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Abstract: Wearable global position system (GPS) technology can help those working with older
populations and people living with movement disorders monitor and maintain their mobility level.
Health research using GPS often employs inconsistent recording lengths due to the lack of a standard
minimum GPS recording length for a clinical context. Our work aimed to recommend a GPS recording
length for an older clinical population. Over 14 days, 70 older adults with Parkinson’s disease wore
the wireless inertial motion unit with GPS (WIMU-GPS) during waking hours to capture daily “time
outside”, “trip count”, “hotspots count” and “area size travelled”. The longest recording length
accounting for weekend and weekdays was ≥7 days of ≥800 daily minutes of data (14 participants
with 156, 483.9 min recorded). We compared the error rate generated when using data based on
recording lengths shorter than this sample. The smallest percentage errors were observed across all
outcomes, except “hotspots count”, with daily recordings ≥500 min (8.3 h). Eight recording days will
capture mobility variability throughout days of the week. This study adds empirical evidence to the
sensor literature on the required minimum duration of GPS recording.

Keywords: wearable technology; community mobility; GPS; older adults; Parkinson’s disease;
recording technique; sampling length

1. Introduction

Capacity and performance of mobility outside of the home around an individual’s
community (community mobility; CM) is associated with quality of life [1,2], social partici-
pation [3], cognitive abilities [4] and independence [5–7]. It is a multidimensional construct,
and is often operationalized by researchers as an individual’s spatial-temporal movement
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patterns (e.g., trips outside, time outside) [8] and travel behavior (e.g., life space, area
size travelled, distance travelled by foot versus vehicle) [9–11]. Overall, decreased CM is
associated with increased risk of disability [5,6] and death [7]. Therefore, assessing and
maintaining CM is often a goal of many public health initiatives and clinical treatment
plans [12]. Reliable measurement of mobility in the real-life community setting is a key
challenge in health and activity research.

Wearable global position system (GPS) technology with data recorders allows re-
searchers and clinicians to capture a person’s CM easily and passively in his or her real-life
setting over multiple hours and days [9,11–15]. These devices often provide data on nu-
merous CM components, such as trip frequency [16,17], duration [8,18,19], distance [20–23]
and size of activity area [9]. A GPS continuously records data, often at every second. Hence,
measuring mobility over multiple days generates an enormous amount of real-time data
not attainable using recall methods. CM is a dynamic construct, and data captured on an
individual can vary greatly even from one day to the next. Thus, even a highly accurate
GPS could produce daily recordings with some level of error relative to the true value.

Inherent technical issues also compromise the quality of large datasets produced by
GPS units [24]. An issue specific to the GPS is that increasing the number of GPS recording
days may compromise data quality by introducing more opportunities for data loss [23].
For example, GPS studies typically report loss of data due to low battery, signal loss
and participant non-compliance [23,25,26]. Studies using 1 week of data collection have
reported 11.2% to 53.3% data loss [10,27]. Large data loss compromises the overall data
quality and data yield, resulting in biased study results and reducing study power.

In general, free-living recordings yielded different amounts of data between par-
ticipants, even in the absence of any missing data. Despite common data loss issues,
researchers have not employed a standard length of recording when using GPS to study
CM as recording lengths have seldom been evaluated in research. Set recording lengths
have varied from 1 day [23,28] to 1 week [10,19]. Within the same study, recording length
can also vary each day [21]. Currently, GPS research often does not account for the potential
differences in weekday to weekend CM. Studies that do consider daily variations tend to
only have captured one or more weekdays that best represent participants’ mobility along
with only one weekend day [29]. However, this approach may be prone to selection bias as
participants may choose a weekend day based on convenience or social desirability, rather
than a day that is representative of typical mobility.

Currently, it is unknown whether shorter lengths of recording affect the validity of
mobility outcomes captured compared to longer lengths. Our objectives for this study
are to compare four CM outcomes obtained by a wearable GPS sensor using different
recording lengths and recommend a minimally appropriate recording length for using GPS
to measure the community mobility of an older clinical population.

2. Materials and Methods

Over 14 days, 70 people with Parkinson’s disease wore the wireless inertial motion
unit with GPS (WIMU-GPS; Figure 1) during waking hours to capture their typical day-
to-day mobility and weekday and weekend mobility. The inclusion and exclusion criteria
have been previously published [11]; (Table S1).
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as much free-living mobility as possible, we did not enforce a standard start and end time 
for data collection each day. We asked participants to remove the WIMU-GPS device be-
fore bed in the evenings to charge the battery, and when bathing, swimming or other ac-
tivities with water. These approaches were consistent with other GPS studies [11,18].  

