in
large quantities, and the steady-state condition is converted to
emergency granulopoiesis (135). In mouse models and patients
with invasive cancer, the spleen also produces neutrophils during
cancer progression (136). Growth factors (G-CSF and
granulocyte-macrophage colony-stimulating factor (GM-CSF))
and inflammatory cytokines (IL-6, IL-1b, and IL-17) produced
by tumour cells, tumour-associated stromal cells, and tumour-
infiltrating leukocytes (including T cells) can modulate
haematopoiesis (48). G-CSF is the principal cytokine regulating
July 2022 | Volume 13 | Article 927233
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neutrophil generation and differentiation (137, 138). In addition
to G-CSF, stem cell factor, IL-6, and GM-CSF induce an increase
in neutrophils (139–141). The chemokine receptors CXCR1 and
CXCR2 are expressed by neutrophils, and activation of these
receptors is key to neutrophil recruitment. Tumour-infiltrating
leukocytes, endothelial cells, and fibroblasts express the CXC
chemokine ligands CXCL1, CXCL2, CXCL5, CXCL6, and
CXCL8 (also known as IL-8) (142, 143). The chemokine
receptor CXCR2 was originally found to be expressed on
neutrophils (144). In mouse colon cancer models, the
chemokines CXCL1, CXCL2, and CXCL5 are CXCR2 ligands
that are observed to promote neutrophil recruitment (143, 145–
147). CXCR2 is also the receptor for IL-8 and mediates
neutrophil activation. The expression of CXCR2 proteins in
gliomas has been significantly correlated with glioma
recurrence (148).

The mechanism of TANs recruitment to gliomas remains
limited (In the middle of the Figure 1). IL-8 is associated with the
recruitment of neutrophils via the activation of multiple
intracellular signalling pathways (149). Glioma cells produce a
cytokine-induced neutrophil chemoattractant, IL-8, which
attracts granulocytes to the tumour site (150). Astrocytoma
and GBM cells express high levels of IL-8 under stimulation
with IL-1 and TNF-a, and IL-8 has chemotactic effects on
human neutrophils (91). Neutrophils exert their functions
through the formation of NETs. In glioma, high-mobility
group box 1 (HMGB1) derived from NETs binds to receptor
for advanced glycation end products (RAGE) expressed in
glioma tissue, activating the NF-kB signalling pathway to
promote IL-8 secretion, which promotes neutrophil infiltration
(92). In addition, IL-1b is involved in many diseases and tissue
inflammation (151). LINC01116, a long noncoding RNA
expressed in glioma tissue, can promote IL-1b expression by
recruiting the transcriptional regulator DDX5 to the IL-1b
promoter. Then, IL-1b expression in glioma cells promotes
TANs recruitment (94). CD133 is a surface marker of glioma
stem cells (GSCs). Increases in the expression of IL-1b induced
by ectopic expression of CD133 recruit neutrophils to the TME
and increase neutrophil migration (95). FasL expression on
gliomas activates Fas signalling in the TME, and glioma cells
express IL-8 in response to Fas activation, which leads to an
accumulation of neutrophils (93). In addition, a recent study
reported the upregulation of CXCL8, ITGA3, and CXCL17 by
brain metastases. These chemokines are involved in neutrophil
tissue infiltration. Increased expression of MET was found in
neutrophils in brain metastases, and MET has been related to the
recruitment of immunosuppressive neutrophils. The increased
expression of the cell-surface receptor CD117 was correlated
with neutrophil migration and activation (152). Whether these
chemokines are involved in neutrophil infiltration in the glioma
microenvironment needs to be further investigated.

The TIMER2.0 database, R programming language, and so on
have been used to analyse tyrosine protein tyrosine kinase
binding protein, and CD96 expression has been correlated
significantly with neutrophil infiltration (153, 154). Gene
ontology (GO) enrichment analysis and gene set enrichment
Frontiers in Immunology | www.frontiersin.org 6
analysis (GSEA) showed that BLC7A was mainly enriched in
neutrophil activation. Immunohistochemical (IHC) analysis
revealed that low BCL7A expression was correlated with robust
infiltration of neutrophils in gliomas (155). However, more
studies are required to determine the underlying mechanisms.
NEUTROPHILS ACQUIRE UNIQUE
PHENOTYPES IN GLIOMA

Neutrophils have long been known to be responders in innate and
adaptive immune responses that defend against infectious
agents (156). Once neutrophils are recruited to the glioma
microenvironment, they adopt new cellular and molecular identities.

