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Abstract: MicroRNAs (miRNAs) are short non-coding RNA involved in the regulation of specific
mRNA translation. They participate in cellular signaling circuits and can act as oncogenes in tumor
development, so-called oncomirs, as well as tumor suppressors. miR-7 is an ancient miRNA involved
in the fine-tuning of several signaling pathways, acting mainly as tumor suppressor. Through
downregulation of PI3K and MAPK pathways, its dominant role is the suppression of proliferation
and survival, stimulation of apoptosis and inhibition of migration. Besides these functions, it has
numerous additional roles in the differentiation process of different cell types, protection from
stress and chromatin remodulation. One of the most investigated tissues is the brain, where its
downregulation is linked with glioblastoma cell proliferation. Its deregulation is found also in other
tumor types, such as in liver, lung and pancreas. In some types of lung and oral carcinoma, it can act
as oncomir. miR-7 roles in cell fate determination and maintenance of cell homeostasis are still to be
discovered, as well as the possibilities of its use as a specific biotherapeutic.
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1. Introduction

MicroRNAs are short non-coding RNAs involved in the regulation of specific mRNA
translation. Through this process, they regulate numerous cellular functions, participate in
signaling circuits and fine-tune cellular differentiation.

miRNAs (miRs) have a complex pathway of biogenesis and regulation of their function.
While final miRNAs are short single-stranded noncoding RNAs of 20–23 nt, they start as
pri-miRNAs, several hundred base pairs long with a complex formation pathway. These
primary miRNAs are first processed by a microprocessor containing Drosha, an enzyme
that cleaves the stem of a hairpin structure formed by future miR sequence and producing
pre-miRNA. After nuclear export, further processing is done by Dicer in the cytoplasm,
which removes the loop region and produces miRNA duplex. Only one strand of the
duplex is chosen to become the mature miRNA, loaded on an RNA-induced silencing
complex (RISC) containing the Argonaute protein. RISC complex with specific miR targets
complementary mRNAs and fully complementary mRNA are degraded. Since mature
miRNAs in higher eukaryotic cells most often are not fully complementary to their target
mRNA, they can lead to translation inhibition [1].

Usually, one mRNA can be targeted by several miRNAs on its 3’UTR. It is supposed
that the target site spacing can influence cooperative repression. Although a great number
of genes can be influenced by a single miR, in general, miRs act according to the cellular
program in a specific cell type and target only a subset of transcripts [2]. However, the
regulation of these processes is still poorly understood.

One of the first known, and also most investigated miRNAs is miR-7. The seed se-
quence GGAAGA is evolutionarily conserved and is found in Nematodes, Insects and
Vertebrates [3]. In Mammals miR-7 dominantly acts as a tumor suppressor and regulates
several basic cellular processes, which include proliferation, differentiation, apoptosis,
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migration and expression of stem cell features. It was also one of the miRs used for the
classification of the regulatory clusters. Most discoveries are in regard to its role in the
brain and sensory cell differentiation in man and Drosophila, respectively. Li X, and his
collaborators (2009) suggest that miRs, in general, may stabilize different regulatory net-
works depending on the conditions of environmental fluctuation during development [4].
This hypothesis was developed on an example of miR-7, participating in Notch and Epi-
dermal growth factor receptor (EGFR) coherent and incoherent feedforward loops during
photoreceptor determination in Drosophila. On the other hand, miR-7 downregulation is
linked to cell proliferation in many tumors, and its regulation is tightly connected with
differentiation processes in the pancreas, brain and other organs [5,6].

miR-7 is encoded in three different sites in the human genome. MIR7-1 sequence is
present inside the last intron of the heterogeneous nuclear ribonucleoprotein K (hnRNPK)
gene, on chromosome 9 (9q21.32) and is considered to be the dominant gene responsible
for miR-7 expression. MIR7-2 sequence is present in the intergenic region on chromosome
15, and MIR7-3 in the intron of pituitary gland specific factor 1 gene (PGSF1) or MIR-7 host
gene on chromosome 19 [7].

2. Regulation of MiR-7 Expression

miRNA genes, like the protein-coding genes, have a regulated promoter and their
products are members of signaling circuits of different cellular processes. miRs are also
regulated at several steps during processing into their active form by means of binding to
different proteins [8]. miRs can bind different long non-coding RNAs and circular RNAs
either to be degraded or to be “preserved” for later function. Different RNA classes can
function as miR “sponges” and bind miRs to keep them out of function: 3’UTR mRNA [9],
long non-coding RNAs (lncRNAs) and circular RNAs. Different proteins can also regulate
pri-miR degradation [1].

miR-7 is considered to be a network stabilizer, connecting different signaling pathways
through feedback and feedforward loops [4]. Its function in buffering gene expression and
providing robustness in cell response was demonstrated. Caygill and Brand (2017) showed
on the Drosophila model where miR-7 targeted the Notch pathway, that miR-7 buffers the
differentiation of the neuroepithelial cells into neuroblasts. Its role was to enable precision
in the process despite conditions of environmental stress [10].