2.2. Outcomes of Interest 
We focused on common GPS-derived community mobility outcomes captured out-

side of the home, such as daily total “trip count” (i.e., number of trips taken from home) 
[16,17], “hotspots count” (i.e., number of hotspots visited) [11,15], “time outside” 
(minutes) [8,18,19] and “area size travelled” (km2) [9,31]. We constructed temporal clus-
ters using time-consecutive positions that are within close proximity to each other, over a 
specific timeframe [15]. A key reference cluster was the home cluster, as created from the 
first location recorded (i.e., when the GPS was first turned on and calibrated at the partic-
ipants’ homes).  

“Trip count” was calculated as the total number of trips outside home per day. Trips 
were operationalized as when a participant leaves the home cluster and returns at a later 
time in the same day. “Time outside” was calculated by adding the data points identified 
not within the home cluster over the total recording period [15]. “Hotspots” are the num-
ber of clusters reached during each trip, where an individual has stopped for 3 min or 
more, over the recording period [30]. It excludes routine traffic light stops and allows the 
detection of commonly visited places. The “area travelled” was derived from a best-fit 

Figure 1. (A). Wireless inertial unit with GPS (WIMU-GPS). (B). Raw signals and signal processing
steps and analysis of GPS signals (previously published in [14]).

2.1. Equipment

The WIMU-GPS [11,15,30]; (Boissy, Hamel, Brière of Canada; patent id: US2012/
0232430A1) is a multipurpose wearable sensor platform, combining 3D inertial measures of
motion (accelerometers, gyroscope and magnetometers) with a Sirf 3 GPS receiver [30]. Its
small pager size allows the unit to be worn non-intrusively around an individual’s torso
or hip using a flexible clip-enclosure strap. Inertial measures of motion were sampled at
50 Hz. The GPS data used were sampled at 1 Hz.

To mimic real-life wear scenarios and minimize testing effects, we asked participants
to wear the WIMU-GPS with as little disruption to their daily life as possible. To capture as
much free-living mobility as possible, we did not enforce a standard start and end time for
data collection each day. We asked participants to remove the WIMU-GPS device before
bed in the evenings to charge the battery, and when bathing, swimming or other activities
with water. These approaches were consistent with other GPS studies [11,18].

2.2. Outcomes of Interest

We focused on common GPS-derived community mobility outcomes captured outside
of the home, such as daily total “trip count” (i.e., number of trips taken from home) [16,17],
“hotspots count” (i.e., number of hotspots visited) [11,15], “time outside” (minutes) [8,18,19]
and “area size travelled” (km2) [9,31]. We constructed temporal clusters using time-
consecutive positions that are within close proximity to each other, over a specific time-
frame [15]. A key reference cluster was the home cluster, as created from the first location
recorded (i.e., when the GPS was first turned on and calibrated at the participants’ homes).

“Trip count” was calculated as the total number of trips outside home per day. Trips
were operationalized as when a participant leaves the home cluster and returns at a later
time in the same day. “Time outside” was calculated by adding the data points identified
not within the home cluster over the total recording period [15]. “Hotspots” are the
number of clusters reached during each trip, where an individual has stopped for 3 min
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or more, over the recording period [30]. It excludes routine traffic light stops and allows
the detection of commonly visited places. The “area travelled” was derived from a best-fit
ellipse drawn around 95% of the GPS points captured during the recording period [30].
Details on the signal processing of the GPS data to compute these outcomes were previously
published [15].

2.3. Comparison Methods

Community mobility is a complex and multidimensional construct, with several
different components such as distance travelled, time spent outside the home, number of
destinations, etc. Each component can be measured in terms of frequency, duration and
in some cases, intensity (e.g., walking speed) [8,23]. Components of CM can vary in each
individual, hourly, diurnally, weekly and seasonally, for reasons including pain, functional
impairment and declining health [7,9], as well as lifestyle effects due to changes in habits,
personal events, employment factors, transportation, weekday vs. weekend activities, built
environment and weather [32–38].

