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Abstract

Background and aims

The impairment of intestinal epithelial barrier is the main etiologic factor of inflammatory

bowel disease. The proper intestinal epithelial proliferation and differentiation is crucial for

maintaining intestinal integrity. Metformin is a common anti-diabetic drug. The objective is to

evaluate the protective effects of metformin on ileal epithelial barrier integrity using interleu-

kin-10 deficient (IL10KO) mice.

Methods

Wild-type and IL10KO mice were fed with/without metformin for 6 weeks and then ileum

was collected for analyses. The mediatory role of AMP-activated protein kinase (AMPK)

was further examined by gain and loss of function study in vitro.

Results

Compared to wild-type mice, IL10KO mice had increased proliferation, reduced goblet cell

and Paneth cell lineage differentiation in the ileum tissue, which was accompanied with

increased crypt expansion. Metformin supplementation mitigated intestinal cell proliferation,

restored villus/crypt ratio, increased goblet cell and Paneth cell differentiation and improved

barrier function. In addition, metformin supplementation in IL10KO mice suppressed macro-

phage pro-inflammatory activity as indicated by reduced M1 macrophage abundance and

decreased pro-inflammatory cytokine IL-1β, TNF-α and IFN-γ expressions. As a target of

metformin, AMPK phosphorylation was enhanced in mice treated with metformin, regard-

less of mouse genotypes. In correlation, the mRNA level of differentiation regulator including

bmp4, bmpr2 and math1 were also increased in IL10KO mice supplemented with metfor-

min, which likely explains the enhanced epithelial differentiation in IL10KO mice with metfor-

min. Consistently, in Caco-2 cells, metformin promoted claudin-3 and E-cadherin assembly

and mitigated TNF-α-induced fragmentation of tight junction proteins. Gain and loss of

function assay also demonstrated AMPK was correlated with epithelial differentiation and

proliferation.
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Conclusions

Metformin supplementation promotes secretory cell lineage differentiation, suppresses

inflammation and improves epithelial barrier function in IL10KO mice likely through activa-

tion of AMPK, showing its beneficial effects on gut epithelial.

Introduction

Inflammatory bowel disease (IBD) including ulcerative colitis (UC) and Crohn’s disease (CD)

is an inflammatory autoimmune disease commonly occurring in the intestine, and up to now,

has no medical treatments with ideal outcomes. Accumulating evidence shows that

impairment in intestinal epithelial barrier is highly correlated with IBD and related gastroin-

testinal diseases [1, 2]. Interleukin-10 (IL-10) is an anti-inflammatory cytokine that inhibits

macrophage activation and inflammatory response [3, 4]. The expression of IL-10 in IBD

patients was lower than that in normal people [5]. As a result, IL-10 deficient or IL10 knockout

(IL10KO) in mouse induces chronic gut inflammation and develops a disease resembling CD

with ileum inflammation [6]. Thus, IL10KO mouse is one of the most common models for

studying IBD [7].

The small intestinal epithelium constitutes crypts and villi. Newly generated proliferating

cells from intestinal stem cells either migrate to the tip of villi and terminally differentiate

into goblet cells, enterocytes or enteroendocrine cells [8], or alternatively descent to the bot-

tom of crypts to differentiate into Paneth cells [9, 10]. Paneth cells secret antimicrobial pep-

tides and lysozyme, critical for defending against intestinal microbiota, while goblet cells

secrete mucins to repel antigens and maintain intestinal homeostasis [9]. Dysregulation of

intestinal proliferation and differentiation underpins many intestinal immunological dis-

eases including IBD.

Metformin, a widely used antidiabetic drug [11, 12], has protective roles in cardiovascular

complications [13], and anti-inflammatory effects on vascular endothelial cells by preventing

nuclear factor κB (NF-κB) activation and attenuating TNF-α induced inflammatory response

[14, 15]. A recent study revealed that metformin attenuated colonic inflammation in both

DSS-induced wild-type (WT) mice and IL10KO mice [16], suggesting the protective role of

metformin in gut epithelium. However, the underlying mechanisms have not been explored.