As a tumor suppressor, miR-7 expression is often downregulated in different cancer
cells (i.e., in brain, lung and colon cancer cells [11–13]). Interestingly, it is also involved
in signaling circuits directing differentiation in different tissues and it is regulated by
specific transcription factors [6,14–16]. miR-7 promoter was found to be silenced by DNA
methylation in cancer stem cells [17]. In breast carcinoma, its expression is estrogen-
dependent [18]. Duex et al. found miR-7 to be in a signaling loop with EGFR through
Usp18 (Ubp43), a ubiquitin-specific peptidase, whose downregulation elevates miR-7
levels [19]. It was also found that Hepatitis B virus (HBV) protein HBx can upregulate miR-
7 expression through EGFR [20] and in breast cells by hepatocyte growth factor (HGF) [21].
However, miR-7 inhibition promotes breast cancer metastasis [22].

miR-7 was found to belong to a p53-dependent non-coding RNA network [23,24], as
well as the Myc signaling circuit [25]. Hansen et al. described the existence of circular
RNAs, which can pair with complementary miRNAs [26]. Circular RNAs have a structure of
covalently closed single-stranded RNA molecules, produced by a specific type of splicing.
These molecules are more stable than linear. Some of them can act as miR sponges: RNA
molecules, which contain multiple target sites complementary to a specific miR and influence
its activities by binding to it. The first such molecule was detected in neurons and it was
Cdr1as (ciRS-7) regulating miR-7. It contained miR-7 sequences transcribed in the antisense
orientation from the CDR1 gene, forming circular RNA (circRNA) Cdr1as with more than
70 binding sites for miR-7 and one perfectly complementary site for miR-671 [26–28]. It
seems that Cdr1as binds miR-7s and serves as their reservoir, and their release is regulated
with miR-671, which causes cleavage of Cdr1as and liberation of miR-7s to exert their
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activities. Furthermore, Kleaveland et al. ( found miR-7 to be a member of a regulatory
network consisting of four ncRNAs: one long ncRNA, one circular and two microRNAs, in
the mouse cerebellum [29]. Cyrano is a long ncRNA, which pairs to miR-7 and triggers
its destruction. At the same time, this long ncRNA enables upregulation of circular
Cdr1as, otherwise downregulated by miR-7. miR-671 was found to be involved in Cdr1as
destruction.

Numerous long noncoding RNAs were found to bind to miR-7 and downregulate its
activities: LINC00115 and XIST in breast cancer [22,30], LINC00240 in lung cancer [31],
RSC1-AS1 in hepatocellular carcinoma, TINCR and Zing Finger Antisense 1 (ZFAS1) in
breast and colorectal cancer [32–34], LPP-AS2 in glioma cells [35], etc. LncRNA SOX21-AS1
influenced cervical cancer progression by inhibiting miR-7/VDAC1 (voltage-dependent
anion channel 1) [36]. lncRNA KCNQ1OT1 modulated cell resistance to chemotherapy [37],
and lncRNA FOXD2-AS1 was found to bind miR-7 in thyroid cancer, upregulating the
expression of hTERT [38]. lncRNA UCA1 downregulated miR-7, influencing the EGFR
axis in gastric cancer cells resistant to hypoxia [39]. Upregulation of long noncoding RNA
ANRIL caused by hypoxia modulated miR-7/SIRT1 axis and protected cells from cell
death [40]. lncRNA CASC21 influenced miR-7/YAP1 signaling in colorectal cancer [41],
and lncRNA Oip5-as1 in stem cells was found to modulate NANOG expression [42].

Several circular RNAs, besides ciRS, also regulate miR-7 and its downstream tar-
gets: circHIPK3 in colorectal cancer, circ-0015756 in hepatocellular carcinoma influencing
downstream FAK [43,44], hsa_circRNA_0006528 in breast cancer influencing proliferation
through MAPK/ERK pathway [45], circ-U2AF1 in gliomas influencing the expression of
NOVA 2 [46], circ-TFCP2L1 decreasing mir-7-PAK1 signaling [47], circAkap17b regulat-
ing FSH secretion in pituitary gland [48]. circSNCA, SNCA and miR-7 were found to be
regulated by endogenous competition and could influence the progression of Parkinson’s
disease [49].

Other types of RNA can also modulate miR-7 activity: 3′UTR Ube3a-1 mRNA [9] and
Small Nucleolar RNA Host Gene 15 (SNHG15) regulating Klf4 through miR-7 [50].

There are also several proteins, which influence miR-7 maturation. Wang et al. de-
scribed miR-7 regulation by protein quaking isoforms (QKI) [51]. The QKI proteins have
heteronuclear ribonucleoprotein particle K (hnRNPK) homology KH and belong to RNA
binding proteins. These proteins interact with a QKI response element sequence in introns
and mature mRNAs, and it was shown that nuclear isoforms QKI-5 and QKI-6 associated
with pri-miR-7-1 to prevent its processing. They were also found to interact with Ago2,
during stress conditions. Similarly, it was shown that miR-7 can be downregulated by NF90-
NF45 complex, through the binding of this double-stranded RNA-binding protein complex
to primary miR-7 [52]. miR-7, in turn, targeted the coding region of NF90 mRNA. Nerve
cells have a posttranscriptional regulation of miR-7 through the expression of Musashi
homolog 2 (MSI2) and Hu antigen R (HuR), miR processing inhibitors and tissue-specific
factors, regulating miR-7 expression and activity during neural differentiation [8]. A similar
regulation was found in human lung cancer cells as a response to TLR9 signaling [53]. In
addition, mechanisms of miR-7 targeted degradation linked with its 3′ end modifications
were recently discovered [54].