Assessments based on only one day’s data cannot fully capture CM variation, and the
estimates of a participant’s individual true value (ITV) produced using only one day’s data
may produce measurement errors of unknown direction and magnitude. Theoretically, a
participant’s ITV is calculated as the average of outcomes measured using a known accurate
assessment. This value would represent all known and unknown sources of variation in
the CM component. In reality, the ITV is estimated because prolonged recording duration
is impractical.

2.4. Criterion and Comparison Group Selection

To understand which sampling lengths are the most optimal, we compared mobility
outcomes recorded using different sampling lengths against each other and against the cri-
terion ITV. Since patterns of mobility are unique to each individual, we separately assessed
mobility outcomes recorded, using different recordings for each individual participant.

2.5. Criterion Group

As per the law of large numbers, the best estimates of true CM outcomes (i.e., closest
to the true ITV) are achieved when the number of minutes measured per day and number
of days measured per sampling period are both maximized. We estimated proxy ITVs
for each individual using the greatest number of sampled days with the longest number
of recorded minutes. This allows both intra- and inter-day variations in mobility to be
captured.

Given inconsistent GPS wear time, undefined start and end times for each participant
and potential missing data, we first defined the most complete dataset that maximizes the
total amount of sampled time. Based on previous literature [24], we aimed to use data from
participants who recorded at least seven non-consecutive days, with at least one weekend
day. We assessed data from participants with at least seven days of recordings to determine
the longest daily recording length achieved (i.e., best available estimates of ITV).

In this study, the longest recorded days for all 70 participants contained 1000 min
(16.7 h) of recording. This was achieved by only 5 participants over only 8 days in total
(each contributing from 1–3 days of ≥1000 min of recording). A proxy ITV formed using
these data would not be able to fully capture variations in mobility over week days and
weekends. We also observed only one participant recorded ≥7 days of ≥900 min (15 h)
which is not a sufficient sample of participants. As a result, we decided the proxy ITV must
be based on fewer than 900 min per day.

Next, we observed 14 participants (20.0% of the sample) to have recorded ≥7 days of
≥800 min (13.3 h) of data. Given that this is the most robust sampling permutation that
maximized both the number of participants and the number of days/minutes collected,
we used this group as the criterion participant group. Each individual’s mean outcomes
captured on days with ≥800 min of data recording were used as their proxy ITV.
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Despite the relatively small final participant size, we calibrated the GPS to continuously
record data at the high frequency of 1 Hz. This allowed us to create a relatively large dataset
of minutes recorded which formed the unit of analysis. Our assumption was that these
criterion participants provided the best estimates of the true ITV. The criterion ITV for each
participant was the mean outcome from all days with at least 800 min of data. Consequently,
the number of days used to calculate the ITVs differed between individuals.

2.6. Comparison Groups

Criterion participants also recorded days that were shorter than 800 min. These “non-
ITV days” were categorized based on the number of minutes recorded and the number of
days of each daily recording length. In total, 19 sampling subgroups were formed based
on the day and minute permutations that were recorded but only 10 subgroups contained
more than one participant (Table S2 of Supplementary Materials). Sampling lengths with
only one participant were excluded from the assessment. We systematically compared
errors produced by these shorter recording lengths against the criterion ITVs.

2.7. Analysis

Demographic characteristics of the criterion group were compared to the non-criterion
group using Fisher’s exact test for categorical variables and the two-sample t-test for
number of counts and continuous variables. Statistical significance was declared with
two-sided p < 0.05.

2.8. Subgroup Comparisons

We assessed four outcomes: “trip count”, “hotspot count”, “time outside” and “area
size”. Absolute percentage error calculations for each sampling length subgroup used only
the “trip count” recorded for each individual and their ITV “trip count”. The criterion ITV
for each participant was the mean outcome from all days with at least 800 min of data.
Mean ITV “trip count” was calculated for all criterion participants using the mean of all
days with recordings of 800+ minutes. Mean non-ITV “trip count” was calculated using
all days with recordings of less than 800 min. We calculated the absolute percentage error
for each recording length subgroup using the difference between the mean ITV and mean
non-ITV values. We repeated the same steps for the other outcomes.

3. Results
3.1. Demographics

Table 1 shows the difference between the demographic profiles of criterion participants
(n = 14) versus participants who did not fulfill the criterion requirements (n = 56). Overall,
greater proportions of non-criterion participants were married or living with a common-law
partner. Non-criterion participants were slightly older and experienced greater impacts of
PD on their overall quality of life. There was no statistical evidence to suggest significant
difference between the full sample and criterion participants (p > 0.05).

