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Abstract 

Background:  Diffuse large B-cell lymphoma (DLBCL) is classified into germinal center-like (GCB) and non-germinal 
center-like (non-GCB) cell-of-origin groups, entities driven by different oncogenic pathways with different clinical 
outcomes. DLBCL classification by immunohistochemistry (IHC)-based decision tree algorithms is a simpler reported 
technique than gene expression profiling (GEP). There is a significant discrepancy between IHC-decision tree algo‑
rithms when they are compared to GEP.

Methods:  To address these inconsistencies, we applied the machine learning approach considering the same com‑
binations of antibodies as in IHC-decision tree algorithms. Immunohistochemistry data from a public DLBCL database 
was used to perform comparisons among IHC-decision tree algorithms, and the machine learning structures based 
on Bayesian, Bayesian simple, Naïve Bayesian, artificial neural networks, and support vector machine to show the best 
diagnostic model. We implemented the linear discriminant analysis over the complete database, detecting a higher 
influence of BCL6 antibody for GCB classification and MUM1 for non-GCB classification.

Results:  The classifier with the highest metrics was the four antibody-based Perfecto–Villela (PV) algorithm with 0.94 
accuracy, 0.93 specificity, and 0.95 sensitivity, with a perfect agreement with GEP (κ = 0.88, P < 0.001). After training, a 
sample of 49 Mexican-mestizo DLBCL patient data was classified by COO for the first time in a testing trial.

Conclusions:  Harnessing all the available immunohistochemical data without reliance on the order of examina‑
tion or cut-off value, we conclude that our PV machine learning algorithm outperforms Hans and other IHC-decision 
tree algorithms currently in use and represents an affordable and time-saving alternative for DLBCL cell-of-origin 
identification.
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Background
Diffuse large B-cell lymphoma (DLBCL), also known as 
aggressive lymphoma, is the most common type of Non-
Hodgkin lymphoma, and it can be classified into germi-
nal center (GCB), activated B-cell (ABC), and mediastinal 
large B-cell lymphoma cell-of-origin (COO), the latest 
frequently called as unclassified (UC). The importance 
of these entities lies in the different driven intracellular 
oncogenic signaling pathways that lead to a distinct clini-
cal outcome [1, 2]. Drugs currently under clinical trials 
targeting the DLBCL COO groups are being tested to 
provide more specific therapeutic strategies, particularly 
for non-germinal center-like patients who present the 
worse outcome [3].

The development of techniques to assess the gene 
expression profiling (GEP) has allowed DLBCL COO 
classification. GEP is now widely considered to be the 
“gold standard,” but its generalized clinical application 
remains limited due to technical, financial and regulatory 
obstacles [4]. The requirement of fresh tissue, large initial 
capital costs, an ongoing necessity for skilled labor and 
consumables are prohibitive to many health institutions 
and diagnostic laboratories [5]. Because of this current 
impracticality of performing GEP assays, immunohis-
tochemistry (IHC)-decision tree algorithms for DLBCL 
classification have been proposed to do COO identifica-
tion economical and less time-consuming. Furthermore, 
GCB and non-GCB COO groups have been included as 
representative DLBCL subtypes in the 2016 revision of 
the World Health Organization classification of lymphoid 
neoplasms, where the use of IHC is suggested [3]. Thus, 
there is now an impending need for accurate, robust and 
affordable methods to identify COO groups [6].

Hans et al. [7] established the first non-automatic IHC-
decision tree algorithm for DLBCL COO classification. 
This algorithm was constructed by a dichotomous clas-
sifier, with activated B-cell and mediastinal large B-cell 
lymphoma simplified as non-germinal center-like (non-
GCB) molecular subgroup. Hans algorithm uses CD10, 
BCL6, and MUM1 expression to classify DLBCL into 
GCB (CD10 and/or BCL6 positive, MUM1 negative) or 
non-GCB subtype with the reverse pattern of staining. 
Reproducibility of this algorithm leads to research groups 
to propose alternate IHC strategies, such as Colomo [8], 
Nyman [9], Choi [10], Hans modified (Hans*) [11], modi-
fied Choi (Choi*) [11] and Visco–Young [12] with three 
(VY3) and four (VY4) antibodies, all reported to be pre-
dictive of outcomes. All these algorithms are based on a 
classical decision tree structure (Additional file 1: Figure 
S1), and use two to five antibodies, such as CD10, BCL6, 
FOXP1, GCET1, and MUM1. Additionally, IHC algo-
rithms using different antibodies have been reported [11, 
13, 14].