On the other side, SF2/ASF increases Drosha cleavage of primary miR-7 transcript
and promotes miR-7 maturation, and miR-7 in the feedback loop can decrease SF2/ASF
expression. This molecule does not only affect miR-7, but also other miRs, coordinating
their splicing regulation and gene repression [55] (Figure 1).
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Figure 1. Biogenesis of miRNA. miRNA are transcribed from their genes regulated by promoters. Primary or pri-miRNA is
several hundred base pairs long and has a form of a hairpin. It is processed by a microprocessor, a complex containing
Drosha enzyme which removes the stem of the structure. Such pre-miRNA is exported from the nucleus and further
cleaved by Dicer. miRNA duplex of 20–22 22 nt is produced. One strand of the duplex becomes the mature miRNA loaded
on RNA-induced silencing complex (RISC), containing Argonaute protein. miRNA targets mRNA complementary to its
sequence and directs it to degradation or inhibits translation, depending on the level of complementarity. Some of the
known signaling molecules regulating miR-7 expression are shown [1,8,18,23,26,31–51,55].

3. MiR-7 and Chromatin Regulation

miR-7 was found to regulate a number of genes involved in chromatin modulation. It
can downregulate histone methyl-transferase gene, SETDB1 in different types of cancer
cells [56,57], as well as TET2 and SMARCD1 [58,59]. It can also influence global cellular
expression through the regulation of master transcription factors, such as KLF4, and thus
impact the fate of cancer stem cells and human embryonic stem cells [60]. miR-7 is also
found in extracellular vesicles and besides the possibility to influence the fate of the cell
where it is expressed, it could also interfere with the biology of the cells to which it is
delivered [61].

4. MiR-7 in Nerve Cells and Glioblastoma

In brain development, a fine regulation of cell proliferation, cell differentiation and
regulation of symmetric and asymmetric division, as well as cell migration is necessary. It
seems that miR-7 has a role in fine-tuning of these processes, in general as a suppressor of
proliferation (Tables 1–4, Figure 2).
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Table 1. miR-7 target genes/proteins in proliferation.

Gene/Protein Cell Type Pathway Function Reference

EGFR

glioblastoma
schwanoma
lung cancer
melanoma

EGFR signaling inhibition of proliferation [11,12,62–64]

PIK3R3
PIK3CD

PI3K

glioblastoma
lung cancer

PI3K/Akt pathway
TLR9 pathway proliferation inhibition [65–68]

IRS-1, IRS-2
glioblastoma

tong squamous cell carcinoma
melanoma

PI3K/Akt pathway inhibition of proliferation
viability [62,69–71]

Raf1 glioblastoma EGFR signaling inhibition of proliferation [63,67,72,73]

FOS gastric cancer MAPK signaling inhibition of proliferation [74]

ARF4 glioblastoma MAPK signaling inhibition of proliferation [63]

mTOR
p70S6K
eIF4E

Mapkap1
Mknk1
Mknk2

glioblastoma
pancreas PI3K/Akt pathway proliferation inhibition [66,75]

MAP3K9 pancreatic cancer MAPK pathway inhibition of proliferation
and migration [76]

IGF-1R

gastric metastasis
glioma

tong squamous carcinoma
osteosarcoma

PI3K/Akt pathway
IGF1-Snail EMT

inhibition of migration
and survival [71,77–79]

TAL1 T acute lymphoblastic leukaemia proliferation inhibition of proliferation [80]

RELA gastric cancer
melanoma

NFkappa B
signaling inhibition of proliferation [74,81]

IKK eta gastric cancer NF kappa B regulation of proliferation [74]

Skp2
Psme ovary cells cell cycle regulation cell cycle arrest [82]

CCNE liver
hepatocellular carcinoma cell cycle inhibition of proliferation [83]

KLF4

epithelial
brain metastasis
endothelial cells

lung

stem cell regulation
proliferation

migration
angiogenesis

[84–86]

RECK reversion inducing
cysteine-rich protein with kazal

motifs
oral cancer metalloproteinase

inhibitor increase in proliferation [87]

ERF Ets2 transcriptional
repressor lung cancer MAPK pathway increase in proliferation [88]

CKS2 cyclin-dependent
kinase regulatory subunit 2 thyroid cancer cell cycle inhibition of proliferation [89]

TRIP6 thyroid receptor
interactor protein colorectal cancer proliferation inhibition of proliferation

and metastasis [90]

ALDJ1A3 breast cancer stem cell survival decrease in stem cell
survival [91]

CUL5 cullin5 hepatocellular ubiquitination and
protein degradation

inhibition of proliferation
cell cycle arrest [92]

TYRO3 colorectal cancer PI3K/Akt/mTOR inhibition of proliferation [93]
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Table 2. miR-7 target genes/proteins involved in migration.