3.2. Number of Days Collected

In total, 205 days of varying length were collected from the 14 criterion participants
totaling 156, 483.9 min of data (mean = 763.33 ± 210.03 min per day). The number of days
with at least 800 min of data contributed by each participant towards their criterion ITV
ranged from 7 to 13 days, totaling 113, 466 min of data (minutes = 872.82 ± 73.8 per day).

3.3. Daily and Day-to-Day Variations

Figure S1 of the Supplemental Materials shows large variations in daily interpersonal
“time outside”, “trip number”, “hotspots number” and “area size” travelled. Days with
less than 800 min recorded were observed for all but one participant. Insufficient data
were observed for all individuals on Day 14 because the last data collection visit often took
place mid-day, so data collection on Day 14 was shortened. Table 2 shows the coefficient of
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variation for each outcome’s ITV days ranging from 39.27% (“time outside”) to 133.44%
(“area size”) and indicates that some mobility outcomes were more constant than others for
a given individual.

Table 1. Demographic characteristics of the selected criterion participants compared to all participants.
(PD = Parkinson’s disease; MoCA = Montreal Cognitive Assessment; PDQ-39 = Parkinson’s Disease
Questionnaire—39 items; s.d. = standard deviation).

Criterion Participants (n = 14) All Participants (n = 56)

Demographics covariates Mean ± s.d.; n (range or %)

Age (years) 69.2 ± 6.5 (57–79) 67.1 ± 6.3 (55–79)

Sex
Male 8 (57.1%) 39 (69.6%)

Female 6 (42.9%) 17 (30.4%)

Marital status
Unmarried/widowed/ 6 (42.9%)

separated 8 (57.1%) 7 (12.5%)
Married/common law 49 (84.4%)

Employment status Fully retired = 12 (85.7%) Fully retired = 47 (83.9%)
Partial or full employment = 2 (14.3%) Partial or full employment = 9 (16.1%)

Residential setting

Urban = 5 (35.7%) Urban = 12 (21.4%)
Suburban = 1 (7.1%) Suburban = 15 (26.8%)

Rural, in town = 5 (35.7%) Rural, in town = 19 (33.9%)
Rural, outside of town = 3 (21.4%) Rural, outside of town = 10 (17.9%)

Living situation Alone = 5 (35.7%) Alone = 8 (14.3%)
With family/friends = 9 (64.3%) With family/friends = 48 (85.7%)

Driving status Drives = 14 (100%) Drives = 51 (91.1%)
Does not drive = 0 (0%) Does not drive = 5 (8.9%)

MoCA 26.6 ± 2.5 (23–30) 25.3 ± 3.0 (18–30)

Time since PD diagnosis (years) 5.4 ± 4.0 (<1–14) 6.4 ± 5.6 (<1–30)

Impact of PD on overall quality of life
(PDQ-39 scores; 0 = no impact, 100 = total

impairment)
13.9 ± 15.8 (2.1–64.7) 20.8 ± 12.4 (1.8–51.4)

Table 2. Average community mobility outcomes recorded using different sampling lengths (n = 14).
Days with 800 or more minutes of recording constitute ITV days, and those with less are non-ITV
days. Coefficient of variation for ITV days used the mean and s.d. of all ITV days in the formula:
s.d./mean∗100. Non-ITV mean values were calculated using the average for all non-ITV subgroups,
and this mean was used to calculate the non-ITV coefficient of variation. (ITV = individual true value;
CM = community mobility; s.d. = standard deviation.).

CM Outcomes All Non-ITV Days ITV Days

Mobility Outcomes Mean Coefficient of Variation
(s.d./mean∗100) Mean Coefficient of Variation of the

ITV (s.d./mean∗100)

Time outside in minutes
(range)

119.95 ± 135.34
(0.7–465.02) 112.83% 244.9 ± 169.95

(0.03–712.47) 69.40%

Trip count (range) 1.19 ± 1.49
(0 to 8) 83.31% 1.68 ± 1.40

(0–7) 83.33%

Hotspot count (range) 3.19 ± 2.93
(0 to 16) 78.30% 5.75 ± 4.50

(1–27) 78.26%

Area size in km2 (range)
182.68 ± 732.12

(0 to 4241.77) 400.77% 671.63 ± 1758.4
(0–10,250) 261.81%
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3.4. Weekday to Weekend Variations

