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Abstract: Red wine is a well-known alcoholic beverage, and is known to have phenolic compounds
(PCs), which contribute to its antioxidant activity and have other beneficial advantages for human
health. The aim of this study was to evaluate the effect of the simulated gastro-intestinal digestion
and the Caco-2 transepithelial transport assay on the PCs, bioavailability, and the antioxidant capacity
of red wines. The contents of PCs in red wine were significantly reduced during most of the digestion
phases. Phenolic acid had the greatest permeability, while the flavonols had the weakest. The
bioavailability of PCs ranged from 2.08 to 24.01%. The result of the partial least squares structural
equation model showed that the three phenols were positively correlated with the antioxidant activity
of red wine. The contribution of anthocyanins was the largest (0.8667).
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1. Introduction

In recent years, red wine has received more and more attention as a popular alcoholic
beverage worldwide [1,2]. Its consumption increases gradually with the development of a
nation’s economy [3]. The total phenolic content of red wine is estimated to be between
2 and 6 mg/mL [4,5]. These PCs exhibit a wide range of activities, including antioxidant,
antihypertensive, anti-inflammatory, anti-microbial, cardioprotective, and neuroprotective
properties [6–10].

The bioaccessibility and bioavailability of PCs determine their potential value as
bioactive agents. An in vitro digestion model was recently developed to assess the bioac-
cessibility of target molecules in a variety of products [11]. Bioavailability refers to the
proportion of distinct digestive samples that carry target compounds from the intestinal
cavity into the bloodstream in the human body [12]. Although in vivo research can produce
more advanced information and apply it to human health, for ethical and cost reasons, great
effort has been made to search alternative methods for plant secondary metabolite develop-
ment. The method of using animals to evaluate the metabolism and/or toxicity of plant
secondary metabolites has been carefully considered in research and related applications.
Animal studies have been conducted mainly to determine the compound pharmacokinetics
and toxicological data. At present, the in vitro assays based on cell cultures are some of the
most important among all of the in vitro assays for performing in vitro–in vivo extrapola-
tion. There are many examples on cell-based data that are incorporated into mathematical
modeling in order to predict the in vivo result accurately and successfully [13]. The Caco-2
cell line has long been used to investigate nutrient bioavailability in various food matri-
ces [14]. It is a sophisticated model to study the cross-transepithelial transport of substances
in the human intestine and the mechanics of the intestinal barrier. Therefore, it was used in
this study to investigate bioavailability.
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Under normal metabolic conditions, the human body produces reactive oxygen species
(ROS) [15]. Extensive defense mechanisms are present to counteract the effects of these
oxidizing agents [16]. Large amounts of ROS in the body can cause oxidative stress, affect
biological components, cause genetic damage and mutations, and induce cell death [17].
Effective alternatives to conventionally-used antioxidant enzymes must be identified to
reduce ROS in the body. Previous studies on the antioxidant activity of PCs in red wine
mainly considered the overall antioxidant activity of the sample solution after in vitro
digestion [18,19]. However, PCs must be absorbed by small intestinal cells before they can
exert an antioxidant activity in vivo; the ability of different kinds of PCs to penetrate these
cells differs [20]. The antioxidant activity of the sample solution after in vitro simulation
digestion may not reflect the actual antioxidant activity, and is a reflection of the total
polyphenols. However, different kinds of PCs do not have the same antioxidant activity.
In this study, we tried to clarify the changes in the PCs in red wine before and after
simulated gastrointestinal digestion, along with the Caco-2 transepithelial transport assay
after simulated digestion. The bioavailability of different PCs was explored. The partial
least square structural equation model was used to reveal the relationship between different
families of PCs and their antioxidant activities for the first time.

2. Materials and Methods
2.1. Chemicals

Standards of (+)-catechin, malvidin-3-glucoside, caffeic acid, quercetin, iso-quercetin,
and gallic acid were purchased from Sigma Chemical Co. (St. Louis, MO, USA). The purity
grade of all standards was greater than 99%.

Porcine amylase, porcine pepsin, porcine pancreatin, and fetal bovine serum were
purchased from Sigma Chemical Co. (St. Louis, MO, USA).

Formic acid (HPLC-grade), acetonitrile (HPLC-grade), ethanol, Dulbecco’s Modified
Eagle Medium (DMEM)culture medium, methyl thiazolyl tetrazolium, EDTA, penicillin,
streptomycin, DPPH, acetic acid, TPTZ, FeCl3, ABTS, and potassium persulfate were
purchased from a commercial reagent company (Omic Inc., Beijing, China). In addition
to HPLC-grade reagents, all of the other reagents were of analytical grade. Ultrapure
water was obtained from a Milli-Q water purification system (Millipore Corp., Bedford,
MA, USA).