Gene/Protein Cell Type Pathway Function Reference

PAK2
PAK1

lung carcinoma
thyroid cancer gliomas

tong squamous cell
carcinomaschwanoma

Rho kinase effector

inhibition of
proliferation, motility,

regulation of
cytoskeleton apoptosis

[11,63,67,69,71,94,95]

TBX2
T-Box2 glioblastoma differentiation, EMT inhibition of

invasiveness [96]

trefoil factor 3 glioblastoma PI3K/Akt pathway inhibition of migration [97]

cdc42 brain damaged Rho kinase inhibition of migration
and proliferation [98]

Ack1
associated cdc42 kinase

1
schwannoma Rho pathways

citoskeleton regulation inhibition of migration [11]

FAK
FAK (PTK2)

glioblastoma
breast cancer
colon cancer
lung cancer

citoskeleton regulation inhibition of migration
and proliferation [99–102]

NOVA2 lung carcinoma inhibition of migration [103]

LASP1 breast cancer [104]

SATB1 special AT rich
sequence binding

protein
glioblastoma inhibition of migration

and invasion [105]

Slug breast cancer EMT decrease in migration [30]

NFAT pancreas EMT inhibition of migration [106]

VE cadherin
Notch4

hepatocellular
carcinoma inhibition of migration [107]

KLF4
YY1

Non-Hodgin
lymphoma

inhibition of migration
and chemosensitivity [108]

Table 3. miR-7 target genes/proteins involved in apoptosis and protection from stress.

Gene/Protein Cell Type Pathway Function Reference

BCL-2 lung, liver apoptosis apoptosis [109]

XIAP

glioblastoma
cervical cancer

hepatocellular carcinoma
lung

apoptosis apoptosis [68,72,110]

SLC25A37
TIMM50 rhabdomyosarcoma mitochondria induction of cell death

?? [111]

REGγ

proteasome activator subunit breast cancer proteasome
inhibition of
proliferation

increase of apoptosis
[112]

NEIL Nei endonuclease
VIII-like 1 colorectal cancer inhibition of apoptosis,

proliferation

inhibition of
proliferation and

survival
[113]

UBE2A brain ubiquitination and
protein degradation

amyloid peptide
proteolysis [114]

YY1 glioblastoma
colon cancer

p53 pathway
cell cycle arrest
wnt signaling

resistance to alkylation [13,115]
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Table 3. Cont.

Gene/Protein Cell Type Pathway Function Reference

1BRCA1 breast cancer DNA repair decrease in survival [104]

Sirtuin /Sirt1 neuroblastoma
regulation of

oxygen-glucose
deprivation

protection from
damage [116]

VDAC neuroblastoma
hepatocellular carcinoma

ion channel on
mitochondria;
ROS defense

protection from
oxidative stress [117,118]

KEAP1 neuroblastoma ROS defense protection from
oxidative stress [119]

HOXB3 breast cancer
retinal epithelial cells

glucose metabolism
PI3K/Akt/mTOR

reduction of high
glucose damage [120]

PARP1 lung cancer cells DNA repair decreased DNA repair
and survival [121]

REDD1 regulated in
development

and DNA damage response 1

cervical carcinoma cells
under hypoxia

DNA damage response hypoxamir
proliferation
modulation

[122]

SMARCD1 lung cancer cells chromatin regulator
p53 pathway

increased
chemoresistance [59]

XRCC2 colorectal cancer cells DNA repair proliferation inhibition,
induction of apoptosis [123]

Rad54L ovary cells DNA damage repair survival under cell
cycle arrest conditions [82]

REG1 regenerating
islet-derived protein pancreas response to glucose

starvation

inhibition of
proliferation,

apoptosis,
differentiation

[124]

MRP1/ABCC1 lung carcinoma multidrug resistance decreased survival [125]

NF90 tumor DNA repair DNA damage repair
inhibition [52]

Table 4. miR-7 target genes/proteins involved in differentiation and metabolic processes.

Gene/Protein CELL TYPE Pathway Function Reference

TLR4 brain inflammation downregulation of
inflammation [126]

FAM177A macrophages inflammation inhibition of cytokine
production [127]

NLRP3
Nod like receptor brain inflammation downregulation of

inflammation [128]

TET2 hematopoietic malignancies chromatin
modification [58]

SETDB1
SETD8 pancreas chromatin

regulation [56,57]

PAX6
brain

lung colon pancreas
embryonic stem cells

differentiation [5,129]

Gli3 brain
bladder cancer hedgehog differentiation [130,131]

FGFR4 liver protection from
injury stem cell proliferation [132]
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Table 4. Cont.