Notch signaling is known to be critical for epithelial differentiation, and it promotes math1
expression [17]; and bone morphogenetic proteins (BMPs) are required for proper epithelial

differentiation by interacting with transcription factors such as Math1 [18]. Interestingly, in

osteoblastic MC3T3-E1 cells, metformin induced endothelial BMP2 expression via AMPK

activation [19, 20]. Binding of BMPs to their receptors induces the recruitment and phosphor-

ylation of Smads, which then regulates gene expression and cell differentiation [21]. We

hypothesized that metformin enhances gut epithelial differentiation and barrier function par-

tially through activating AMPK. Since orally administered metformin is selectively accumu-

lated in small intestine [22], where IBD commonly develops, this study evaluated the potential

protective role of metformin in ileal epithelial barrier function using IL10KO mice, the com-

monly used mouse model of IBD.
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Materials and Methods

Mice and experimental procedures

All animal studies were conducted in accordance with the protocols approved by the Animal

Use and Care Committee of Washington State University. IL10KO male mice were purchased

from Jackson Lab (Bar Harbor, ME). C57BL/6 (WT) and IL10KO mice were raised under spe-

cific pathogen-free conditions with controlled temperature and light [23]. Six-week-old

IL10KO and WT mice were fed with regular water (CON) or water containing metformin

(0.2% w/v) for 6 weeks, which resulted in four treatment groups; WT-CON (n = 10),

WT-MET (n = 10), IL10KO-CON (n = 10), and IL10KO-MET (n = 10). During the trial,

water was changed every other day; feed intake and body weight were monitored weekly. All

mice were given feeds and water ad libitum.

Ileal sample collection

Mice sacrificing and ileal sample collection were described as before [24]. Briefly, mice were

anesthetized and sacrificed by cervical dislocation. The terminal ileums with 5 mm segment

were fixed in 4% paraformaldehyde for histological analysis. The remaining ileal tissues were

stored at -80˚C.

Intestinal permeability assay

Intestinal permeability was conducted as previously published method [23] with modifica-

tions. One week before necropsy, mice were fasted for 5 hours and then gavaged with FITC-

dextran (500mg/kg body wt). One hour post-gavage, mice blood was collected and centrifuged.

The serum was diluted with PBS at a ratio of 1:5 (v/v) and measured the fluorescence intensity

at an excitation 485 nm and emission 520 nm with a Synergy H1 Hybrid Multi-Mode Micro-

plate Reader (BioTek Instruments,Winooski, VT, USA). Due to the age gap between IL10KO

and WT mice, we conducted intestinal permeability tests of these two genotypes in two sepa-

rate times.

In vivo stem cell proliferation

IL10KO mice under treatments were injected with 100 μl of BrdU (10 mg/ml in saline, ip,

Sigma), a nucleotide analog incorporating into the DNA of proliferating cells, 2 h prior to sac-

rifice to label S-phase cells. Following sacrifice, a small section of ileum was fixed and paraffin

embedded for evaluating BrdU positive cells by immunohistochemical (IHC) staining.

Immunoblotting analysis

Immunoblotting analyses were performed as published method [23]. Briefly, protein samples

were extracted from mice ileum tissues and separated with 4–20% SDS-PAGE followed with

nitrocellulose membrane transferring for immunoblotting analyses. Primary antibodies

against E-cadherin, p-AMPKα, total AMPKα, p-Acetyl CoA carboxylase (ACC) and PCNA

were obtained from Cell Signaling (Beverly, MA). p-Smad1/5/8 was purchased from Santa

Cruz (Santa Cruz, CA) and claudin-3 was from Invitrogen (Waltham, MA). Primary antibody

against β-actin was from Sigma-Aldrich. Band density was normalized with the β-actin

density.
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RNA extraction and quantitative real time PCR analysis

The ileal total RNA was isolated with Trizol (Sigma), followed with DNase I (Qiagen, Valencia,

CA) treatment and RNeasy1 Mini Kit (Qiagen) purification. cDNA was synthesized using the

iScript™ kit (Bio-Rad). qRT-PCR was carried out on a CFX96 thermocycler (Bio-Rad) with

Sybr Green (Bio-Rad) by using β-actin as the housekeeping gene [23]. Primers used in this

study are listed in S1 and S2 Tables.

