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Hydrogen sulfide (H2S) is the latest member of the gasotransmitter family and known to play essential roles in cancer
pathophysiology. H2S is produced endogenously and can be administered exogenously. Recent studies showed that H2S in
cancers has both pro- and antitumor roles. Understanding the difference in the expression and localization of tissue-specific
H2S-producing enzymes in healthy and cancer tissues allows us to develop tools for cancer diagnosis and treatment. Urological
malignancies are some of the most common cancers in both men and women, and their early detection is vital since advanced
cancers are recurrent, metastatic, and often resistant to treatment. This review summarizes the roles of H2S in cancer and looks
at current studies investigating H2S activity and expression of H2S-producing enzymes in urinary cancers. We specifically
focused on urothelial carcinoma, renal cell carcinoma, and prostate cancer, as they form the majority of newly diagnosed
urinary cancers. Recent studies show that besides the physiological activity of H2S in cancer cells, there are patterns between the
development and prognosis of urinary cancers and the expression of H2S-producing enzymes and indirectly the H2S levels.
Though controversial and not completely understood, studying the expression of H2S-producing enzymes in cancer tissue may
represent an avenue for novel diagnostic and therapeutic strategies for addressing urological malignancies.

1. Hydrogen Sulfide

For several centuries, hydrogen sulfide (H2S) was known as
a pollutant, but now its physiological and pathophysiologi-
cal processes are well known. H2S is widely recognized as
the third endogenous gasotransmitter after carbon monox-
ide (CO) and nitric oxide (NO) in mammals and some
other species, with similar pathophysiological characteris-
tics [1, 2]. H2S is synthesized endogenously by reverse
transsulfidation and oxidation of cysteine [3–6], by three
tissue-specific enzymes: cystathionine β-synthase (CBS),

cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sul-
furtransferase (3-MPST) [3, 4, 7–11]. All of them are cyto-
solic [12–14], but 3-MPST is also localized in the
mitochondria [3, 12, 15]. Upon synthesis in different cell
compartments such as in the mitochondria, a free form of
H2S can be released into the cytoplasm or be stored inside
the cell as bound sulfane sulfur for subsequent release of
H2S (Figure 1) [16, 17].

Endogenous H2S is a key signaling molecule in humans
and other mammals. It has been detected in many organs,
and it is involved in the various physiological and
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pathophysiological processes [12, 18–20]. H2S is known to
play a role in redox homeostasis and antioxidant responses
[21–23], angiogenesis [24–30], vasodilation [31], regulation
of synaptic transmission [32], inflammatory responses [33],
glucose metabolism [34, 35], ATP production [36], and apo-
ptosis and cell proliferation [23, 31, 37–42]. The role that H2S
plays in these processes appears to be concentration depen-
dent. The concentration of free H2S in plasma could not be
measured in a proper way because it is affected by environ-
mental factors such as pH [43], but an initial study utilizing
the methylene blue method reported to be between 50
and160 μM in human and rat serum [44]. However, the
recent studies are suggesting that the endogenous concentra-
tion of H2S is much less and is between 10nM and 3 μM
[45, 46]. As H2S has a dual effect, at lower concentrations,
it has a physiological function in different tissues, whereas
at higher concentrations, H2S exerts its toxic effects by
reversibly blocking of cytochrome C oxidase and inhibiting
the electron transport chain in the mitochondria [47–49].
The catabolism of H2S occurs mainly in the mitochondria
by enzymatic pathways such as oxidoreductases and sul-
furtransferase that break it into thiosulfate and sulfate.
Moreover, oxidation of H2S reduces the FAD prosthetic
group, which uses ubiquinone (Q) as an electron acceptor,
in electron transport chain which has a role in ATP pro-
duction (Figure 1) [15, 36, 50–52]. However, under hyp-
oxic conditions, oxidation of H2S in the mitochondria
reduces, allowing H2S to accumulate and function as an
oxygen sensor [53, 54]. H2S accumulation during hypoxia
helps to maintain cell function by upregulating anaerobic
metabolic pathways like glycolysis [55] and other cytopro-
tective pathways [56]. H2S also promotes restoration of the
tissue oxygen supply by relaxation of vascular smooth muscles
(vasodilation) and also stimulation of endothelial cell prolifera-
tion and migration (angiogenesis) [24, 57]. Beside the mito-
chondrial sulfide oxidation [58], H2S can be oxidized and
catabolized by two other minor pathways [9, 59]. The first path-
way is the methylation of H2S by thiol S-methyltransferase in