Gene/Protein CELL TYPE Pathway Function Reference

HoxD family brain differentiation [133]

TCF4 and TCF12 brain wnt pathway differentiation [134]

TCF7L2 brain wnt pathway [134]

SHANK3 brain differentiation [135]

ihog Hedgehog receptor drosophila eye hedgehog pathway differentiation [136]

CRY2 osteoblast CLOCK/BMAL/p300
pathway differentiation [137]

Yorkie drosophila wings Hippo pathway organ size [138]

G protein signalling 5 RGSS eye signaling [139]

PA28 gamma lung carcinoma proteasome inhibition of protein
degradation [140]

insulin receptor INSR
insulin receptor substrate 2 IRS-2
insulin-degrading enzyme IDE

brain regulation of
glucose metabolism insulin sensitivity [141]

TfR1 transferrin receptor 1 pancreatic and colon cells iron transport and
storage iron transport and storage [142]

beta arrestin 1 pancreatic beta cells regulation of insulin
secretion metabolism [143]

Sepp1b selenoprotein P brain synaptic function [144]

Prostaglandin F2 receptor
negative regulator PTGFR

Golgi glycoprotein 1
pituitary gland hormone regulation gonad development [145,146]

OGT, O-GlcNAcyl Transferase lung cancer O-GlcNAcylation metabolic reprogramming
migration [147]

CAMK2D
calponin smooth muscle cell calcification vascular calcification in

pulmonary hypertension [148]

enolase ENO2 nasopharyngeal carcinoma glycolysis metabolism
radioresistance [149]

Lactat dehydrogenase A gastric cancer glycolysis metabolism [150]

Raf1 pituitary gland production of
prolactin development [151]

KLF4 myoblasts differentiation and
proliferation

inhibition of
differentiation and

proliferation
[152]

Follicle stimulating hormone
FSH pituitary gland metabolism inhibition of production [48]

alpha-Synuclein brain; Parkinson disease neuron function and
survival inhibition of production [153]

It has spatiotemporal-dependent expression and regulation [28], and it is found in
discrete brain regions [3]. It can also have specific subcellular localization, different in the
cell body and neurites. One example is miR-7 role in dopaminergic neuron differentiation
by fine-tuning Pax6 expression [5]. miR-7 also regulates other neural fate markers, elements
of the Wnt pathway, interferes with Hedgehog and Notch signaling and takes part in
the differentiation process [134]. miR-7 regulates both, specific nerve functions (such as
synaptic [144]) and master regulators (such as HoxD family members). It is detected as one
of the miRNAs forming “miR signature” in neural stem and neural cancer stem cells [154],
which is in accordance with its role in differentiation and proliferation. Interestingly, miR-7
is 40 times more abundant in neurons than in astrocytes (Table 1).

Besides influencing cell differentiation, and thus indirectly interfering with it, miR-7
can also directly inhibit cell proliferation (Figure 2). In glioblastoma and neuroblastoma
miR-7 was found to be downregulated compared to normal tissue, indicating its role as



Biomedicines 2021, 9, 325 9 of 20

a tumor suppressor [11,62]. The functions of miR-7 in glioblastomas are mainly linked
to its influence on cell proliferation, differentiation, apoptosis and migration. Although
some glioblastoma cells can be refractory to miR-7 expression, its downregulation is often
found in nerve cell tumors. Saydam et al. found its downregulation to be the typical miR
schwannoma characteristic signature [11].

Figure 2. Effects of miR-7 on the process of carcinogenesis in different types of cancer. blue: tumor suppressor’s activities;
red: activities as oncomirs.

One of the first detected and most investigated targets of miR-7 is Epidermal growth
factor receptor, EGFR, whose protein expression is decreased by miR activity. EGFR is
linked to several important proliferation-inducing pathways, such as PI3K/Akt and MAPK
and their downregulation leads to decreased activation of the Akt and ERK1/2. Kefas
found that miR-7 directly regulates EGFR expression [62].

miR-7 targets are also several other proteins involved in downstream signaling. In
the PI3K/Akt pathway, these are Akt pathway regulators IRS-1 and IRS-2, PI3K subunits
(PIK3R3 and PIK3CD), mTOR [66], and PAK1 (p21/Cdc42/Rac1-activated kinase) [67,155].
The latter is potentially involved not only in oncogenic signaling through EGFR/Akt, but
also in motility, regulation of cytoskeleton and apoptosis [63]. On the MAPK pathway,
miR-7 influences Raf1 and ARF4 (ADP-ribosylation factor 4) expression, which modulates
activation of phospholipase D2 (PLD2) and downstream activation of AP-1 [67,155]. Web-
ster et al. found its influence on JNK and CAMK pathways [63]. In addition, Duex et al.
found miR-7 to be involved in the signaling loop with EGFR through Usp18 (Ubp43), a
ubiquitin-specific peptidase, whose downregulation elevates miR-7 levels [19].

miR-7 is also involved in the regulation of cell survival [67,84] as it downregulates
pro-survival proteins IRS-1, IGF-1R, PAK1, and Raf-1 and leads to the reduction in cell
viability. Zhang X et al. found that the expression pattern of miR-7 correlates with the
glioblastoma cells’ sensitivity to apoptosis induced by TRAIL, a TNF family member [110].
XIAP, an apoptosis inhibitor, was detected as a direct miR-7 target (Tables 1–3).