On average, GPS recordings were 43.15 ± 122.64 min longer during weekend days
than weekdays. Although a statistically significant difference in minutes recorded was
not observed (p = 0.098), longer recordings on weekend days were observed for most
of the criterion group (78.6%, n = 14). Figure 2a–d show that mean “time outside”, “trip
count”, “hotspot count” and “area size” travelled slightly differed depending on if sampling
occurred during the week or on weekends. On weekends, criterion participants tended to
decrease their “time outside” by 2.65% (Figure 2a) and the number of hotspots visited by
8.79% (Figure 2c). However, they also were making more frequent and further trips outside
( 5.48% more trips, Figure 2b; 59.25% increase in area travelled, Figure 2d).
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Figure 2. Variations in mean mobility outcomes occurred depending on when sampling occurred
during the week and which days were included in the calculations. Mean weekday to weekend
change occurred in (a). “time outside” (minutes; −2.72% from weekday to weekend), (b). “trip count”
(+5.19%), (c). “hotspot count” (−8.79%) and (d). “area size” (km2; +37.2%) over the sampling period
(n = 14). An increase in mean outcome occurred when only ITV days were used compared to when
all days were used, including the shorter non-ITV days (+15.23% for “time outside”, +8.54% for “trip
count”, +13.64% for “hotspot count” and +16.43% for “area size”). None of the changes reported
for day of the week and type of day included were observed to be statistically significant (p > 0.05).
(ITV = individual true value; s.d. = standard deviation).

Statistically significant differences in mean weekday versus weekend differences were
not found for any of the mobility outcomes (Table S3 of Supplementary Materials). Figure 2
also suggests that underestimations in mean “time outside” (−17.96%), “trip number”
(−9.33%), “hotspots number” (−15.80%) and “area size” (−19.66%) occurred when shorter
non-ITV days were included for analysis (as “all days”) compared to when only ITV days
were used. Although statistically significant differences were not found for any of the mean
outcomes, consistent underestimation suggesting shorter recording lengths may introduce
a level of error in recorded outcomes.

3.5. Mean Community Mobility Outcomes

Table 2 shows the mean community mobility outcomes observed according to differ-
ent sampling subgroups. Average recordings on ITV days lasted 872.82 (±73.76) minutes
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whereas an average non-ITV day produced recordings that lasted 573.57 (±233.59) minutes.
Compared to ITV days, shorter sampling lengths produced lower mean daily “time out-
side”, “trip count”, “hotspot count” and “area size” outside the home. On average, relative
to recordings from ITV days, non-ITV recordings captured 124.95 fewer minutes outside
the home, 0.5 fewer trips and 2.56 fewer hotspots per day. CV analysis shows “area size” to
be the most variable mobility construct.

3.6. Comparing Sampling to Criterion: Absolute Comparison
3.6.1. Overall CM Outcomes

Figure 3 summarizes the mean error rates when the mobility outcomes collected at
each shorter recording length subgroups were compared to the mean outcomes collected
during the criterion sampling rate of 7 days of 800 min. All shorter sampling subgroups
yielded larger negative mean percentage errors, corresponding to greater underestimation
of the proxy ITVs.
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Figure 3. Mean percentage errors for all community mobility outcomes across different sampling
lengths relative to sampling length of at least 7 days with 800 or more minutes. Mean percentage
error rates for each sampling subgroup are listed above each cluster of bars. All shorter sampling
subgroups yielded larger negative mean percentage errors, corresponding to greater underestimation
of the ITV. Number of participants in each sampling length subgroup is indicated below the x-axis
(n = 14).

The longest recording length produced the smallest mean error rate of −39.66%
(Figure 3). Increasing the number of days with 700–799 min from 1 to 3 days also produced
a 21.97% decrease in overall CM error rate.

3.6.2. Specific CM Outcomes

Sampling lengths affect each CM outcome differently. When the data were orga-
nized into subgroups according to different minutes over number of days of recording,
only recording groups of one day and three days were formed. The recording length
of “700–799 min” was the only length captured over three days. As such, we could not
compare the error differences when fewer minutes were captured over three days nor when
fewer days of various lengths were captured. Figure 4 shows the percentage errors in mean
daily relative to the ITV across outcomes, according to different lengths recorded during
one day (n = 14).
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d. “area size” recorded during one day (total n = 14). The mean error rates over all subgroups were
−58.92 ± 32.12%, −43.56 ± 41.77%, −58.21 ± 22.62% and −97.18 ± 3.02%, respectively.