the cytosol [60], and the second pathway is an interaction
between H2S and methemoglobin that leads to the production
of sulfhemoglobin and polysulfides, which can be used as a bio-
marker for plasma H2S levels [61, 62].

2. H2S in Cancer

Several studies have shown that H2S and its synthases are asso-
ciated with the pathophysiology of tumors [20, 49, 63–66]. It
has been shown that H2S can modulate oxidative stress, inter-
act with free radicals, and activate tumorigenic pathways [39,
61]. Several studies investigated the role and presence of H2S
in tumors. The expression of H2S-producing enzymes (CBS,
CSE, and 3-MPST) has been studied in various cancers includ-
ing liver, colon, ovarian, breast, gastric, lung, oral squamous
cell carcinoma, and melanoma [42, 49, 67–74]. However, the
role and effect of H2S on tumor biology, development, and
progression are controversial [75–78]. Previous reviews have
adequately summarized that H2S can have pro- or anticancer-
ous effects based on the type of tumor and the involved organ
[23, 67]. It is reported that endogenous H2S can have pro-
cancerous effects and help the survival of tumors by stimu-
lating angiogenesis along with promoting cell proliferation,
metastasis, and drug resistance [32, 49, 67, 79–81]. The
anticancerous effects of exogenous H2S administration have
been reported for several human cancers [82, 83]. Endoge-
nous H2S can be employed as a biomarker for cancer imag-
ing in mice and for differentiating cancer cells [84, 85].
Several pathways, such as inhibition of proliferation, induc-
tion of apoptosis, reduction of NF-κB levels, DNA damage,
and modification of the cell cycle, are involved in the anti-
cancer activity of H2S [27, 29, 82, 86].

Similar to endogenous H2S, the effect of exogenous H2S
treatment also shows a biphasic dose-dependent response
on cancer cells as it does in healthy tissues whereby low
concentrations of H2S exhibit a procancerous effect and high
concentrations exert an anticancerous effect [65, 67, 82, 83,
87]. The hypoxic environment of solid tumors [88] leads to
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Figure 1: Synthesis, storage, degradation, and activity of H2S, especially in urinary cancers. H2S has roles in different pathways of urinary cancers
such as signaling or ion channel. Abbreviations: CBS: cystathionine β-synthase, CSE: cystathionine γ-lyase, 3-MPST: 3-mercaptopyruvate
sulfurtransferase, Stat3/Nmpt: signal transducer and activator of transcription 3/nicotinamide phosphoribosyltransferase, HSP60: heat shock
protein 60, PI3K/AKT: phosphatidylinositol 3-kinase, UC: urothelial carcinoma, RCC: renal cell cancer, PCa: prostate cancer.
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a higher level of endogenous H2S synthesis [89, 90] and
reduces the sulfide detoxification ability of the mitochon-
dria [54, 91], which makes tumors more susceptible to
H2S toxicity. However, Malagrinò et al. showed that in
hypoxic conditions, the activity of the mitochondrial
sulfide-oxidizing pathway of quinone oxidoreductase
(SQR) adaptively increased and improved the H2S detoxi-
fication of mitochondria [92].