Immunohistochemistry has been compared to GEP 
with regards to classification and prediction of clinical 
outcomes. Some studies report that IHC-decision tree 
algorithms correlate well with GEP in predicting progno-
sis [7, 10, 11], but others find a lack of prognostic util-
ity in IHC-based COO assignment [15]. The conflicting 
concordance between IHC and GEP results may partly 
be due to the heterogeneity of studied samples (extran-
odal vs nodal DLBCL) and populations (treatment, 
patient age). Moreover, technical differences related to 
IHC analysis such as antigen retrieval, non-standardized 
scoring criteria for IHC, different primary antibodies 
employed in diagnostic laboratories, and batch-to-batch 
antibody variations may also be significant [5, 16]. Others 
have tried to improved IHC algorithms with biomarker 
studies, but this implies an elevated cost in diagnos-
tics [17–19]. Thereby, we decided to carry out a statisti-
cal description by discriminant analysis and to explore 
machine learning approach to increase IHC-based clas-
sification and GEP concordance.

Linear discriminant analysis
Linear discriminant analysis (LDA) is frequently applied 
to obtain a description of separability in a dataset and 
overall to evaluate the influence of each feature (predic-
tor) over such separation of groups. LDA is a common 
analysis presented in cancer’s basic and clinical research 
to evaluate the data clustering [20, 21] including lym-
phoma studies [22]. In this study, LDA was applied to sta-
tistically describe the influence of the combination of the 
antibodies over the classification of GCB and non-GCB 
cases.

Classification by machine learning
Machine learning algorithms have been applied for neo-
plastic molecular subtype classification considering as 
input information derived from microarrays [23], and 
q-PCR [24].

In this study, we applied the machine learning 
approach, considering as features the same combina-
tion of antibodies as in each published IHC-decision 
tree algorithms, following Bayesian classifier (B), Bayes-
ian simple classifier (BS), Naïve Bayesian classifier (BN), 
artificial neural networks (ANN), and support vector 
machines (SVM) structures. Bayesian classifier consid-
ers the minimal probability of misclassification. Bayes-
ian simple classifier involves a conditional probability 
model which uses independent variables, whereas Naïve 
Bayesian classifier considers that each feature contrib-
utes independently to the probability of the class from 
any other feature. ANN combines training, learning and 
nonlinear functions to minimize the classification error. 
SVM builds a model that separate each category by a gap 
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where new sets can be predicted to belong to a category 
depending on which side of the gap they fall on [25]. 
As will be discussed, the use of automatic classification 
methods based on machine learning is an option to ana-
lyze the concordance and increase the accuracy between 
IHC and GEP. Here, we performed the first quantitative 
comparison between the most common nonautomatic 
IHC-decision tree algorithms against machine learning 
algorithms to derive the best diagnostic model.

Methods
IHC‑decision trees and linear discriminant analysis 
of the public DLBCL database
Visco et  al. [12] generated a database (from now called 
Visco–Young database) containing GEP, immunohisto-
chemistry staining data (corresponding to CD10, BCL6, 
FOXP1, GCET1, and MUM1 antibodies), and clinical 
information of 475 de novo DLBCL patients who were 
treated with rituximab-CHOP chemotherapy (available 
at https​://www.natur​e.com/artic​les/leu20​1283#suppl​
ement​ary-infor​matio​n).