Across outcomes, sampling length subgroup yielded negative percentage error rates
suggesting consistent underestimation of the ITV, except when “1 day of 300–399 min” was
collected for “trip count” data. Recordings of this length produced percentage error rates
indicating an overestimation of +23.7%. In general, consistent with the underestimation
observed when CM outcomes were aggregated (Figure 3), shorter sampling subgroups
tend to underestimate CM outcomes relative to the ITV.

Within a single sampling day, longer sampling lengths tend to yield smaller error
rates across most outcomes. This pattern was again inconsistently observed across the four
outcomes. For example, at 300–399 min, “trip count” was overestimated by 23.7%, whereas
at 400–499 min, “trip count” was underestimated by 60.77%.

4. Discussion

The GPS tracker is a widely used data collection tool in clinical use and in health
and activity studies [10,23,29,39]. It is often used to capture patterns of movement across
location and time (e.g., trips outside, time outside), as well as travel behavior (e.g., area
size travelled, distance travelled by foot). Overall, the usefulness of GPS for research is
dependent on the quality of the data sampled, which in turn is affected by the recording
length [23]. The nature of the outcomes of interest also dictates how strict the data recording
process should be. Missing data are common among GPS studies due to variabilities
in GPS signal strength during everyday living. For instance, GPS signal interference
could be due to building obstruction, indoor versus outdoor activity, weather or time of
day [23,25,26]. Sampling strategies using GPS tracker units need to be representative of
the true mobility (i.e., outcomes measured should be close to the hypothetical ITV mean,
and under- or overestimated errors should be approximately equal), be short enough to
minimize participant burden, attrition and cost (i.e., study size cannot be too large and
sampling cannot be too long [39], yet achieve sufficient power (i.e., enough recorded time
and participants for representative sample and to meet the assumptions of statistical tests).
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Across all outcomes, variation in measurements made on ITV days were smaller than
observed on non-ITV days, which supports the proposal that CM estimates collected on
ITV days were more precise than the estimates on shorter non-ITV days. Both subgroup
and full sample analysis suggested the degree of variability in outcomes is associated with
amount of time sampled.

4.1. Sampling Rate by Outcome

The results of this study showed that shorter daily GPS recordings typically underesti-
mate CM outcomes, and longer daily recordings typically result in smaller percentage error.
The decrease in percentage error observed across all outcomes, except “hotspots count”
at 500–599 min, suggested 500 min (8.3 h) to be the minimum daily recording length that
can decrease error in GPS study protocols. For “time outside”, “hotspots count” and “area
size”, 600–699 min of recording may be even better at reducing error.

Recording length affected each mobility construct differently. The highly variable
outcome “area size” appeared to be the most sensitive to shorter recording lengths, based
on the mean error rates of −97.18 ± 3.02 (range of −91.94% to 100%). Increasing the daily
recording length appeared to reduce the error rate, but effects were small compared to the
other outcomes. Increasing the number of days sampled from 1 to 3 also improved the
error rate for all outcomes except “area size”. It is possible that a threshold number of days
may exist for “area size” but this study was too underpowered to determine it. The high
degree of day-to-day variability observed for “area size” may also be unique to the study
sample. Participants of this study usually travel outside of the home by car, which can
produce a larger range of “area size” travelled than travel on foot. It is likely that this large
“area size” range is difficult to approximate using shorter days or fewer days.

“Trip count” yielded the smallest mean error rate (−43.56%) and increasing the sam-
pling length did not always improve the accuracy in outcome. This was evident by a lack
of consistent pattern in error rate observed across the subgroups for this outcome. Across
all shorter sampling subgroups, the mean participant “trip count” was 1.19 ± 1.49 trips
(versus 1.68 ± 1.40 trips during the ITV days). It is possible shorter daily sampling lengths
can still capture the few numbers of trips taken daily.

4.2. Variability in Mobility

Previous research has shown mobility to be a variable construct [40–43], but day-to-
day variability has not been quantified in people living with a movement disorder. This
study demonstrated daily variations in “time outside”, “trip count”, “hotspot count” and
“area size” in older adults with PD.