2.2. Wine Samples

Three red wines were obtained from three central grape-planting regions in China,
namely Yantai, Helan Mountain, and Tianshan Mountain. The grape cultivar was Cabernet
Gernischt. The three brands of red wine corresponded to the three grape-planting regions:
Cabernet, Helanshan, and Tianzhu. The wine from Cabernet comprised 12% alcohol, pH
3.6, and free SO2 of 45 ppm. The wine from Helanshan was composed of 13% alcohol,
with a pH of 3.5 and a free SO2 amount of 45 ppm. The wine from Tianzhu contained 13%
alcohol, with a pH of 3.4 and a free SO2 amount of 40 ppm. The age of the wine used was
three years. The wine bottles were stored upside down at a specific angle in the dark at a
low temperature, and the appropriate dilution was determined immediately after opening.

2.3. In Vitro Simulation Digestion Procedure

The digestion procedure was carried out by adapting the method of Brodkorb et al.
and Gómez et al. [21,22]. First, 10 mL of a 0.85% (w/v) NaCl solution was mixed with 15 mL
of a sample of red wine and was preheated for 15 min at 37 ◦C. One milliliter (50 units/mL)
of porcine amylase was prepared in a 15 mM Na3PO4 buffer solution (pH adjusted to
6.8) containing 1.5 mM CaCl2, and it was added to the red wine solution. After 5 min,
4.5 mL of 0.12 M HCl was added to the mixture to adjust the pH to 2.4. One milliliter of
porcine pepsin (0.02 mg/L) was dissolved in a 20 mM HCl solution. The mixture was then
maintained at 37 ◦C for 120 min. The digestion mixture was then centrifuged at 8000× g for
15 min to obtain samples from the gastric digestion phase. The gastric samples were then
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reacted with a mixture containing 5 mL each of bile salt (0.15 mg/L) and porcine pancreatin
(20 mg/L). The mixture was incubated at pH 6.5 at 37 ◦C for 3 h before being centrifuged.
The extracts of the intestinal phase were the supernatants. The same operation was done
three times, and each sample was stored in a refrigerator (−20 ◦C) immediately for further
analysis.

2.4. Cell Culture

Caco-2 cells were inoculated following the method of Hubatsch et al. [23]. Briefly, a
5% v/v of CO2 incubator at 37 ◦C was used to house the cells. DMEM culture medium
(pH = 7.4) supplemented with 9% v/v fetal bovine serum, 1% v/v antibiotic mixture (peni-
cillin and streptomycin), and 1.2% v/v non-essential amino acids was used. Caco-2 cells
were sub-cultured when they reached 80–90% of the adherent growth by treating them
with a 0.05% v/v of trypsin–EDTA solution. The culture between passages 35 and 40 was
used for the following experiment.

2.5. Transport Experiments Using the Caco-2 Cell Model

Transport experiments were performed according to the method of Wu et al. with
slight modifications [24]. First, 1.0 × 105 Caco-2 cells were inoculated onto 12 mm transpar-
ent cell culture plates (Transwell). Media were carefully injected into the apical (0.5 mL)
and basolateral (1.5 mL) sides of the Transwell plates. The cell culture medium had to be
replaced every other day until the cells formed a monolayer. The integrity and transport
ability of the Caco-2 cell monolayer were evaluated by measuring the trans-epithelial
electrical resistance (TEER) with a MilliCell voltammeter (Millicell ERS-2, Merck Millipore,
Billerica, MA, USA). The TEER value exceeded 100 from day 14 to 21 after inoculation,
indicating that the cell integrity in the monolayer met the requirements for the subsequent
experiments. The monolayer formation was confirmed by the fact that the calculated
TEER was higher than 400/cm2. The methyl thiazolyl tetrazolium (MTT) cell viability test
revealed that the phenols did not affect the viability of intestinal cells. When the cell activity
exceeded 0.9, a transport experiment was conducted. The apical side was injected with a
digested red wine sample (0.5 mL) and was thoroughly mixed with anHank’s Balanced
Salt Solution (HBSS) buffer solution. Only 1.5 mL of the buffer solution was added to the
basolateral side of the monolayer. The cells were then cultured in a 37 ◦C, 5% CO2 incubator.
Then, 0.25 mL samples were separately taken from the basolateral side of the monolayer.
An equal volume of HBSS buffer was then added every half hour from the beginning of
the culture until the end of the culture at 6 h. The collected samples were subsequently
filtered and placed in the sample bottle for further HPLC analysis. This experiment was
repeated several times to collect enough samples for the next antioxidant test. The apparent
permeability coefficient (Papp) is typically used to characterize the transport capacity of
substances and was calculated using the following equation:

Papp(cm/s)= dC/dt × V/A·C0 (1)

dC/dt represents the concentration change value per unit time for PCs on the basolateral
side (mM/s), V represents the volume of the basolateral side (mL), A represents the
membrane surface area (cm2), and C0 represents the initial PCs concentration on the apical
side (mM).