IHC staining was used to detect neutrophil infiltration in
human glioma tissues of different grades. The neutrophil
infiltration level was positively correlated with glioma grade
(36). In addition to the discovery of neutrophil cells infiltrating
glioma tissue, in in vitro coculture models, neutrophils may be
partially responsible for enhanced glioma proliferation
(Summarized on the left side of Figure 1) (37). Subsequent
studies investigating neutrophil function in depth described that
neutrophils secrete elastase. Neutrophils elastase is a neutral
protease and cytotoxic mediator that can damage brain tissue
and aid in glioma invasion (90). Apart from invasion,
neutrophils modulate tumour angiogenesis. S100A4 is a novel
biomarker expressed in GSCs (157) that induces the tumorigenic
activity of neutrophils. Neutrophils promote the mesenchymal
transformation of gliomas via increased expression of S100A4
within the gliomas and increase vascularization, which induces
resistance to anti-VEGF therapy (37). In mouse tumours, PMN-
MDSCs and TANs express Ly6G (158, 159). Radiation-induced
infiltrating Ly6G+ neutrophils secrete Nitric oxide (NO) that
promotes the activity of the NOS-ID4 signalling axis, which
converts GBM cells into GSCs, this conversion is negatively
associated with survival and radiation therapy outcomes (160). It
is important to note that telomerase reverse transcriptase
mutation is accompanied by neutrophil infiltration and
neutrophil chemokine expression in the IDH-wt glioma
microenvironment, which may be partly responsible for the
poor prognosis of IDH-wt gliomas (161). Furthermore, the
reduced neutrophil infiltration in IDH-mt gliomas may
contribute, in part, to the improved clinical outcomes observed
in these patients (162).

Although previous studies have shown that neutrophils
contribute to the malignant progression of gliomas, neutrophils
can also limit glioma growth. It was recently reported that
neutrophils are recruited during the early stages of glioma
development and exert an antitumour function in tumour-
bearing mice. Increased reactive oxygen species (ROS) release
levels might be responsible for the role of antineoplastic
neutrophils. Unfortunately, as the tumour progressed,
neutrophils lost the ability to prevent tumour progression (89).
The antitumorigenic property of neutrophils during early stages
of glioma suggests that these cells may contribute to improved
immunotherapeutic outcomes in patients with glioma.
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EFFECT OF NEUTROPHILS ON T CELLS

Based on MDSC function, PMN-MDSCs should refer to
neutrophil subsets with proven immunosuppressive activity.
MDSCs in the tumour site play a major role in T cell
suppression (The immunosuppressive function of MDSCs is
summarized in Figure 2). The important factors implicated in
the MDSC-mediated suppression of T cell function include the
metabolism of L-arginine, increased production of ROS, and
increased levels of peroxynitrite (ONOO−) (170). M-MDSCs and
PMN-MDSCs regulate different aspects of immune suppression.
M-MDSCs suppress the T cell response by utilizing NO, whereas
PMN-MDSCs use ROS, peroxynitrite, and arginase to mediate
immune suppression (170, 171). Because of the increased
arginase activity of MDSCs, L-arginine is catabolized into urea
and L-ornithine. The created L-arginine deficiency inhibits T cell
proliferation (163, 164). MDSCs are induced to express inducible
nitric oxide synthase-2 (iNOS2), which converts L-arginine into
NO and L-citrulline (165). NO is thought to interfere with T cell
JAK/STAT signalling proteins required for T cell activation,
inhibit MHC class II gene transcription, and induce T cell
apoptosis (166–168). ROS are another important factor that
mediate the immunosuppressive activity of MDSCs, which has
been demonstrated in in vitro studies (172–174). MDSCs
produce high levels of peroxynitrite and ROS when in direct
contact with T cells. The superoxide anion (O−

2 ) interacts with
NO to form peroxynitrite. An in vivo experimental model found
that MDSCs produce ROS and peroxynitrite to induce
modification of TCR and CD8 molecules, resulting in CD8+ T
cells losing the ability to bind to pMHC complexes and inducing
nonresponsiveness in tumour-specific CD8+ T cells in the
peripheral blood (169). Comparison of MDSCs between the
peripheral blood and TME shows that tumour MDSCs have
Frontiers in Immunology | www.frontiersin.org 7
more effective inhibitory activity. After migrating to a tumour,
MDSCs are exposed to inflammation and hypoxia in the TME.
This results in increases in arginase and iNOS, downregulation of
ROS production, and upregulation of inhibitory PD-1 ligand
(PD-L1) expression on the MDSC surface (171).