IHC staining

IHC staining was conducted as previously described [25]. Briefly, deparaffinized and rehy-

drated ileum sections were incubated in citrate acid buffer at 95˚C for 15 min, blocked in 1.5%

goat serum for 30 min and then stained with Ki67 (cell signaling, Beverly, MA), BrdU (cell sig-

naling, Beverly, MA) or lysozyme antibody (Thermo Scientific, Waltham, MA) at 4˚C over-

night. After incubation, tissue sections were rinsed with PBST, stained with secondary

antibodies for 30 min, followed by the Vectastain ABC incubation (Vector Lab, Burlingame,

CA) and DAB (Vector Lab) staining. Histological examination was conducted by using a Leica

DM2000 microscope (Chicago, IL). The number of Ki67, BrdU or lysozyme positive cells was

counted for each crypt in a randomly selected view. The average number was calculated and

analyzed (n = 10; 15 crypts each).

M1 macrophage IHC staining was conducted as described above by using anti-mouse

iNOS antibody purchased from Invitrogen (Waltham, MA). The M1 positive macrophage

scoring system was described previously with modifications [26]. The system used a 0–5 score

scale according to the density of macrophage infiltration area: 0 = rare; 1 = 5–10% positive

staining with minor infiltration; 2 = 10–30% positive staining; 3 = 30–50% positive staining;

4 = 50–70% positive staining, 5 =>70% positive staining with intense infiltration. The mean

score of at least five sections per animal was calculated as M1 score.

Histological measurement and goblet cell staining

Ileum tissues were paraffin embedded and sectioned (4–5 μm thick). Deparaffinized and rehy-

drated ileum sections were stained with hemotoxylin and eosin Y (H&E). Images were cap-

tured by a Leica LED light microscope (DM2000, Chicago, IL). The measurement of villus and

crypt was determined with the Image J 1.30v software. Five sections at constant interval

(50 μm) and five fields per section were randomly selected for taking images [23].

For goblet cells staining, deparaffinized and rehydrated ileum section were stained with

Alcian blue (pH2.5). Five randomly picked fields per section were quantified for the ratio of

goblet cells/villus using the Image J 1.30v software [23].

AMP and ATP content of ileum tissues measured by HPLC analysis

Ileum tissues were homogenized in 0.9 N HClO4 and stayed on ice. After 30 min, centrifuged

the lysates and collected the supernatants. The supernatants were neutralized with 2 M KOH

and then centrifuged again. Final supernatants were filtered with 0.45μm PTFE filter and

injected into Shimadzu HPLC system (Kyoto, JAPAN) equipped with Luna C18 (2) column

purchased from Phenomenex (Torrance, CA, USA) as previously described method [27].

Amounts were analyzed using peak areas and peak identification was confirmed using ATP

(Sigma, St. Louis, MO) and AMP (Sigma, St. Louis, MO) standards.
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Caco-2 cell treatment and transfection

Caco-2 cell line purchased from American Type Culture Collection (Manassas, VA) was

grown at 37˚C with 5% CO2 in DMEM (Sigma) supplemented with 10% fetal bovine serum

(GE, Fairfield, CT) and 1% penicillin-streptomycin (Life Technologies, Grand Island, NY).

For metformin treatment, the Caco-2 cells were cultured in a 12-well plate until confluence.

The cells were then treated with 1 mM metformin for 5 days. For transfection, Caco-2 cells at

70% confluence were transfected with plasmid constructs containing pAMPKα WT (WT),

pAMPKα K45R mutant (K45R), or green fluorescent protein (EGFP) (CON) (Addgene,

Cambridge, MA; catalog no. 15991, 15992 and 13031) using Lipofectamine 3000 (Life Tech-

nologies) per manufacturer’s instructions. Medium was changed 12 h post transfection, when

400 μg/ml G418 (Amresco, Solon, OH) was added to the transfected cells in the following 7

days to select cells with transfection. The transfected cells were then seeded onto 12-well plates

at 2×105 cells per well for 4 days, when cells were collected for RNA extraction and protein

sample preparation.

Calcium switch assay

The calcium switch assay was conducted as previously described with modifications [28].

Briefly, Caco-2 cells were cultured in a 24-well plate until confluence, then treated with cal-

cium free DMEM complete medium by adding 4mM EGTA for 30 min. After washing 3 times

with PBS, the cells were switched back to regular DMEM complete medium supplemented

with or without 1 mM metformin and incubated for 12 h. The Caco-2 cells treated with EGTA

did not switch back to regular DMEM complete medium was used as negative control. The

cells were then subjected to immunofluorescence microscopy assay.