2.6. Determination of the Phenolic Profile

The Pati method was adopted, with slight modifications, to measure the content of
the PCs [25]. The Agilent 1100 series HPLC instrument was used; it was equipped with
a degasser, quaternary pump solvent delivery, a DAD system, and a single quadrupole
mass detector coupled with an electrospray ionization LC–MS interface. Briefly, th samples
were injected into a Zorbax SB C18 reversed-phase column (5 µm,150 × 2.1 mm, Agilent
Technologies, Santa Clara, CA, USA) using an autosampler after filtering through 0.45 µm
cellulose acetate syringe filters. The column temperature was kept at 30 ◦C, the injection
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volume was 10 µL, and the flow rate was 0.3 mL/min. The eluents were water and formic
acid in a 99:1 (v/v) (A) ratio and 100% acetonitrile (B). The gradient elution procedure
was as follows: (1) 3% B solvent at 0 min, (2) 3 to 16% B solvent at 10 min, (3) 16 to 20% B
solvent at 30 min, and (4) 20% B solvent maintained until the procedure was completed.
The MS configuration was as follows: ESI, negative ion mode, nebulizer pressure of
30 psi, a dry gas flow rate of 10 mL/min, dry gas temperature of 350 ◦C, and a scan
rate of 100~1200 m/z. PCs were determined according to their retention times, UV/VIS
spectra, and high-resolution MS spectra, in addition to a comparison with the standards.
Quantification was carried out using the commercial standards of (+)-catechin, malvidin-3-
glucoside, caffeic acid, quercetin, iso-quercetin, and gallic acid in a range from 0.015 mg/L
to 300 mg/L. If a standard was unavailable, a structurally related compound was used.
Putative annotations were made using spectral features and literature information on
the chromatographic properties and mass spectra records from the metabolome database.
A standard curve was drawn using methanol solutions with different concentrations as
the standards. The limits of detection and quantitation were calculated according to the
signal-to-noise ratio (limit of detection: signal-to-noise ratio ≥ 3; limit of quantitation:
signal-to-noise ratio ≥ 10). The limit of quantitation ranged from 0.015 to 0.085 mg/L. The
CV was below 11%. PCs All of the samples were determined in triplicate.

2.7. Assessment of In Vitro Antioxidant Potential
2.7.1. DPPH Radical-Scavenging Activity

The red wine sample was measured using the method of Sabeena with slight modifi-
cations, for the determination of the DPPH radical scavenging activity [26]. The solution
was prepared as follows: 7.8864 mg of analytically pure DPPH was dissolved in 75%
ethanol to obtain a total volume of 100 mL. Three milliliters of each red wine sample were
homogeneously blended with equal amounts of DPPH solution, and the mixture was kept
at 37 ◦C for half an hour in the dark. Absorbance was recorded at 517 nm.

DPPH radical scavenging activity (%) = (Acontrol − Asample)/Acontrol × 100 (2)

“Asample” is the absorbance of the sample in the DPPH solution and “Acontrol” is the
absorbance of the DPPH solution in water.

2.7.2. Ferric Reducing Antioxidant Power (FRAP)

The ferric-reducing activities of the red wines sample were assessed as follows [27].
The FRAP solution was prepared as follows: 0.3 M acetic acid buffer (pH 3.6), 10 mM TPTZ
solution, and 20 mM FeCl3 solution were mixed at a ratio of 10:1:1 and used immediately
after preparation. The red wine sample solution (3 mL) was homogeneously mixed with
3 mL of fresh FRAP reagent and was incubated in the dark at 37 ◦C at a constant temperature
for 10 min. Absorbance was recorded at 593 nm.

FRAP radical scavenging activity (%) = (Acontrol − A sample)/Acontrol × 100 (3)

“Asample” is the absorbance of the sample in the FRAP solution and “Acontrol” is the
absorbance of water in the FRAP solution.

2.7.3. ABTS Free Radical Scavenging Activity

To investigate the ABTS radical scavenging activity of the red wine, the ABTS assay
was performed using the method of Abdel-Hamid [28]. The ABTS solution was prepared
as follows: 38.4 mg ABTS was dissolved in water, to obtain a volume of 10 mL. Potassium
persulfate (13.4 mg) was dissolved in water to obtain a final volume of 10 mL. The two
solutions were mixed in a ratio of 1:1 and were diluted 20 times with PBS (pH = 7.4) before
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use. The red wine sample (3 mL) was mixed with 3 mL of ABTS solution. After incubating
for half an hour under dark conditions, absorbance was measured at 405 nm.