The direct quantification of H2S in tissue samples is a
challenge since it has a very short half-life [93]; one study
used live fluorescent imaging techniques to visualize the
H2S in live cells directly [90]. However, in general, the
expression level of H2S-producing enzymes can be used to
indirectly show the correlation between H2S and its effects
on healthy tissues and tumors [49, 80]. Increased levels of
H2S and the upregulation of one or more H2S-synthesizing
enzymes in comparison to healthy tissues have been reported
in several tumors [49, 71, 72, 80, 94, 95]. It is also quite inter-
esting that these three enzymes are expressed differently
according to the type of cancer [67] and hence lend them-
selves as potential new targets for therapy.

3. H2S in Urinary Cancers

Urinary cancers specifically kidney, urothelial, and prostate
are relatively common in developed countries. Prostate
cancer [96] is the second most commonly diagnosed cancer
in men, and urothelial carcinomas (UCs) [97] are the fourth
most common tumors both in men and in women. Kidney
cancers are highly lethal, and their incidence is increasing
incidentally by the common use of diagnostic tools. It is esti-
mated that more than 300,000 new cases of urinary cancers
and 33,429 deaths (excluding prostate cancer) will occur in
2019 in the United States [97]. As such, the role of H2S and
the differential expression of H2S-producing enzymes in
urinary cancers are of interest, and this review is aimed at
summarizing recent evidence on this subject in the context
of three common urinary cancers: urothelial cancer, renal cell
carcinoma, and prostate cancer.

3.1. Urothelial Cancer. Urothelial carcinoma can be located
in the lower (bladder and urethra) or the upper (pyelocaliceal
cavities and ureter) urinary tract. Bladder tumors account for
90-95% of UCs and are the most common urinary tract
malignancy. Sixty percent of upper tract urothelial cancers
are invasive at diagnosis compared with 15-25% of bladder
tumors [98]. The high recurrence rate and potential of
metastasis are two critical characteristics of bladder cancer
[99, 100]. Environmental (smoking and exposure to
chemical-occupational toxins) and genetic factors all play a
role in the etiology of bladder cancer, as does gender since
it is more frequent in men older than 65 years of age [101].

Several studies have highlighted the importance of abnor-
mal redox and cellular signaling in the incidence of bladder
cancer [102]. Various reports suggest that alterations in
H2S synthesis pathways may increase the risk of bladder can-
cer [103, 104], suggesting that the modification of these path-
ways may lead to the development of novel diagnostic and
therapeutic approaches for urological cancers [4].

H2S has been detected in bladder homogenates of trout,
mice, pigs, rats, and humans [105–109]. In humans, H2S is
involved in the control of bladder tone homeostasis [110],
as it has previously been shown that exogenous H2S or its
substrate, L-cysteine, could decrease the tone of human and
rat bladder strips in a dose-dependent manner [107, 108].
All of the H2S-producing enzymes are also found in rat and
human bladders, whereas in the mouse, only CSE could be
detected [107–109]. The expression of these enzymes in
human bladder cancer tissues and cell lines has been investi-
gated. A recent study examined the expression of H2S-pro-
ducing enzymes in human bladder cancer tissues and
compared them to healthy ones. They compared 94 human
bladder cancer at different stages/grades and 20 human
healthy bladder tissues in term of H2S content as well as the
H2S synthases while attempting to find a correlation between
the expression of H2S-producing enzymes and the malignant
progression of bladder cancer. They showed that H2S con-
tent, as well as the expression of CBS, CSE, and 3-MPST,
was higher in bladder cancer than in healthy samples. More
interestingly, the enzyme expression of all three enzymes
was correlated to different stages of bladder cancer. They sug-
gested that this correlation between the malignancy and the
expression of H2S enzymes could lead to novel diagnosis
and treatment applications [111]. Another recent study also
showed, both in vitro and in vivo models, that apoptosis of
bladder cancer cell lines or tissues with cisplatin was
enhanced after the inhibition of H2S production by propar-
gylglycine (PAG) [23] and was inhibited upon adding the
exogenous H2S. These authors suggested the activation of
the Erk1/2 signaling pathway and the blockage of mitochon-
drial apoptosis as the possible mechanisms behind their
results [112].