Immunofluorescence microscopy

The Caco-2 cells were cultured in a 24-well plate until confluence. The cells were treated with

0, 10 ng/ml TNF-α or 10 ng/ml TNF-α and 1mM metformin in DMEM complete medium for

24 h. Then the cells were wash 3 times with PBS and fixed in ice-cold methanol for 15 min.

After washing with PBS, the fixed cells were blocked with 5% normal goat serum at room tem-

perature for 60 min. Then the cells were incubated with anti-claudin-3 (1:200) and anti-E-cad-

herin (1:200) at 4˚C overnight. After incubation, the stained cells were rinsed with PBS,

stained with goat anti-rabbit Alexa Fluor 555 (Beverly, MA) for 60 min and mounted with

DAPI (Vector Lab, Burlingame, CA). Fluorescence was visualized with EVOS FL fluorescence

microscope (Life Technologies) [29]. The fluorescence intensities of claudin-3 and E-cadherin

at the intercellular junctions were measured with Image J. The cell fluorescence intensity is cal-

culated as the following equation: Cell fluorescence = Integrated fluorescence density—Gray

value (area of the selected cell × mean fluorescence of intracellular background reading). Fluo-

rescence intensities of twenty randomly picked cells from each section were quantified. The

data were expressed as relative fluorescence density per cell.

Statistical analyses

Statistical data analyses were carried out using General Linear Model of Statistical Analysis

System as described in our previous publication [23], and presented as Mean ± standard errors

of mean (SEM). A P value less than 0.05 is considered as significant [23].
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Results

Metformin improves gut epithelial barrier function

Metformin supplementation did not affect body weight gain (P>0.05) (Fig 1A) and feed

intake (P>0.05) (Fig 1B). Interestingly, IL10KO mice had higher feed intake than WT mice

throughout feeding trial (Fig 1B) (P<0.05). Metformin supplementation decreased intestinal

permeability in IL10KO mice (P<0.01) (Fig 1C), indicating improved barrier function. How-

ever, no change was observed in WT mice with/without metformin supplementation. The

Fig 1. Metformin improves intestinal epithelial barrier function in vivo and in vitro. (A) Weekly body weight; (B) Daily feed intake; (C)

In vivo intestinal permeability assay; (D) The mRNA levels of tight junction proteins in mouse ileum tissues; (E) Immunoblotting of claudin-3

and E-cadherin in mouse ileum tissues; (F) Immunoblotting of E-cadherin in Caco-2 cells treated with or without metformin. (G)

Immunofluorescent staining of claudin-3 and E-cadherin in Caco-2 cells with calcium switch. The cells were subjected to calcium depletion

for 30 min followed by incubation in complete medium for 12 h supplemented with or without 1mM metformin. EGTA: Caco-2 cells with

calcium depletion; Con: Caco-2 cells were Ca2+ restored and treated without metformin; Metformin: Caco-2 cells were Ca2+ restored and

treated with metformin. Scale bar is 100μm. (*: P < 0.05; **: P < 0.01; means ± SEM, n = 10).

doi:10.1371/journal.pone.0168670.g001
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intestinal permeability between genotypes was not compared since these two groups were con-

ducted in two separated time points. To further determine the mechanisms leading to the

improved barrier function in IL10KO mice, we analyzed the expressions of tight junction pro-

teins (Fig 1D). Claudin-2 is considered as a pore-forming tight junction protein that increases

epithelial permeability in active Crohn’s disease [30]. The mRNA level of claudin-2 was not

changed in WT mice with/without supplementation, while its expression was reduced in

IL10KO mice due to metformin treatment (P<0.05). Metformin supplementation had no

effect on the expression of ZO-1, a peripheral scaffolding protein that seals the adjacent cells

[31, 32], but IL-10 ablation reduced ZO-1 expression (P<0.01). Claudin-3, another critical

component of tight junction complex which is constantly expressed in healthy gut and pro-

motes intestinal barrier function [33], was also reduced in IL10KO mice (P<0.01), which

was recovered by metformin supplementation (P<0.05) (Fig 1D and 1E). Consistently, E-cad-

herin, a core component of the adhesion junctions that is required for the maintenance of

intestinal epithelial integrity [34], was decreased in IL10KO mice as compared with that of WT

mice (P<0.05) (Fig 1E), which were enhanced (P< 0.05) by metformin supplementation in

both genotypes and was further demonstrated in Caco-2 cells (Fig 1E and 1F). Using calcium

switch assay and immunofluorescent staining, we found that in low calcium state, claudin-3

and E-cadherin were distributed sparsely and diffusely. However, metformin treatment accel-

erated and enhanced claudin-3 and E-cadherin reassembly after tight junction destruction

(Fig 1G). Collectively, our data demonstrated metformin improved intestinal epithelial barrier

function.