ABTS radical scavenging activity (%) = (Acontrol − Asample)/Acontrol × 100 (4)

“Asample” is the absorbance of the sample in the ABTS solution and “Acontrol” is the
absorbance of water in the ABTS solution.

2.8. Statistical Analysis

All of the experiments and analyses were repeated three times to obtain the average.
The final results were presented in the form of the mean ± standard deviation. The
experimental groups were compared by one-way ANOVA, and the mean difference was
calculated by Tukey’s multiple comparison test (p < 0.05). The relationships between the
antioxidant activity and the different kinds of polyphenols were estimated using a partial
least square structural equation model.

3. Results and Discussion
3.1. Change in PCs during the Simulated Gastrointestinal Digestion and Transmembrane Process

PCs are well-known for their antioxidant potential and are abundant in fruits and
vegetables. During the in vitro simulation gastrointestinal digestion phase, to observe the
changes in individual PCs, 23 compounds were investigated using HPLC; these compounds
included eight anthocyanins, three flavanols, seven flavonols, and five phenolic acids.
Table 1 depicts the change in the content of PCs in various red wine samples before and
after simulation digestion. The simulated digestion process significantly reduced most
phenolic substances. Among the anthocyanins and flavanols, only delphinidin-3-glucoside
and epicatechin increased by 20.6 and 14.5% after digestion in Tianzhu; they increased
by 28.3 and 14.7% after digestion in Helanshan. In the flavonols category, only the iso-
quercetin content in Tianzhu was slightly increased by 9.8% after digestion. In contrast, in
the phenolic acids category, the fertaric acid content in the three red wines increased by 41.2,
22.3, and 127.0% after digestion, respectively, which could be due to the action of different
enzymes or bile salts on the red wine matrix, resulting in the release in bound PCs [29].
These results were consistent with those of Zhang (2017) [30] and Chiat (2020) [31].
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Table 1. PCs content in the red wines at different phases.

PC Contents (mg/L)
Tianzhu Helanshan Cabernet

Undigested After Digestion Transmembrane Undigested After Digestion Transmembrane Undigested After Digestion Transmembrane

Delphinidin-3-glc Anthocyanins 2.38 ± 0.12 b 2.87 ± 0.11 c 0.57 ± 0.02 a 2.05 ± 0.09 b 2.63 ± 0.10 c 0.53 ± 0.02 a 3.45 ± 0.15 c 2.96 ± 0.09 b 0.59 ± 0.02 a

Petunidin-3-glc Anthocyanins 6.21 ± 0.29 c 5.33 ± 0.21 b 1.06 ± 0.04 a 5.86 ± 0.27 c 4.98 ± 0.19 b 1.40 ± 0.05 a 8.29 ± 0.31 c 5.79 ± 0.27 b 1.56 ± 0.07 a

Peonidin-3-glc Anthocyanins 4.92 ± 0.22 b 4.31 ± 0.19 b 0.86 ± 0.03 a 4.66 ± 0.21 c 4.02 ± 0.18 b 1.40 ± 0.06 a 5.37 ± 0.27 b 5.11 ± 0.24 b 1.72 ± 0.07 a

Malvidin-3-glc Anthocyanins 163.2 ± 6.04 c 103.8 ± 5.71 b 20.68 ± 1.05 a 113.2 ± 4.19 c 88.2 ± 3.97 b 35.55 ± 1.46 a 208.32 ± 10.83 c 153.43 ± 5.83 b 62.38 ± 3.24 a

Delphinidin-3-acglc Anthocyanins 0.48 ± 0.016 c 0.22 ± 0.008 b 0.04 ± 0.002 a 0.33 ± 0.013 c 0.14 ± 0.007 b 0.02 ± 0.001 a 0.67 ± 0.03 c 0.29 ± 0.014 b 0.04 ± 0.002 a

Petunidin-3-acglc Anthocyanins 1.42 ± 0.05 c 1.17 ± 0.04 b 0.23 ± 0.008 a 1.37 ± 0.05 c 0.98 ± 0.05 b 0.18 ± 0.005 a 1.87 ± 0.08 c 1.05 ± 0.05 b 0.19 ± 0.008 a

Malvidin-3-acglc Anthocyanins 51.6 ± 2.48 c 39.3 ± 1.30 b 7.83 ± 0.23 a 45.5 ± 2.09 c 30.5 ± 0.92 b 6.06 ± 0.25 a 63.4 ± 3.36 c 39.8 ± 1.51 b 8.02 ± 0.38 a