Exogenous H2S administration has also been shown to
affect bladder cancer cell lines. The in vitro treatment of the
bladder cancer cell line EJ with NaHS enhances cell prolifer-
ation and the invasion ability of the cells [113]. Interestingly,
these authors also found that the expression of matrix metal-
loproteinases (MMP) 2 and 9, which are essential for the
digestion of collagen IV, was increased in a dose-dependent
manner upon the treatment of bladder cancer cells with
NaHS. These two enzymes are essential in hydrolyzing the
extracellular matrix during the invasion; therefore, H2S
might be necessary for the invasion of bladder cancer
[113]. In addition, nicotinamide phosphoribosyltransferase
(Nampt) is the rate-limiting step of nicotinamide adenine
dinucleotide synthesis also increased in some cancers
[114]. The signal transducer and activator of transcription
3 (Stat3) is one of the cell signaling molecules of the H2S,
and its activation induces Nampt protein expression via a
positive feedback loop. A recent study showed that UC is
immunoreactive for the enzymatically active phosphor-
Stat3 signal transduction pathway and increased the
Nampt and CBS protein expression [115]. Overall, bladder
cancer appears to present with higher H2S levels in cancer
tissue homogenates and increased the expression of H2S-
producing enzymes, which suggests that H2S may be
essential for bladder cancer progression and growth, espe-
cially in the context of the induction of cell proliferation,
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inhibition of apoptosis, and facilitation of tissue invasion.
Further research is needed to establish consistent expres-
sion patterns and other cellular mechanisms for potential
diagnostic and therapeutic approaches.

3.2. Renal Cell Carcinoma. Renal cell carcinoma (RCC) rep-
resents 2-3% of all cancers with the highest incidence in
Western countries. The incidence varies globally, with the
highest rates in developed countries such as North America
and Europe and the lowest rates in Asia and Africa [116].
Over 300,000 men and women are diagnosed with kidney
cancer around the world each year, and approximately
150,000 patients will die of the disease [96].

Clear cell renal cell carcinoma (ccRCC), papillary car-
cinoma, and chromophobe are the common subtypes of
RCC [117], although ccRCC accounts for 80% of all RCCs
[118]. Because of the lack of early warning signs and the
absence of screening tests for people with a higher risk
of kidney cancer, more than 30% of patients are at the
metastatic stage at the time of diagnosis [119]. Metastatic
RCC is highly resistant to systemic chemotherapy and
radiation therapy [120, 121].

Inactivation of the Von Hippel-Lindau (VHL) tumor
suppressor, which is responsible for the degradation of
hypoxia-inducible factor alpha subunits (HIF-1/2α) during
normoxia, occurs in 90% of ccRCC cases [122, 123]. As a
result, HIF-1/2α subunits are not degraded under normoxic
conditions in RCC cells, and the cells become pseudohypoxic
[118]. The Warburg effect, which refers to a shift from
mitochondrial respiration to glycolysis and production of
lactate [124], enhances tumor growth and metastasis in
RCC [125]. Using live cell imaging, Sonke et al. have
previously shown that VHL-deficient ccRCC cell lines
(769-P and 786-O) have significantly higher H2S levels in
comparison to ccRCC cells with wild-type VHL (Caki-1).
They also showed that the inhibition of H2S-producing
enzymes by hydroxylamine (HA), which is an inhibitor
of CBS and CSE, and PAG, an inhibitor of CSE, signifi-
cantly decreases the H2S levels in VHL-deficient ccRCC
cell lines and subsequently inhibits their proliferation and
metabolic activity. Moreover, this inhibition of H2S syn-
thesis in VHL-deficient ccRCC cell lines results in a two-
fold reduction in cell survival rate in comparison to
untreated cells. Another key finding from this work was
that systemic inhibition of H2S enzymes by HA adminis-
tration in xenografted ccRCC in chicken embryos inhib-
ited their vascularization and the subsequent growth of
xenografts, which supports the known angiogenic activity
of H2S [79].