Gut inflammation is known to impair epithelial barrier function. Consistent with barrier

changes, the mRNA expression of key pro-inflammatory cytokines, IL-1β, TNF-α and IFN-γ
were dramatically increased in IL10KO mice as compared with WT-CON mice (Fig 2A). Met-

formin supplementation mitigated pro-inflammatory cytokine expressions in IL10KO mice,

but not in WT mice (Fig 2A). In agreement, M1 proinflammatory macrophage was more

abundant in IL10KO mice as compared with that in WT mice (Fig 2B and 2C). Metformin

supplementation significantly attenuated M1 macrophage infiltration in IL10KO mice (Fig 2B

and 2C). TNF-α is mainly produced by pro-inflammatory macrophages and is a potential con-

tributing factor to IBD [35]. In Caco-2 cells, TNF-α treatment impaired claudin-3 and E-cad-

herin assembly, which were mitigated by metformin treatment (Fig 2D). These indicated that

metformin had beneficial effects on mitigating inflammation and inflammation induced bar-

rier destruction.

Metformin suppresses proliferation and promotes differentiation of

epithelial cells in IL10KO mice

Histological analysis of ileum tissue showed that both WT and IL10KO mice had higher villus

length when supplemented with metformin (P<0.01) (Fig 3A). However, metformin supple-

mentation did not alter crypt depth, resulting in an overall increase in mucosal thickness of

both WT and IL10KO ileum. On the other hand, IL-10 depletion elongated crypt depth

(P<0.01) and increased mucosal thickness with no change in villus length, resulting in

decreased villus/crypt ratio, which was restored by metformin supplementation (Fig 3A).

To gain more insights on the altered ileum morphologies, we further analyzed the prolifera-

tion of crypt cells. Consistent with the increased crypt depth, the proliferation as assessed by

Ki67 staining in IL10KO mice was enhanced (P< 0.01) (Fig 3B). Though the crypt depth was

only numerically decreased in IL10KO mice supplemented with metformin compared with

IL10KO CON mice, metformin decreased the number of proliferative cells per crypt in IL10KO

mice (Fig 3B). Metformin had no effect on the proliferative cell density in WT mice, which is in
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agreement with the unchanged crypt depth. In vivo BrdU labeling further revealed that the per-

centage of BrdU-positive cells was lower in metformin treated IL10KO mice as compared with

IL10KO CON mice (P<0.05) (Fig 3C and 3D). In combination, data showed that IL10 defi-

ciency increased cell proliferation, which was mitigated due to metformin supplementation.

Hyperproliferation is commonly correlated with impaired differentiation, which was fur-

ther examined. Paneth cells locate in the crypts of Lieberkuhn, secreting a variety of products

such as lysozyme, antimicrobial peptides, growth factors, and phospholipase A2 [36]. Using

lysozyme as a marker, we found the Paneth cell density was decreased dramatically in IL10KO

Fig 2. Inflammatory response in IL10KO or WT mice supplemented with (&, MET) or without (□, CON) metformin. (A) Inflammatory

cytokine mRNA expression; (B) and (C) M1 macrophage IHC staining; (D) Immunofluorescent staining of claudin-3 and E-cadherin in Caco-

2 cells treated with TNF-α and with/without co-incubation with metformin for 24 h. Con: Caco-2 cells without treatment; TNF-α: Caco-2 cells

treated with 10ng/ml TNF-α; TNF-α + Metformin: Caco-2 cells treated with 10ng/ml TNF-α and 1mM metformin. Scale bar is 100μm. (#:

P < 0.1; *: P < 0.05; **: P < 0.01; means ± SEM; n = 10).

doi:10.1371/journal.pone.0168670.g002
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mice (P<0.01) (Fig 4A and 4B); metformin treatment increased Paneth cells number in IL10

KO mice as well as in WT mice (Fig 4A and 4B). Consistently, Alcian blue staining revealed

that the number of goblet cells was much lower in the ileum of IL10KO mice as compared

with that of WT mice (Fig 4C and 4D), while metformin supplementation increased (P<0.01)

the goblet cell number in both IL10KO and WT mice. In aggregate, IL-10 depletion induced

excessive proliferation of epithelial cells in the ileum gut, which was associated with impaired

differentiation of the Paneth cell and goblet cell lineages. Metformin supplementation recov-

ered these adverse changes observed in IL10KO mice.