Although statistically significant differences in mean outcomes were not found accord-
ing to the day of the week when participants’ data were aggregated, sizeable variations in
individual mean mobility outcomes during weekdays versus weekends were graphically
observed (Supplemental Figure S1). This was consistent with reports of day of week vari-
ation in physical activity literature [24,44,45], and trip count recorded on Fridays versus
other days [17]. As well, the level of discrepancies in GPS recording of “trip count” [19],
“duration of walking trip” [19] and “trip travel time” [27] compared to self-reporting
has also been shown to differ between weekday versus weekend. The magnitude of the
day-to-day variability in mobility outcomes is not the focus in this study and was not
quantified.

It was unclear if the day of week differences in mobility observed in this study were
because of set weekly schedules. If participants organize their mobility patterns according
to the day of the week, sampling less than one week can lead to systematic bias in mobility
based on the day of recording. For example, an individual may only go outside of the
home on Wednesdays but no other days. This study also used a sample of mostly retired
older adults with PD, whose day-to-day activity patterns may be different from working
individuals. The largest variation in the mobility of retired people may not be between
weekdays and weekends, but within each day. As well, medication may work better
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on some days due to variability in pharmacodynamics with different food intake and
experiences of fatigue, among other reasons, and can affect mobility of older adults and
clinical populations.

Typical daily mobility patterns cannot be captured with recordings of less than one
week. A review of studies using GPS to study various mobility constructs in adults and
children suggested that missing data increased beyond 4 days of recording [40]. However,
the number of minutes recorded per day was not considered by the review authors. Given
the importance of capturing daily variations in mobility, future studies using the GPS must
account for the daily and day of the week variations by recording at least one full week of
data.

Motor symptoms of PD tend to affect individuals’ overall functional mobility [34,46]
and are alleviated through medications such as levodopa [47]. Therefore, people with
PD often schedule physical activities around different medication times throughout a day.
For example, people who take levodopa at regular intervals often would wait until the
medication’s peak physiological absorption time (i.e., ON-medication state) to get out
of bed and may schedule appointments or activities outside of the house to occur after
the ON-medication state during a day. In this population, and in other types of mobility
disability, it is also important to determine if mobility fluctuations occur through the day.
The analyses reported used aggregate data generated every 24 h cycle, as smaller segments
of mobility outcomes were not available. Currently, it is not feasible to compute mobility
using custom sampling lengths (e.g., 250 min, 280 min). These reasons limit the ability to
evaluate smaller segments of diurnal variability.

4.3. Recommended Recording Length

Optimal recording lengths of the GPS can be recommended according to the outcomes
studied. A conservative recommendation based on the results of this study is that daily
recordings of less than 500 min should be avoided for “time outside”, “trip count”, “hotspot
count” and “area size” travelled per day. Ideally, analyses should be based on days with at
least 600 recorded minutes for non-discrete continuous outcomes, such as “time outside”
and “area size”.

This study is one of the first to quantify intra-individual variability in “time outside”,
“trip count”, “hotspot count” and “area size” travelled per day. Past GPS studies often
included one day to one week of recording [8]. Although the most optimal number of
recording days remains unclear, this study’s results suggested increasing the number of
recorded days likely improved the sampling error observed for discrete outcomes such as
“trip count” and “hotspot count”. Interestingly, for continuous outcomes, “time outside”
and “area size”, increasing the number of days recorded from one to three slightly increased
the error rates by 8.47% and 3.78%, respectively.

Despite this, mobility researchers should aim for at least eight days of GPS recording,
especially if they are interested in “trip count” and “hotspot count”. Eight days of recording
will capture the day-to-day variability in mobility by including one week of multiple
weekend days and weekdays. As well, the first and last recorded days of data collection
are often shortened due to study logistics. In spite of this, many GPS studies have not
accounted for such interruptions. In this study, no data were recorded on Day 14 for any of
the criterion participants because they removed the GPS just prior to the last home visit
by researchers on this day. Many participants also altered their mobility patterns on study
start days and end days to meet with researchers and comply with other study protocols.
Including an extra day will improve the chance that a full week of data collection was
completed.

4.4. Limitations

Although this study focused on assessing the impact of sampling length on commonly
reported GPS outcomes, the WIMU-GPS also provided information on mobility outcomes
such as “distance travelled by foot”, “distance travelled by car” and “distance to hotspots”.
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Similar sampling length assessment will be performed in the future for these mobility
outcomes as the findings of this study may affect these outcomes differently.