Two more recent studies have also evaluated the expres-
sion of H2S enzymes in ccRCC. Shackelford et al. compared
the expression of CBS in between human benign and Fuhr-
man grade I-IV ccRCC tissues by using tissue microarray
and immunohistochemistry. They showed that CBS
expressed weakly in benign tissues and even weaker in Fuhr-
man grade I ccRCC; however, its expression increased with
increasing Fuhrman grades, and CBS expression was the
highest in Fuhrman grade IV ccRCC samples [95]. Moreover,
the Nmpt expression was correlated with CBS in increasing

grade of tumors. Therefore, H2S may play a contributory role
in the progression of RCC [95]. Breza et al. also investigated
the expression of H2S-producing enzymes in 21 human
ccRCC tissues and compared it to the normal/healthy
portion of the same kidney sample using microarray and
immunohistochemistry. They found that 66% of ccRCC
tissue samples exhibited stable expression of CBS, and the
remaining samples showed downregulation. CSE was down-
regulated in all samples except in three where it was
unchanged. The expression of 3-MPST was decreased by
70% of ccRCC samples and remained unchanged in 30% of
ccRCC samples [121]. These data suggest that the expression
of H2S enzymes is heterogeneously regulated in ccRCC. The
contradiction between results might be attributed to Shackel-
ford et al. not comparing benign/malignant tissues from the
same patient. Breza et al. also showed that, upon induction
of apoptosis, the expression of these enzymes was upregu-
lated in the RCC4 cell line (human RCC cell line) and silenc-
ing of CBS and CSE expression made the cells resistant to
apoptosis [121]. It is possible that endogenous H2S induces
apoptosis in ccRCC as it was previously reported with exog-
enous administration [126–130]. The mechanisms behind
RCC progression are not well understood, but it is suggested
that knocking down of heat shock protein 60 (HSP60)
increases the epithelial to mesenchymal transition and
enhances invasion and also disturbs the respiratory complex
1 and triggers reactive oxygen molecules and then DNA
methylation for further tumorigenesis [131–133]. Tang
et al. results supported that suggestion and showed that
HSP60 expression is lower in ccRCC tissues compared to
pericancerous tissues [134]. The PI3K/AKT pathway is
another important pathway in RCC progression, and it is
reported that exogenous H2S inhibits this pathway, and
therefore, exogenous H2S could be a novel targeted therapy
of RCC [135, 136]. Overall, the expression of H2S enzymes
could one day become a new tool for establishing prognosis
in patients with RCC. However, further studies are necessary
to elucidate the exact role of H2S in RCC and to explain the
contradictions between different studies.

3.3. Prostate Cancer. Prostate cancer (PCa) is the second
most common cancer in men, with an estimated 1.1 million
new cases worldwide in 2012, accounting for 15% of all
cancers diagnosed. The incidence of PCa varies widely
between different geographical areas, highest in developed
countries, mainly due to the use of prostate-specific antigen
(PSA) testing and the aging of the population [96]. Surgery,
radiotherapy, and androgen deprivation therapies are the
primary treatment modalities that are effective, especially in
the early stages of the disease [137]. Although a physical
exam and the serum PSA test are commonly used to screen
and detect for prostate cancer; their utility is ineffective in
diagnosing early stages of prostate cancer.