Metformin enhances the expression of key transcription factors and

promotes epithelial differentiation

AMPK is known to promote cell differentiation [37]. We further analyzed AMPKα phosphor-

ylation at Thr 172, which correlates with AMPK activity. As shown in Fig 5A, metformin stim-

ulated AMPK phosphorylation (P<0.01), regardless of mouse genotypes (Fig 5A). Since

Fig 3. Morphological alteration and epithelial proliferation markers in IL10KO or WT mice

supplemented with (&, MET) or without (□, CON) metformin. (A) Ileum morphological analysis; (B)

Proliferative cells identified by Ki67 IHC staining; (C) and (D) Proliferative cells identified by BrdU

incorporation. Images were taken at 200×magnification. (#: P < 0.1; *: P < 0.05; **: P < 0.01; means ± SEM;

n = 10).

doi:10.1371/journal.pone.0168670.g003
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Fig 4. IHC staining for Paneth cell and goblet cell in IL10KO or WT mice supplemented with (&, MET)

or without (□, CON) metformin. (A) and (B) Lysozyme positive Paneth cells; (C) and (D) Goblet cell density.

Images were taken at 200×magnification. (*: P < 0.05; **: P < 0.01; means ± SEM; n = 10).

doi:10.1371/journal.pone.0168670.g004

Fig 5. AMPK signaling in IL10KO or WT mice supplemented with (&, MET) or without (□, CON)

metformin. (A) AMPK and p-AMPK analyzed by immunoblotting. (B) AMP and ATP content in ileum tissues

analyzed by HPLC. (#: P < 0.1; *: P < 0.05; **: P < 0.01; means ± SEM; n = 10).

doi:10.1371/journal.pone.0168670.g005
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AMPK activity is regulated by cellular AMP/ATP ratio, the ileal contents of ATP and AMP

were further measured by HPLC. IL10KO mice had a higher AMP and AMP/ATP ratio as

compared with WT mice regardless of metformin supplementation (Fig 5B). Metformin sup-

plementation did not affect AMP/ATP ratio within genotypes (Fig 5B).

To identify the mechanisms leading to the enhanced epithelial differentiation, we analyzed

the factors regulating epithelial differentiation. Metformin enhanced bmp2 expression in WT

mice and bmp4 in IL10KO mice (Fig 6A and 6B). However, the expression of bmpr2 was

reduced in IL10KO mice without metformin treatment as compared with WT mice, which

was prevented due to metformin supplementation (Fig 6C). Consistently, the expression of

math1 was also enhanced due to metformin treatment in both WT and IL10KO mice (Fig 6D).

To examine the potential mediating role of AMPK in linking beneficial effects of metformin

to epithelial differentiation, we used the over-expression of plasmids carrying AMPKα WT or

K45R which is kinase dead to alter AMPK activity in the cultured Caco-2 cells. As expected,

AMPKα WT over-expression activated AMPK signaling as shown by enhanced ACC phos-

phorylation, which is exclusively phosphorylated by AMPK, while AMPK K45R reduced

AMPK activity (Fig 7A). The phosphorylation of Smad1/5/8, which is a down-stream effector

of BMP signaling and phosphorylated by BMP receptors, was correlated with AMPK activity

(Fig 7A). Consistently, the level of math1, bmp4 and bmpr2 mRNA expression was also

increased by AMPK activation and reduced due to AMPK inhibition (Fig 7B). In contrast, the

Fig 6. mRNA expression of key mediators of BMP signaling and transcription factors regulating

epithelial differentiation in IL10KO or WT mice supplemented with (&, MET) or without (□, CON)

metformin. (A) bmp2; (B) bmp4; (C) bmpr2; D. math1. (#: P < 0.1; *: P < 0.05; **: P < 0.01; means ± SEM;

n = 10).