In gliomas, the abilities of MDSC subsets to express arginase I
and produce ROS have been confirmed. Arginase I is expressed in
tumour-derived MDSCs, predominantly M-MDSCs. Only a small
portion of MDSCs in the blood of glioma patients express arginase.
In contrast, both MDSC subsets can produce ROS (175). MDSCs
were found to be increased in the peripheral blood of patients with
GBM, and the largest population, comprising more than 60% of
cells, was neutrophil MDSC subsets. MDSCs in the peripheral blood
of patients with GBM were shown to suppress T cell IFN–g
production (176). Immunohistochemistry confirmed that CD15+

granulocytic MDSC (PMN-MDSC) subsets are dominant in glioma
tissue (177). Blood-derived neutrophilic MDSCs inhibit T cell
proliferation in vitro. There is a correlation between granulocytic
MDSCs and effector memory CD4+ T cells in gliomas. Effector
memory CD4+ T cells are dysfunctional and express high levels of
PD-L1, an immunoinhibitory receptor that is involved in functional
T cell exhaustion (175). The results of these studies have important
clinical implications for immune-based interventions in GBM.
Strategies to target MDSCs in peripheral blood and tumour tissue
should be implemented into immunotherapeutic approaches.
POTENTIAL APPLICATION OF
NEUTROPHILS IN GLIOMA THERAPY

The treatment of gliomas has been particularly challenging due
to the high invasive growth and treatment resistance of
these tumours (178, 179). In the context of glioma,
FIGURE 2 | The immunosuppressive function of MDSCs. MDSCs produce arginase, which decomposes l-arginine into urea and l-ornithine (163, 164). MDSCs
express iNOS2, which converts l-arginine into NO and l-citrulline (165). L-Arginine deficiency inhibits T cell proliferation. NO interferes with JAK/STAT signalling
proteins, inhibits the transcription of MHC class II genes, and induces T cell apoptosis (166–168). MDSCs produce high levels of peroxynitrite and ROS when in
direct contact with T cells to induce TCR and CD8 molecular modification, resulting in CD8+ T cells losing the ability to bind to the pMHC complex; this results in
nonresponse of peripheral blood tumour-specific CD8+ T cells (169).
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neutrophils typically promote cancer cell proliferation,
immunosuppression, and angiogenesis in support of tumour
growth and metastasis (9, 76). Hence, significant attention has
been drawn towards development of glioma immunotherapies
targeting these neutrophils; either depleting them from tumour,
blocking their infiltration, or using neutrophil-delivered drug
system to exert immunostimulatory/tumoricidal properties
(180–184).

Inhibiting Neutrophils
Blocking VEGF to inhibit neovascularization has emerged as a
primary strategy for glioma treatment (37, 185). Bevacizumab is
a humanized monoclonal antibody against VEGF that improves
progression-free survival in GBM patients (186). However,
neutrophil infiltration into tumours is significantly correlated
with acquired resistance to anti-VEGF therapy (37). Therefore,
further research is needed to determine the exact mechanism by
which neutrophils mediate anti-VEGF treatment resistance in
GBM and to propose potential approaches for glioma treatment.

In addition, as mentioned above, in patients with glioma,
increased neutrophil infiltration is associated with glioma
progression and a poor prognosis. R. E. Kast et al. hypothesized
that dapsone, an antibiotic, could target neutrophils by blocking
IL-8-mediated neutrophil infiltration and subsequently limiting
glioma cell migration (182). The results demonstrated in a
modified rat T9 GBM model that glioma cells genetically
engineered to secrete IL-6 invoke an effective, antitumour
response in which the early stages may be mediated by
neutrophils (181). These studies provided valuable information
on neutrophils response to glioma in vitro and in vivo. In contrast
to previous neutrophil depletion approaches, Yun Chang et al.
established a new platform for producing neutrophils. They used
chimeric antigen receptors (CARs) to enhance neutrophil
antitumour cytotoxicity for targeted therapy of glioma (180).
This strategy may complement current standard glioma
treatments and boost their efficacy. Other strategies of cancer
immunotherapy are to prevent the interaction between PD-1 on T
cells and PD-L1 on tumour cells or host cells. Anti-neutrophil
reagents have been observed to enhance the treatment efficacy of
PD-1 inhibitors in most glioma mouse models (187) (Table 2).
Future investigation is encouraged to target neutrophils in gliomas
to alleviate their negative effects on PD-1 inhibitors.

Therapeutic Targeting of Brain TME
by Neutrophils
Drug delivery directly into the CNS is a strong strategy because it
circumvents the obstacle of the BBB (These methods are
summarized in Figure 3) (183, 184). Neutrophils have the
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natural abilities to penetrate glioma sites and cross the BBB.
Treatment with neutrophils carrying paclitaxel (PTX)-loaded
liposomes produced superior suppressive effects on tumour
recurrence in glioma mouse models (184). A neutrophil-
derived exosome (NEs-Exos) drug delivery system for the
treatment of glioma was recently reported. The anticancer drug
doxorubicin (DOX) was loaded into this nanocarrier, which
could efficiently cross the BBB into the brain and target
inflamed brain tumours. NEs-Exos have been confirmed to
efficiently suppress tumour growth and prolong survival time
(183). These novel strategies hold positive clinical prospects for
brain targeting if explored further in the right direction.