In another experimental setting, Kabaria et al. found that miR-7 targeted 3’UTR of
Keap1 in human neuroblastoma cells [119]. Keap1 takes part in the regulation of Nrf2,
a transcription factor involved in the expression of many antioxidant and detoxifying
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genes in reactive oxygen species (ROS) defense. miR-7, therefore, participated in cellular
protection from oxidative stress. In neuroblastoma cells, Sirtuin (Sirt 1) was found to
be a direct target of miR-7, and a link to the regulation of oxygen-glucose deprivation
and cerebral injury [116]. It was found that miR-7 can target VDAC1, voltage-dependent
anion channel, a part of the mitochondrial permeability transition pore, leading to the
decrease in the intracellular ROS and protection against mitochondrial dysfunction and
cytotoxicity [117]. Jia et al. compared RNA expression in glioblastoma cell lines differently
sensitive on alkylation DNA damage and found miR-7 to be downregulated in the resistant
cells [115]. They showed that miR-7 upregulation increased the cell sensitivity to alkylation.
As a direct target, transcription factor YY1 was identified. However, it is also possible
that in glioblastoma cell lines cell-specific regulation exists and that not all cell lines are
responsive to miR-7 expression [8,156].

miR-7 also targets the expression of proteins involved in migration and metastasis [99].
Increased expression of miR-7 inhibited migration and invasion through downregulation of
MMP-2, MMP-9 and FAK, a kinase involved in motility. Different targets were found to link
miR-7 to actin cytoskeleton: Rho GTPases, Ack1 and PAK. In addition, in glioblastoma its
target was a special AT-rich sequence binding protein 1 (SATB1), a protein able to promote
migration and invasion [105].

Pan CM et al. found miR-7 to target TBX2 mRNA, and due to miR-7 downregulation
in glioblastomas, TBX2 is increased [96]. Its high expression correlated with poor prognosis
and higher invasivity of glioblastoma cells, EMT features and pulmonary metastasis. TBX2
is involved in the developmental processes and morphogenesis of different organs. It
represses E-cadherin and increases the invasiveness of breast cancer cells. miR-7 also influ-
enced TFF3, a signaling molecule downstream of PI3K/Akt pathway. Its downregulation
decreased migration and invasion. This process can be reversed by a glioblastoma cell
treatment with a glycolytic inhibitor which reduces the expression of miR-7 [97].

5. MiR-7 Role in Gastrointestinal Tumours

In gastric cancer (GC) patients, miR-7 deregulation consequently leads to increased
cell proliferation, tumorigenesis and poor survival. In gastric cancer cells, besides targeting
the EGFR pathway, miR-7 targets the IGF1R and downstream RELA and FOS [77]. miR-7
indirectly influences RELA activation, through targeting IKKeta. Through the feedback
circuit, the NF-kappaB pathway regulates the miR-7 expression. In addition, miR-7 can
downregulate the IGF1R-Snail pathway, which is involved in epithelial-mesenchymal tran-
sition [74,77]. Similar pathways were influenced in tongue squamous cell carcinoma [71].
Recently it was found that miR-7 could target lactate dehydrogenase A (LDH-A) in gastric
cancer cells, so its downregulation can influence glycolysis, cell proliferation and sensitivity
to chemotherapy [150].

In oral squamous cell carcinoma cells miR-7 regulated the expression of RECK, which
acts as a metalloproteinase inhibitor and can suppress cell proliferation and migration.
Therefore, miR-7 acted as an oncogene, and RECK inhibition was associated with poor
prognosis and aggressiveness of tumors [87] (Figure 2).

miR-7 has also been reported to target a specific set of genes in the liver. Some of
them code for proteins involved in cell cycle and apoptosis regulation, such as CCNE1 [83],
Bcl-2 and XIAP. In hepatocellular carcinoma cells miR-7 directly regulates CUL5, influ-
encing cell proliferation and inducing cell cycle arrest [92]. As miR-7 targets Notch3, its
downregulation leads to Notch signaling activation in the same type of cancer cells [157].
Besides Notch3, Notch4 and VE cadherin were also found to be miR-7 targets [107]. miR-7
also downregulates VDAC1 in hepatocellular carcinoma and influences proliferation and
migration [118], as well as the fibroblast growth factor receptor FGFR4, a key molecule
for liver protection from chronic injury. In the conditions of increased fibrosis miR-7 was
found to be upregulated and promoted HSC proliferation and activation as a consequence
of FGFR4 downregulation [132].
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miR-7 is involved in the differentiation of pancreatic endocrine cells [6]. In pancreatic
carcinoma, miR-7 can suppress NFAT. This transcription factor can regulate epithelial-
mesenchymal transition and act as an oncogene in pancreatic carcinoma cells [106]. Down-
ing et al. found miR-7 to directly target REG1, a protein that increases proliferation and
influences apoptosis and differentiation of pancreatic cells [124]. miR-7 was found to sup-
press SOX18 and to influence the gp130/JAK2/STAT3 pathway. Wang et al. found miR-7
to target members of the mTOR signaling pathway (p70S6K, eIF4E, Mapkap1, Mknk1 and
MknK2) [75], influencing cell proliferation, as well as MAP3K9 [76]. In addition, miR-7
targets also SET8, a histone methyltransferase, thus potentially influencing the expression
of a number of downstream genes [56] (Table 4).