doi:10.1371/journal.pone.0168670.g006

Fig 7. AMPK is associated with the mediators of intestinal epithelial cell differentiation and proliferation in

vitro. Caco-2 cells were transfected with plasmid constructs over-expressing green fluorescent protein (EGFP) (CON),

wild-type AMPK (WT) or dominant negative AMPK (K45R), and harvested for mRNA and protein measurement 4 days

later. (A) Immunoblotting of p-ACC, p-Smad1/5/8 and PCNA; Left panel showed the representative bands of western

blotting; Right panel showed the statistical analysis for each transfected clone. (B) mRNA expression of math1, bmp2,

bmp4 and bmpr2. #: P < 0.1; *: P < 0.05; **: P < 0.01; means ± SEM; n = 4).

doi:10.1371/journal.pone.0168670.g007
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PCNA content was decreased in AMPK WT group while increased in K45R expressing cells

(Fig 7A). These data showed that AMPK, the molecular target of metformin, might promote

the expression of transcription factors that promoting epithelial differentiation.

Discussion

Intestinal epithelium constitutes a single layer of tightly linked cells that are constantly and

actively renewed throughout lifespan [38]. The balance among proliferation, migration, and

differentiation is tightly controlled and regulated, which is vital to intestinal homeostasis.

Excessive proliferation results in enlarged crypt size [39]. Dextran sulfate sodium (DSS) treated

rat showed a greater proliferation rate and crypt depth in small intestine [40]. Consistently, in

current study, we found that IL10KO mice had enhanced cell proliferation, increased crypt

length and decreased villus/crypt ratio in ileum, while metformin supplementation decreased

the number of proliferative cells and restored villus/crypt ratio in IL10KO mice.

Inflammation enhances intestinal proliferation [41]. Excessive inflammatory response leads

to abnormal epithelial morphology with prolonged crypts, excessive proliferation, and even

neoplasia [42]. Inflammation also disrupts intestinal epithelial barrier function by decreasing

barrier forming tight junction proteins like ZO-1 and increasing the pore-forming protein

such as claudin-2, which increases transepithelial permeability [43]. It has been reported that

claudin-3 is critical for the function of tight junctions while inflammation could damage the

distribution of claudin-3 [44]; a reduced level of claudin-3 was observed in active IBD patients

[30], which is consistent with our study that inflammation diminished claudin-3 both in vitro
and in vivo. On the other hand, overexpression of claudin-3 increased transepithelial resistance

(TER) and improved barrier function [44]. In agreement, our data revealed that metformin

treatment could restore claudin-3 and E-cadherin assembly impaired by calcium switch and

inflammation. At the same time, enhanced permeability and impaired tight junction allow

antigens to enter into underlying tissues that cause exaggerated immune responses and severe

intestinal inflammation [45]. Consistent with previous observation, IL10KO mice had

enhanced inflammation and increased cell proliferation in ileum. This was mitigated by met-

formin supplementation, in accordance with improved barrier function in IL10KO mice. Our

finding was further supported by a recent publication in colonic epithelial cells, where metfor-

min ameliorated colitis severity in DSS-induced mice associated with attenuated NF-κB

inflammatory signaling in the distal colonic epithelium, and mitigated inflammatory response

in the proximal colon of IL10KO mice [16]. On the other hand, the barrier function was

improved due to metformin-induced AMPK activation, which is demonstrated in our previ-

ous study that AMPK activation enhanced TER and decreased paracellular permeability in

Caco-2 cells by gain and loss function assays [46]. By silencing AMPK with AMPKα K45R

(K45R) plasmid, the transfected Caco-2 cells had much lower TER and higher permeability as

compared with control and AMPK overexpression cells [46]. In addition, AMPK knockout

mice had a higher intestinal permeability when compared with WT mice [46].

Macrophage plays an essential role in maintaining intestinal homeostasis, which can be

classified as “classical activation” expressing Th1 inflammatory cytokine such as TNF-α and

IFNγ and “alternative activation” with Th2 cytokines IL-4 and IL-13 production [47]. In the

disease status, macrophages produce a diverse repertoire of pro-inflammatory mediators

inducing an inflammatory environment in the gut. Metformin is a potent AMPK activator,

and AMPK activation helps to induce macrophage polarization into an anti-inflammatory

phenotype [48]. In addition, metformin regulates the balance between Th17 and Treg cells