Peonidin-3-acglc Anthocyanins 5.32 ± 0.29 c 3.88 ± 0.16 b 0.77 ± 0.03 a 4.56 ± 0.23 c 3.21 ± 0.14 b 0.44 ± 0.02 a 6.87 ± 0.27 c 3.46 ± 0.15 b 0.47 ± 0.02 a

Catechin Flavanols 35.2 ± 1.80 c 16.7 ± 0.75 b 3.33 ± 0.15 a 30.42 ± 1.58 c 15.42 ± 0.83 b 1.90 ± 0.07 a 47.6 ± 1.62 c 25.4 ± 0.86 b 3.16 ± 0.15 a

Epicatechin Flavanols 18.6 ± 0.95 b 21.3 ± 0.98 c 4.24 ± 0.20 a 16.33 ± 0.60 b 18.17 ± 0.81 b 3.35 ± 0.16 a 22.1 ± 0.86 c 10.2 ± 0.38 b 1.86 ± 0.10 a

Procyanidin dimer Flavanols 8.31 ± 0.26 b 7.64 ± 0.32 b 1.52 ± 0.08 a 7.62 ± 0.24 c 5.98 ± 0.27 b 0.62 ± 0.02 a 9.67 ± 0.34 c 5.64 ± 0.26 b 0.58 ± 0.03 a

Myricetin-3-glc Flavonols 51.42 ± 1.59 b 43.22 ± 1.34 b 8.61 ± 0.43 a 39.43 ± 1.93 c 28.45 ± 1.51 b 0.64 ± 0.02 a 60.54 ± 2.91 c 36.91 ± 1.10 b 0.81 ± 0.04 a

Astilbin Flavonols 38.11 ± 1.87 c 25.36 ± 1.32 b 5.05 ± 0.19 a 30.32 ± 1.46 b 24.63 ± 1.13 b 0.93 ± 0.04 a 40.12 ± 1.69 c 28.22 ± 1.07 b 1.11 ± 0.05 a

Laricitrin-3-glc Flavonols 36.54 ± 1.10 c 28.63 ± 0.86 b 5.70 ± 0.29 a 28.34 ± 1.02 c 18.76 ± 0.81 b 0.55 ± 0.03 a 45.33 ± 1.81 c 29.78 ± 1.28 b 0.84 ± 0.04 a

Quercetin-3-glc Flavonols 195.65 ± 8.41 b 188.45 ± 8.29 b 37.54 ± 1.95 a 167.35 ± 7.20 b 145.43 ± 5.38 b 5.10 ± 0.28 a 256.17 ± 10.76 b 202.22 ± 10.52 b 7.47 ± 0.23 a

Isoquercetin Flavonols 17.43 ± 0.85 b 19.13 ± 0.69 b 3.81 ± 0.18 a 14.23 ± 0.57 b 12.01 ± 0.37 b 0.72 ± 0.04 a 21.45 ± 1.12 c 13.46 ± 0.59 b 0.83 ± 0.04 a

Syringetin-3-glc Flavonols 34.75 ± 1.11 b 30.19 ± 1.03 b 6.01 ± 0.22 a 28.46 ± 1.28 c 20.17 ± 1.01 b 0.91 ± 0.03 a 46.97 ± 2.58 c 26.34 ± 0.90 b 1.23 ± 0.04 a

Isorhamnetin-3-glc Flavonols 15.34 ± 0.80 c 9.88 ± 0.35 b 1.97 ± 0.07 a 11.43 ± 0.55 b 9.87 ± 0.47 b 0.69 ± 0.03 a 19.42 ± 0.95 c 10.82 ± 0.32 b 0.74 ± 0.03 a

Gallic acid Phenolic Acids 9.36 ± 0.37 c 6.91 ± 0.26 b 1.38 ± 0.05 a 8.25 ± 0.25 c 5.11 ± 0.25 b 2.53 ± 0.14 a 10.99 ± 0.52 b 9.08 ± 0.44 b 4.61 ± 0.23 a

Fertaric acid Phenolic Acids 2.91 ± 0.14 b 4.11 ± 0.18 c 0.82 ± 0.03 a 1.48 ± 0.07 b 1.81 ± 0.10 c 0.81 ± 0.04 a 1.37 ± 0.05 a 3.11 ± 0.12 b 1.40 ± 0.07 a

Ethyl gallate Phenolic Acids 70.98 ± 2.20 c 40.83 ± 1.51 b 8.13 ± 0.28 a 61.38 ± 2.09 c 30.18 ± 0.94 b 8.64 ± 0.36 a 60.22 ± 2.65 c 38.42 ± 1.88 b 10.70 ± 0.33 a