In colon cancer cells miR-7 also suppresses proliferation, increases apoptosis and
causes cell-cycle arrest, by targeting YY1 and by influencing downstream p53, caspases
and c-jun, as well as wnt signaling (through beta-catenin, survivin and FGF4) [13]. Neil,
an endonuclease that inhibits apoptosis and increases cell survival and proliferation was
found to be regulated by miR7 [113].

Other targets are TYRO3, influencing PI3K/Akt/mTOR pathway [93], TRIP6 which
regulates proliferation and metastases [90], FAK [101] and XRCC2, a gene involved in
homologous recombination repair pathway [123].

6. MiR-7 Roles in Lung Cancer

Promoter mutation of miR-7 was found to be associated with a poor prognosis of
lung cancer [12]. The main targets released from miR-7 downregulation are those of EGFR
and PIK3/Akt pathways, apoptosis inhibitors [109], and proteins involved in migration,
FAK, PAK2 and NOVA2 [12,72,94,102,103]. PIK3/Akt signaling also connects TLR9 and
miR-7 regulation [65]. However, Chou found that miR-7 could act as an oncomir in lung
tumorigenesis [88]. EGFR, through the Ras/ERK/Myc pathway, increased the production
of miR-7-1, which targets ERF, a transcriptional repressor. Therefore, in carcinoma sam-
ples, a positive correlation between EGFR and miR-7 expression was found, and miR-7
increased cell proliferation and tumor volume. Another example of oncogene activity
was miR-7 modulation of the MYC pathway, in a positive feedback loop. The miRNA
target is AMBRA1, an important regulator of early autophagy and a mediator in MYC
dephosphorylation [158].

Hong et al. identified SMARCD1, a chromatin remodeling protein, to be a direct target
of miR-7 in lung cancer cells [59]. They concluded that miR-7 influences the coupling of
SMARCD1 with p53, which leads to an increased chemoresistance of lung cancer cells.
miR-7 also downregulates PARP1, thus influencing DNA homologous recombination repair
and survival after Adriamycin treatment of small cell lung cancer cells [121]. Furthermore,
miR-7 modulates chemoresistance by targeting the multidrug resistance-associated protein
MRP1/ABCC1 [125].

In addition to that, miR-7 was found to target several proteins linked to protein
degradation as PA28gamma, a proteasome activator, targeted in non-small cell lung
carcinoma [140]. O-GlcNAcyl Transferase (OGT), an enzyme involved in O-linked N-
acetylglucosaminylation and contributing to cancer phenotype, is regulated by miR-7 [147].
In nasopharyngeal carcinoma cells, miR-7 was found to regulate the expression of enolase,
ENO2, and therefore its downregulation can influence cell glycolysis [149].

7. MiR-7 Roles in Melanoma and Skin Cancer

Similarly to its role in other tissues, in melanoma cells, miR-7 takes part in the sup-
pression of proliferation. However, as melanoma cells are not typically EGFR-driven, Giles
et al. found miR-7 to target RelA and thus inhibit NF-κB activity and its downstream genes,
such as IL-1β, IL-6 and IL-8 [70]. The analysis of melanoma patient samples revealed a
correlation between RelA expression and poor survival.

On the contrary, Meza-Sosa et al. found KLF4 to be a miR-7 direct target in epithelial
cells, and miR-7 overexpression in lung and skin epithelial cells enhanced cell proliferation,
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migration and tumorigenesis [84]. Tumors with an increased miR-7 had a decreased
p21 and cyclin D. In thyroid papillary cancer, miR-7 targeted CKS2, a cyclin-dependent
kinase regulator, and downstream cyclin B1 and cdk1 [89]. As a target, also PAK1 was
detected [95].

It has been shown that in the cancer-associated fibroblasts of head and neck cancers,
overexpression of miR-7 downregulates RSSF2, a proapoptotic molecule influencing prolif-
eration and migration, and decreases the secretion of a tumor suppressor PAR-4 (prostate
apoptosis response 4) [159]. In the human ocular tissue, miR-7 targets RGS5, a regulator of
G protein signaling [139].