[49]. Treatment of metformin helps the differentiation of Treg cells while down-regulating

proinflammatory Th17 cells, which subsequently ameliorates inflammation in inflamed bowel
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[49]. In current study, metformin decreased IFN-γ and TNF-α contents, and reduced the

recruitment of pro-inflammatory macrophages, suggesting that metformin/AMPK could ame-

liorate inflammation and associated epithelial barrier damage. However, inflammation could

also inhibit AMPK activity through stimulating AMPK de-phosphorylation [50]. We found a

higher AMP/ATP ratio in IL10KO mice, which is consistent with a previous study showing

that inflamed CD ileum had a lower ATP level [51]. The combined effects of AMPK de-phos-

phorylation due to inflammation might neutralize the effect of high AMP/ATP, explaining the

lack of difference in AMPK phosphorylation between genotypes.

One of the most manifested characteristics of IBD is the imbalance between epithelial cell

proliferation and differentiation. Excessive proliferation and limited differentiation impair

intestinal epithelial function, which causes various intestinal diseases including cancer [52].

Well-differentiated epithelial cells enhance the contents of barrier forming proteins and anti-

gen presentation [53, 54], while deficiency in epithelial differentiation is known to impair bar-

rier function [55, 56]. Goblet cells and Paneth cells are two critical differentiated cells that

maintain normal barrier function in small intestine, while IBD subjects exhibit defective cell

differentiation and function [57]. Goblet cells secrete mucins, which form intestinal mucosa

that protects mucus layer from transmission of harmful antigens and pathogens [58]. Defective

goblet cells are associated with the symptoms of colitis and the severity of IBD [59], which

could be due to the loss of goblet cells/mucin-2 [60, 61]. Paneth cells has a central role in main-

taining the stem cell compartment in small intestine through secreting versatile signals, growth

factors and antimicrobial peptides. Ileal CD disorder is characterized by decreased secretion of

antimicrobial α-defensins by Paneth cells [62], and low expression of β-defensin 2 [63]. Dys-

function of Paneth cells is an intrinsic factor responsible for defects in immune response to

pathogen-induced inflammation in CD [64]. Consistently, we found that both goblet cells and

Paneth cells were reduced in IL10KO as compared with WT mice, which were restored by

metformin supplementation. These changes likely explain the beneficial effects of metformin

on gut epithelial differentiation and protective function.

To further define the mechanisms, we analyzed mediators regulating epithelial differentia-

tion. Recent studies show that AMPK promotes the differentiation of stem cells in a number of

tissues, including gut epithelium [37, 65]. Our previous study demonstrated that AMPK acti-

vation enhanced gut epithelial differentiation while AMPK knockout mice have impaired

intestinal differentiation associated with aggravated intestinal permeability [46]. BMP signal-

ing is one of the key pathways regulating gastrointestinal development and homeostasis [66,

67], known to promote epithelial differentiation [18], and maintain ileal morphogenesis [20].

BMP2 and BMP4 elicit function and activate down-stream signaling by binding to their type II

serine/threonine receptor (BMPR2) and further dimerizing with type I receptors (BMPR1A or

BMPR1B) [66]. We found that metformin supplementation enhanced BMP signaling in addi-

tion to AMPK activation in IL10KO mice, which is in agreement with a previous report show-

ing the activation of BMP signaling by AMPK in bone cells [19]. AMPK induces BMP2

expression [19], which binds to its receptors that activates Smad signaling in IL10 KO mice

treated with metformin. Our data are consistent with a previous report showing that phos-

phorylation of Smad1/5/8 is increased by AMPK activation in osteoblasts which correlates

with osteogenic differentiation [68]. Aligned with changes in BMP signaling, the expression of

key transcription factor promoting epithelial differentiation, Math1 was also promoted by

metformin.

Because metformin activates AMPK, to conclusively establish the role of AMPK in mediat-

ing beneficial effects of metformin on epithelial differentiation, we further conducted AMPK

gain and loss of function study in Caco-2 cells. We found that AMPK activity is correlated

with the expression of factors regulating epithelial differentiation, which is consistent with our
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finding that AMPK induces differentiation [46]. In combination, metformin promoted epithe-

lial differentiation likely via activation of AMPK.

In conclusion, our study provided evidences that metformin improved gut epithelial health

through promoting secreted cell differentiation and inhibiting intestinal proliferation and

inflammation in IL10KO mice, which were potentially associated with activated AMPK and

enhanced expression of key factors promoting epithelial differentiation (Fig 8).
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