Caftaric acid Phenolic Acids 6.45 ± 0.34 c 5.35 ± 0.23 b 1.07 ± 0.03 a 5.84 ± 0.26 c 3.46 ± 0.19 b 0.49 ± 0.02 a 4.77 ± 0.20 c 3.01 ± 0.17 b 0.43 ± 0.01 a

Coutaric acid Phenolic Acids 4.32 ± 0.19 c 3.21 ± 0.15 b 0.64 ± 0.03 a 3.84 ± 0.18 c 2.97 ± 0.15 b 0.61 ± 0.03 a 2.85 ± 0.11 c 1.96 ± 0.08 b 0.38 ± 0.02 a

Three replicates were used for the experiment. Means with different letters show the remarkable differences according to the ANOVA (p < 0.05).
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During the simulation of gastric digestion, polyphenols were exposed to acidic gas-
tric juice and pepsin, which accelerated the hydrolysis of polymerized polyphenols and
converted them to monomers or aglycones [32]. The bonds between the PCs and proteins,
fibers, or sugar residues were broken, causing changes in the molecular weight (MW),
water solubility, and spatial structure, thereby reducing the total content of PCs upon
gastric digestion [33]. The change in PCs during the intestinal digestion phase may be
due to their rapid degradation in an alkaline environment, as well as their possible in-
teraction with bile acids or other compounds [34]. These interactions between PCs and
dietary constituents can result in covalent compounds that may reduce or increase the
bioaccessibility of PCs [35]. Red wine contains many polysaccharides, such as soluble
fibers, that are often bonded with PCs [36]. The pepsin and gastric acid environments have
no significant effect on the degradation of flavonols and phenolic acids [37]. Malvidin-3-
glycoside, quercetin-3-glycoside, and ethyl gallate constituted the highest content of PCs
in red wine. The latter two compounds are known to be more stable under acidic condi-
tions [37]. The molecular structure of PCs generally comprises acidic phenolic hydroxyl
groups, which are unstable under alkaline conditions. Therefore, quick transformation in
chemical bonds may take place to produce new compounds with various biological activi-
ties and bioavailabilities [37]. During the in vitro gastrointestinal digestion step, complex
biotransformation processes such as glucuronidation, methylation, and sulfation occur,
promoting the formation of several chemical compounds, such as phenolic acids. Many
factors can influence the loss of anthocyanins and flavanols during intestinal digestion.
Firstly, the pH value improves polyphenol degradation in the small intestine [38]. Secondly,
the interaction of polyphenols with other components may hinder absorption. Thirdly,
the oxidation and polymerization of phenols in the small intestine produce new phenolic
by-products. Lastly, the way enzymes work changes the structure of molecules, which may
render polyphenols less soluble, making it challenging for the body to absorb them [34].
Therefore, the interaction between phenolic substances and digestive enzymes, as well as
changes in pH values, may cause a shift in the concentration of phenolic substances during
gastrointestinal digestion. A previous study on sweet oranges (Citrus sinensis) revealed a
similar phenomenon during gastrointestinal digestion [39].

3.2. Caco-2 Transepithelial Transport Assay

In the last decade, the Caco-2 cell monolayer model has usually been used to evaluate
the intestinal transport of PCs [40–42]. As shown in Table 1, the transport of each of the
PCs from the apical side of the Caco-2 monolayer to its basolateral side was evaluated.
The apparent permeability coefficients of PCs are shown in Table 2; there were no marked
differences among the apparent permeability coefficients of the different red wine samples.
Phenolics acid had the greatest permeability, and flavonols had the weakest permeability.
The permeabilities of anthocyanins and flavanols were between those of the phenolic acids
and flavanols. Gallic acid had the greatest permeability (32.8 ± 4.13 cm/s) among all of the
PCs. Rastogi and Jana (2016) [43] similarly reported a higher permeability for caffeic and
gallic acids in the Caco-2 monolayers model. Because of their distinct molecular structures,
different PCs have different affinities for membrane and transcellular transporters upon
infiltration into the Caco-2 cells. Flavonols may have a low permeability because of their
low affinity for glucose transporters and slow passive diffusion.

In addition to their transmembrane ability, the structural integrity of PCs influences
their bioavailability. Bioavailability is defined as the fraction of a chemical that is available
for biological action. In this paper, bioavailability was calculated from the ratio of the
transmembrane content of phenolic acids and their undigested form. The bioavailability of
four types of PCs is depicted in Figure 1. The bioavailability of PCs in the three red wine
samples ranged from 2.08 to 24.01%. The flavonol bioavailability was the lowest, whereas
the anthocyanins and flavanols had a comparable bioavailability [44]. The bioavailability
of gallic acid in the Cabernet red wine sample was the highest among the four types
of PCs, with a maximum bioavailability of 24.01%. In the cell culture, the stability of
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PCs was significantly lower than in the organic solvents, indicating that they were easily
degraded, resulting in a very low bioavailability. Because of the poor lipid solubility,
the transmembrane transport of PCs was slow. A cell membrane protein affected the
bioavailability of PCs [45]. In addition, previous research has shown that the bioavailability
of anthocyanins is low, while phenolic acids, such as ethyl gallate and other small molecular
weight phenolic substances, are more easily absorbed [46–48]. These findings of our study
are consistent with those of previous studies.