Sampling Subgroup and Sample Size

Sampling subgroups used in this study were composed of a small number of indi-
viduals. Participant sizes within sampling subgroups were also unbalanced. Small and
unbalanced subgroup sizes also violated assumptions of many statistical tests of compari-
son, so comparisons were limited to descriptive analysis.

The attempt to optimize the estimate of the true ITV required excluding many partici-
pants who did not provide enough data to join the criterion group. As such, our chosen
criterion group may have biased the error values reported. The ITV is a hypothetical
ideal based on the assumption that increasing data size decreases the sampling error. It is
possible that the ITV could be based on a shorter criterion (e.g., at least 7 days of at least
700 min rather than 800 min). However, some levels of error remained while using both
one and three days of 700–799 min, so it is likely that the 800 min criterion is still the most
optimal.

As well, the small number of participants in the criterion group prevented more
subgroups from being included. This limited the number of quantitative results available
on the impact of increasing the number of days sampled. Future studies using a more
robust and balanced number of individuals in each subgroup should be performed to
determine whether the pattern of shorter recording lengths leading to underestimation is
consistently observed. Both improvements are only possible if the overall study sample
size could be increased. The current criterion group was achieved after recording 980 days
of data (70 participants × 14 days), which is greater than many previous GPS studies
e.g., [21,23,29]. Researchers wishing to improve the subgroup sample sizes may wish to
assign participants to predefined sampling subgroups a priori instead of post hoc.

4.5. Strengths
4.5.1. Criterion and ITV

Although analysis using the full sample (n = 70) also showed that degree of variability
in outcomes is associated with amount of time sampled, a high CV in outcomes was not
indicative of data quality alone as the mobility components were intrinsically variable from
day to day. Therefore, error rates relative to ITVs were needed. This study recognized
the inter-individual variability in mobility and used one’s own mobility outcomes for
comparison. The ITV construction included weekends and weekdays, which also helped
to improve the approximation of true mobility. Some assessments of missing data have
limited their focus on the number of days failing to meet a set daily recorded minutes
criterion [23]. This study extends these approaches by closely examining the impact of the
different sources of error (e.g., shorter days, smaller number of days).

Although the criterion group was composed of only 14 individuals, they contributed
205 days of data used for analyses (totaling 156, 483.9 min level data points). Of this, 150
were used for the ITV group (ranging from 7 to 13 days of data). This study maximized the
amount of data included for the criterion by using at least 7 days of at least 800 min. The
number of minutes and days recorded likely needed to decrease in order to increase the
number of participants eligible for the criterion group. Hence, a sample size of greater than
14 could result in a smaller number of minutes included for analysis.

4.5.2. Two Weeks of Sampling

Some GPS studies have sampled more than 70 individuals but over a smaller number of
days [9]. Although other GPS studies have used one week of recording for analysis [9,23,39],
it is possible that week to week, or even month to month, variation in mobility patterns
may occur due to life events or seasonality. The collection of two weeks of data in this study
allowed more data to be included in the overall analysis to reduce the chance of anomalous
mobility. As well, two weeks of data collection allowed more data to be included in the ITV
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and more subgroups to be created. Given the high data loss rate, the number of subgroups
created may not be possible to achieve with just one week of data.

5. Conclusions

This study demonstrated GPS sampling lengths directly affect the accuracy of CM
outcomes collected. By showing that percentage error rates tend to increase when sam-
pling time length decreases, this study illustrated the importance of using an appropriate
minimum sampling length that optimizes feasibility, data quantity and representativeness
of real-life mobility.

Recommendations for the minimum number of monitoring days are available for
physical activity trackers such as pedometers, accelerometers and self-report logs [44].
However, no recording length recommendations have been made for the GPS. In order to
collect information about “time outside”, “trip count”, “hotspot count” and “area size”,
the user of the GPS should ensure that daily recordings used for analysis are not less than
500 min in length. However, CM outcomes were differently affected by shorter sampling
per day, so different minimum cut offs according to the outcome may still be needed.

Future studies with larger sample sizes are still needed for recommendations about
the optimal number of recorded days. However, it is now reasonable to believe that eight
days of GPS recording are needed so the day-to-day variability in CM can be captured after
filtering out the atypical mobility at the beginning and end of the study period. Therefore,
when possible, eight days of recording should be the minimum target, especially when
frequency variables are of interest, such as “trip count” and “hotspot count”.

6. Patents

Boissy, P., Hamel, M., Brière, S. (2012). Universal actigraphic device and method of
use therefor. US2012/0232430A1.
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