Inhibiting the Formation of NETs
The presence of NETs in tumours of CNS has rarely been
reported. Recently, NETs were detected in grade IV glioma
tissues by staining for MPO and CitH3. The levels of NETs in
high-grade glioma tissues were significantly higher than those in
low-grade glioma tissues. Furthermore, NETs participate in the
proliferation and invasion of GBM cells by binding HMGB1 to
RAGE to activate the NF-kB signaling pathway (92).

Injection of DNase I into experimental animals degraded
extracellular DNA fibres and significantly inhibited the invasion
and metastasis of pancreatic cancer cells (188). A study by
Meurer et al. reported host DNase 1 promoted the killing of S.
suis by neutrophils by cleaving DNA fibers in NETs (189). In
addition to DNase, certain drugs or compounds have been
shown to inhibit or destroy NETs and may play a therapeutic
role in CNS diseases. Cl-amidine and BB-Cl-amidine are
nonspecific PAD inhibitors that inhibit PAD4 and reduce the
formation of NETs (190). HMGB1 plays an important role in
ischaemic cerebral infarction and promotes the production of
NETs. Studies have shown that the use of anti-HMGB1
antibodies can reduce the formation of NETs (191). The
antidiabetic drug metformin has also been shown to reduce
NETs concentrations in vitro (192). These drugs targeting
NETs may arouse interest in treating gliomas. Futures
potential therapeutic strategy for gliomas are needed to refine
our knowledge on NETs.
DISCUSSION

The important role of neutrophils in tumour progression and
their potential as therapeutic targets have been extensively
studied in recent years (182, 193). To date, studies on
neutrophils in cancer have investigated not only the ability of
these cells to promote or prevent tumour progression but also the
TABLE 2 | Studies to treat glioma by targeting neutrophils.

Neutrophil-targeted agent Target Test Systems References

Dapsone IL−8 In vitro human (182)
anti-Ly6G antibody Neutrophils In vivo mouse (187)
IL-6 Recruit antitumour neutrophils In vivo rat (181)
Neutrophils Antitumour neutrophils In vitro human and in vivo mouse (180)
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recruitment mechanism of neutrophils and their phenotypic
classification (41). Each of these findings opens up new
opportunities for therapeutic intervention in glioma patients.

The presence and significance of neutrophils in gliomas have
long been overlooked. Clarifying the roles of neutrophils
in the peripheral blood and TME of patients with glioma
will help improve the potential of targeted glioma
therapies and incorporate these cells into current treatment
regimens. Circulating neutrophils are closely correlated with
clinicopathological parameters such as tumour stage, tumour
progression, and OS, so neutrophils can be used as biomarkers
for diagnosis and prognosis (194–196). Most previous studies in
patients with glioma have shown that neutrophils infiltration at
the tumour site has negative effects on tumour progression,
patient survival, and treatment response (197–199). Further
study of the effects of neutrophils in the TME and analysis of
their diversity has revealed new insights into TANs in gliomas,
showing that neutrophils can directly exert important
antineoplastic activity (89, 200). The goal of the previous
hypothetical approach was to block neutrophils from
infiltrating into the tumour site (201), and the discovery of the
role of antitumour neutrophils provides a new way to improve
the efficiency of current treatments (89). In conclusion,
neutrophils perform different functional roles in the
progression of glioma. Targeting neutrophils can block the
growth of glioma cells and improve the immune response in
the lesional area, and tumour progression can also be
systematically inhibited using targeted metabolic drug delivery
systems based on neutrophils (182–184). In addition, many
Frontiers in Immunology | www.frontiersin.org 9
drugs or compounds have been shown to inhibit the formation
of NETs through different mechanisms (202, 203). We speculate
that the use of these drugs or compounds is beneficial for the
treatment of gliomas and hope to confirm this in future studies.

This is expected to be a new direction for the clinical
treatment of glioma. However, the role of neutrophils in
gliomas has not been sufficiently studied, and more studies are
needed to elucidate the role and mechanism of neutrophils in
gliomas. In addition, the clinical application prospects of
neutrophils, whether for neutrophil recruitment or NETs, are
expected to be confirmed in subsequent studies. Therefore, we
hope that this paper can provide inspiration or useful
information for follow-up study on neutrophils in glioma to
promote progress in the diagnosis and treatment of glioma.
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FIGURE 3 | The strategy uses neutrophils to treat gliomas. Neutrophils carry paclitaxel (PTX) liposomes to treat gliomas. In the neutrophil-derived exosome (NEs-
Exos) drug delivery system, the anticancer drug doxorubicin (DOX) is loaded into the nanocarrier for the treatment of gliomas.
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