Table 2. Apparent permeability coefficients of PCs.

PCs
Apparent Permeability Coefficients (×10−6 cm/s)

Tianzhu Helanshan Cabernet

Delphinidin-3-glc Anthocyanins 12.45 ± 2.11 a 12.59 ± 2.64 a 12.38 ± 2.37 a

Petunidin-3-glc Anthocyanins 17.13 ± 3.01 a 17.56 ± 3.32 a 16.89 ± 2.96 a

Peonidin-3-glc Anthocyanins 21.42 ± 3.89 a 21.69 ± 3.52 a 21.13 ± 3.63 a

Malvidin-3-glc Anthocyanins 25.37 ± 4.11 a 25.19 ± 3.99 a 25.41 ± 47.26 a

Delphinidin-3-acglc Anthocyanins 8.78 ± 1.44 a 8.64 ± 1.38 a 8.57 ± 1.26 a

Petunidin-3-acglc Anthocyanins 11.46 ± 2.05 a 11.78 ± 2.11 a 11.53 ± 2.01 a

Malvidin-3-acglc Anthocyanins 12.37 ± 2.45 a 12.42 ± 2.23 a 12.59 ± 2.16 a

Peonidin-3-acglc Anthocyanins 8.43 ± 1.32 a 8.54 ± 1.45 a 8.46 ± 1.61 a

Catechin Flavanols 7.83 ± 1.17 a 7.69 ± 1.23 a 7.77 ± 1.14 a

Epicatechin Flavanols 11.42 ± 1.46 a 11.53 ± 1.53 a 11.39 ± 1.77 a

Procyanidin dimer Flavanols 6.54 ± 0.86 a 6.48 ± 0.98 a 6.41 ± 1.05 a

Myricetin-3-glc Flavonols 1.35 ± 0.19 a 1.41 ± 0.21 a 1.38 ± 0.17 a

Astilbin Flavonols 2.41 ± 0.26 a 2.37 ± 0.34 a 2.46 ± 0.23 a

Laricitrin-3-glc Flavonols 1.79 ± 0.13 a 1.83 ± 0.16 a 1.76 ± 0.17 a

Quercetin-3-glc Flavonols 2.23 ± 0.22 a 2.19 ± 0.26 a 2.31 ± 0.27 a

Isoquercetin Flavonols 3.87 ± 0.23 a 3.73 ± 0.27 a 3.84 ± 0.29 a

Syringetin-3-glc Flavonols 2.88 ± 0.23 a 2.81 ± 0.29 a 2.91 ± 0.21 a

Isorhamnetin-3-glc Flavonols 4.35 ± 0.34 a 4.39 ± 0.31 a 4.29 ± 0.33 a

Gallic acid Phenolic Acids 32.8 ± 4.13 a 30.9 ± 3.99 a 31.7 ± 3.82 a

Fertaric acid Phenolic Acids 27.6 ± 3.89 a 27.9 ± 3.64 a 28.2 ± 4.11 a

Ethyl gallate Phenolic Acids 18.3 ± 3.02 a 17.9 ± 2.88 a 17.4 ± 2.73 a

Caftaric acid Phenolic Acids 8.45 ± 1.31 a 8.77 ± 1.28 a 8.93 ± 1.02 a

Coutaric acid Phenolic Acids 12.46 ± 1.42 a 12.91 ± 1.32 a 12.13 ± 1.19 a

Data show the mean plus standard deviations (n = 3). Different letters in the same row show the remarkable
differences by ANOVA (p < 0.05).

3.3. Antioxidant Activity
3.3.1. DPPH Radical-Scavenging Activity

Oxidative stress is defined as a state when the balance between the cellular antiox-
idant defense and oxidants is destroyed. The functional activity of PCs varied with the
composition of samples that had been digested. As shown in Table 3, there were significant
differences in DPPH scavenging activity among the red wines. This decreased significantly
during the digestion and transmembrane processes. During the undigested phase, all
samples for the Chinese red wine had the highest DPPH-scavenging activity. The peak
value of 82.7 ± 4.21% occurred during the undigested phase of the Cabernet samples. Our
research confirmed the findings of a previous study on raspberries [49], which similarly
reported that phenolics reflected the overall antioxidant activity of digestion for the red
wine samples.
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Table 3. Antioxidant activity of red wine at different digestion phases.