8. MiR-7 Roles in Breast, Prostate and Ovarian Cancer

In breast cancer miR-7 inhibits the metastases and influences epithelial-mesenchymal
transition by targeting FAK, a kinase that acts as a mediator in ECM-integrin signaling [100].
Overexpression of miR-7 induces an increase in E cadherin and downregulation of mes-
enchymal proteins, suppresses proliferation, anchorage-independent growth, migration
and invasion, as well as anchorage-independent growth in matrigel. The level of miR-7
is associated with the aggressiveness of estrogen receptor-positive breast tumors [160].
It also targets proteasome activator subunit 3 (REGγ) and contributes to the decrease
in the cancer stem cell population survival, proliferation and migration [30,91,112,161].
Several miR-7 targets influence chemotherapy resistance, such as members of EGFR/PI3K
signaling, BRCA1, LASP1, BCL-2 and MRP1 [104,162,163]. Okuda et al. (2013) found that
miR-7 suppresses the ability of breast cancer stem cells to metastasize to the brain [85].
The correlation was found with miR-7 modulation of KLF4 expression, involved in stem
cell biology. In addition, in a breast cancer cell line miR-7 was also found to be in regula-
tion circuit with HOXD10, and, together with miR-218, to downregulate HoxB3 [69,120].
These changes were further connected with increased activity of other tumor suppressors,
RASSF1A and Claudin-6 through epigenetic regulation, leading to cell cycle inhibition.
Seong et al. found miR-7 to target REDD1, a negative regulator of mTOR signaling in the
stress conditions [122]. miR-7 was therefore assigned to so-called hypoxamirs, miRNAs
involved in hypoxic response. In HeLa cells, hypoxia caused downregulation of miR-7, in
order to increase REDD1 level and inhibit mTOR signaling. In prostate cancer, it was found
that miR-7 can regulate the expression of AXL, a receptor tyrosine kinase, associated with
tumorigenesis, inhibition of apoptosis and EMT, often deregulated in different types of
carcinomas [164]. miR-7 also inhibited the stemness of prostate stem cancer cells through
repression of KLF4 and PI3K/Akt/p21 downstream pathway [165].

miR-7 overexpression in hamster ovary cell line CHO decreased the cell proliferation,
without influencing viability. Transient transfection of CHO led to upregulation of nearly
200 genes and downregulation of around 350 genes. The pathways involved included
translation, RNA and DNA processing, secretion and protein folding. miR-7 has been
found to target regulators of G1-S transition, Skp2 and Psme, to upregulate p27KIP and
arrest the cells in the G1 phase. Furthermore, it was found that miR-7 coordinately changes
the levels of many genes in order to maintain homeostasis under the arrest conditions. It
regulates Rad54L, a DNA repair protein, and influences the proapoptotic regulator p53 and
the antiapoptotic Akt pathway to insure cell survival [82,166].

In testicular germ cell tumors, miR-7 was found to be one of the four hub miRNAs in
regulatory networks of nonseminoma tumors [167].

In addition, expression of miR-7 was found increased in renal cell carcinomas in
comparison with normal tissue, suggesting its activities as an oncogene [168].

9. MiR-7 Roles in Mesenchymal Tissue and Tumours

In osteosarcoma miR-7 influences IGF1R, and in paediatric rhabdomyosarcomas
targets SLC25A37 and TIMM50, two mitochondrial proteins, important for the induction of
cell death [79,111]. In osteosarcomas, miR-7 is supposed to be a regulating link between
Linc00852 lncRNA, and AXL, a tyrosine kinase involved in tumor growth [169].
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10. MiR-7 Roles in Leukaemia

miR-7 had a low expression in haematopoietic cells and in B-chronic lymphocytic
leukaemia (Antica et al. unpublished results). In chronic myeloid leukaemia, it was found
to interfere with Bcr/Abl signaling [170]. A higher expression of miR-7 was found in acute
lymphocytic leukaemia (ALL) patients with CNS relapse compared to those without [171].
In B cell lymphoma it was found to be regulated by c-Myc [172]. In T-cell acute lymphocytic
leukaemia (T-ALL), upregulation of long noncoding RNA ANRIL caused miR-7 sponging,
binding multiple tandem miRNAs through response elements binding seed sequences, in
order to sequester them from their target sequences. Consequently, TCF4, a miR-7 direct
target, is upregulated and is involved in the disease progression [173]. In T-ALL, miR-7 was
found to bind to TAL1, coding for T-cell acute lymphocytic leukaemia protein. In T-ALL,
expression of miR-7 is often attenuated, while TAL1 expression is increased and solicitates
cell proliferation [80]. In Non-Hodgkin lymphoma cells, miR-7 regulates migration and
chemoresistance through KLF4 and YY1 [108] and miR-7 downregulation can increase
the aggressiveness of follicular lymphoma by FasL upregulation in macrophages which
modulate immunosuppressive stroma [174].

11. Conclusions

miR-7 is one of the most conserved and oldest miRs, and is engaged in numerous
signaling circuits involved in differentiation, regulation of proliferation, apoptosis and
migration. It targets numerous mRNAs depending on the intracellular milieu and is also
regulated by different transcription factors and molecules involved in its processing and
degradation. It was suggested that its role could be to buffer cellular processes under stress
conditions and to coordinate cell proliferation with other functions. This could be the reason
for its involvement in numerous diseases. In most tumors its expression is downregulated,
as its dominant activity is tumor suppression by inhibition of cell proliferation and survival.
In some cancer types, it acts as an oncomir, stressing the importance of nuances of signaling
circuits in which it is involved. We believe that numerous functions in the maintenance of
cell homeostasis and cell fate determination are still to be discovered.
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