The relationship between H2S activity and prostate can-
cer has been reviewed previously [138]. The expression of
H2S-producing enzymes was compared between cancerous
and healthy prostate tissues [108, 139]. Endogenous H2S
and all three enzymes (CBS, CSE, and 3-MPST) have been
demonstrated in healthy and prostate cancer. CSE has been
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shown to have a higher expression in the smooth muscle
layer of the prostate cancer samples [94]. However, in
another study, they could not detect the expression of 3-
MPST in both normal and cancerous prostate tissues, but
they showed that CSE was significantly downregulated in
prostate cancer, whereas CBS was not changed in each sam-
ple. This study also showed that antiandrogen-resistant pros-
tate cancer cells express less CSE and have lower H2S content
in comparison to the parental cell line [140].

Moreover, new evidence suggests that H2S-releasing mol-
ecules could be effective in the treatment of chemotherapy-
resistant prostate cancers [141]. The stromal part of the pros-
tate tissue and the stromal cell line showed average to high
CSE expression [139]. In addition, both CBS and CSE are
present in mouse prostate cancers, unrelated to androgen
dependency, and in vitro work showed that CSE is the main
contributor to H2S production in prostate cancer cell lines
(PC-3). The critical role of CSE was confirmed upon finding
that aged CSE knockout mice have higher cell proliferation
and significantly less H2S production in the prostate [142].
Interestingly, the androgen-dependent prostate cell line
showed the highest expression of CBS and CSE, and their
expression was downregulated upon dihydrotestosterone
treatment [139]. These data suggest that CSE may be a poten-
tial therapeutic target and diagnostic tool for prostate cancer.

As mentioned earlier, thiosulfate is the stable breakdown
product of H2S in the mitochondria that can be tracked in the
urine. Therefore, the thiosulfate level in urine can be an indi-
cator of exposure to H2S or disruption in the breakdown pro-
cess. Chwatko et al. investigated urinary thiosulfate levels
amongst the malignant in comparison to benign prostate
hyperplasia (BPH) patients and healthy volunteers. They also
found that the urine level of thiosulfate in malignant prostate
cancer patients was 50 times higher than the healthy volun-
teers and five times higher than the BPH patients, and also,
there was a positive correlation between the size of the pros-
tate and the urine level of thiosulfate in comparison between
the BPH and the control group [143]. In the nude mouse
model of human prostate cancer, the plasma concentration
of cysteine was significantly decreased after advanced tumor
growth [144]. Contrary to these results, five years after pros-
tatectomy, cysteine, homocysteine, and cystathionine were
found to be higher in the urine of recurrent prostate cancer
patients in comparison to recurrence-free patients [145].

Recent studies showed that methionine catabolism [146],
and increased level of cystathionine [147] and sarcosine
(N-methylglycine), a by-product of methionine catabolism
[148], in urine correlated with prostate cancer stage. In
addition, recent data suggest that neuroendocrine-like dif-
ferentiation of prostate cancer (LNCaP) cells contributes to
the androgen-independent growth [149, 150]. The expres-
sion and activity of CSE and CBS, in LNCaP cell, are
much more than those in healthy prostatic epithelial cells
[139]. The H2S donors, NaHS and Na2S, further enhance
the upregulated calcium channels in the LNCaP cells
[151]. Overall, it appears that cysteine, homocysteine, cys-
tathionine, and sarcosine could all potentially be bio-
markers for prostate cancer.

4. Conclusion

Despite significant research efforts in recent years, the role of
H2S in the context of cancer pathophysiology remains con-
troversial (Table 1). Several studies have partially elucidated
the vital role of H2S activity, which plays a different role in
urological malignancies (Figure 1). Interestingly, the expres-
sion patterns of H2S-producing enzymes appear to be contra-
dictory, depending upon the subtype of cancer, which was
evaluated and in fact, may be tissue dependent. However,
these studies, as mentioned earlier, lay the groundwork for
future work that may lead to the development of new diag-
nostic tools for detecting urinary cancers in earlier stages.
Moreover, pharmacological modulation of H2S synthetic
pathways and exogenous administration of donor molecules
may one day provide us with additional therapeutic avenues
in treating patients with urological malignancies.
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