DPPH Radical Scavenging Activity (%)

Undigested After Digestion Transmembrane

Tianzhu 78.4 ± 3.88 b 52.5 ± 2.35 b 23.3 ± 2.21 b

Helanshan 71.5 ± 3.41 a 46.8 ± 2.18 a 20.8 ± 1.98 a

Cabernet 82.7 ± 4.21 c 67.9 ± 2.49 c 15.9 ± 2.43 c

FRAP radical scavenging activity (%)

Undigested After digestion Transmembrane

Tianzhu 52.7 ± 2.64 b 49.6 ± 2.51 b 15.3 ± 1.12 b

Helanshan 47.1 ± 2.19 a 41.9 ± 1.78 a 13.4 ± 1.28 a

Cabernet 61.2 ± 2.97 c 55.3 ± 2.85 c 15.6 ± 1.42 b

ABTS radical scavenging activity (%)

Undigested After digestion Transmembrane

Tianzhu 72.6 ± 3.66 a 68.1 ± 3.25 a 20.6 ± 1.97 a

Helanshan 72.1 ± 3.85 a 70.6 ± 3.71 a 21.7 ± 2.01 a

Cabernet 95.3 ± 4.78 b 89.3 ± 4.16 b 29.4 ± 2.84 b

Data showed mean plus standard deviations (n = 3). Different letters in the same row show the remarkable
differences by ANOVA (p < 0.05).

3.3.2. FRAP Radical-Scavenging Activity

Table 3 shows the FRAP radical scavenging activity during the different phases of the
digestion of red wine. Simulation digestion decreased the FRAP radical scavenging activity
significantly. After digestion, the Tianzhu, Helanshan, and Cabernet wines presented de-
creased FRAP radical scavenging activity by 5.9, 11.0, and 9.6%, respectively. Furthermore,
Cabernet showed the highest FRAP radical scavenging activity in the undigested phase.
The FRAP radical scavenging activity in the three red wine samples differed significantly
before and after the transmembrane process.
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When antioxidants oxidize ABTS, they produce colored products. These products are
ABTS cationic free radicals that can be measured using spectrophotometry. Antioxidants
may influence the onset of a reaction and are positively correlated with antioxidant activity.
As shown in Table 3, the trend of the ABTS radical scavenging activity during simulation
digestion was consistent with the antioxidant activity of DPPH and FRAP. The transition
from the undigested to the transmembrane phase decreased the ABTS activity in all of
the samples by approximately seven-fold. A similar radical scavenging behavior has been
observed in plums [50].

3.3.3. Correlation between PCs and Antioxidant Activity

The correlation between PCs and antioxidant activity in red wine was clarified by
the partial least square structural equation model. As shown in Figure 2, three families
of PCs, including anthocyanins, phenolic acids, and flavonols, were positively correlated
with the antioxidant activity of red wine. However, the content of flavanols showed a
negative correlation with the antioxidant activity. Correlations existed among the four
phenolic components; anthocyanins and flavonols had the strongest correlation with a
coefficient of 0.9774. In contrast, anthocyanins and phenolic acids were weakly correlated,
with a correlated coefficient of −0.1168. According to the partial least square structural
equation model, changes in the four phenolic components in the simulated digestion stage
were correlated. At the same time, the contribution of the four families of PCs to the final
antioxidant activity also differed, and the contribution of anthocyanins was the largest.
Changes in the ROS levels or plasma antioxidant levels can be used to characterize the state
of antioxidation, which is related to anthocyanins. The various substituents on the tricyclic
structure of anthocyanins can exert a direct antioxidant activity. Hydroxyl (−OH) groups
can provide hydrogen donors for redox reactions, while methoxy (−OCH3) groups may
play an important role as intramolecular electron donors [51]. When lipid peroxy radicals
are present, anthocyanins transform into free radical intermediates that may inhibit the
peroxidation process [52]. Therefore, future studies on the antioxidant activity should focus
on the changes in the anthocyanin content.
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4. Conclusions

Simulated gastrointestinal digestion significantly affected the stability of PCs in the
three red wines. It can be seen from the Caco-2 transepithelial transport assay after sim-
ulated digestion that PCs with different molecular structures had different effects on the
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permeabilities and bioavailability. Three antioxidant activity evaluation methods showed
that the trends of change in the antioxidant activity in the three red wines were consistent
in the different treatment phases. The partial least squares structural equation model was
introduced for the first time to evaluate the contribution of different phenols regarding the
antioxidant activity of red wine, and relatively ideal results were obtained.
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