Immunohistochemistry staining data of Visco–Young 
database was used to classify the DLBCL cases according 
to the eight reported IHC-decision tree algorithms, (deci-
sion trees with antibodies combination and cut-off values 
are detailed on Additional file 1: Figure S1). Classes were 
identified as GCB or non-GCB cell-of-origin groups, 
the later comprised by both activated B-cell (ABC) and 
unclassified (UC) cases. From here on, predicted classes 
are the results obtained for any classifier, and true classes 
consisted of the genetic expression profiling. To differen-
tiate between GCB and non-GCB class, we defined the 
true positive (TP) result when a subject belonging to the 
true GCB class is identified as GCB and true negative 
(TN) result when a subject belonging to the true non-
GCB class is identified as non-GCB.

We implemented LDA to describe the influence of each 
antibody over the linear separability of the database into 
the GCB and non-GCB classes. Considering numerical 
tags for each antibody: 1 = CD10, 2 = BCL6, 3 = FOXP1, 
4 = GCTE1, and 5 = MUM1. We analyzed 25 possi-
ble combinations of the set of five antibodies as predic-
tor sets; it includes the cases of such used by each one 
of the eight IHC-decision tree algorithms (Additional 
file 1: Table S1). For example, Nyman’s algorithm includes 
FOXP1 and MUM1, it corresponds to the predictor set 
combination (3,5). Colomo and Hans use the same anti-
body combination (1,2,5). IHC algorithms include differ-
ent cut-offs but this condition is indistinct for LDA, and 
combinations such as (1,2) not used for any of the IHC-
decision trees but assessed in the LDA analysis.

The corresponding linear discriminant function (LDF) 
for each combination and each class is obtained with the 

weight associated to each antibody. IHC-decision trees 
were executed in scripts for Matlab (R2018a, MathWorks, 
USA) and LDA analysis were performed in Minitab 
(v18.1, Minitab, Inc., State College, PA, USA).

IHC‑decision trees and LDA classification, comparative 
performance analysis
The performance of IHC-decision trees and LDA clas-
sification algorithms were evaluated by computing met-
rics such as accuracy (Acc), specificity (Spec), sensitivity 
(Sens), positive predictive value (PPV), negative predic-
tive value (NPV), likelihood ratio for positive test results 
(LR+), likelihood ratio for negative test result (LR−) [26].

Classification of DLBCL in COO molecular subgroups 
by automatic classifiers
For the classification stage by machine learning algo-
rithms, the Visco–Young database was split into training, 
testing, and validation data subsets (75%, 20% and 5% 
respectively). To preserve the same proportion of ranked 
patients and avoid the overfitting, the so-called k-fold 
cross-validation technique was applied. Testing and val-
idation data subsets (VY subset) were merged to assess 
classification performance.

Each machine learning structure, B, BS, BN, ANN, and 
SVM was implemented considering as feature inputs the 
same antibodies combinations used by the IHC-decision 
trees. We obtained 35 algorithms for automatic clas-
sification, considering that Colomo and Hans’s algo-
rithms use the same combination of antibodies. As was 
defined, classes were identified as GCB or non-GCB 
COO groups. To avoid overfitting, we used large training 
set (75% of cases as mentioned above); we implemented 
k-fold cross-validation to assure that classification results 
were independent of the training, testing, and validations 
data subsets; and during training, a level of 95% maxi-
mum accuracy was set. The stopping criterion during the 
training stage for all classification models was an error 
less than 1 × 10−3 or 100 training epochs, whichever was 
satisfied first.

Bayesian classifiers were executed in Weka [27]. Arti-
ficial neural networks were implemented using Matlab 
Neural Network Pattern Recognition Toolbox. In the 
hidden layer, five neurons were used, and the cross-vali-
dation method selected was Entropy Reduction. Support 
vector machines were implemented using the Sci-Kit 
Learn Python Library [28], with a Kernel Transforma-
tion using the Radial Base Function, and using stratified 
k-fold grid search cross-validation. Classification of data 
can be done upon request, and a mobile application is in 
the making.

https://www.nature.com/articles/leu201283#supplementary-information
https://www.nature.com/articles/leu201283#supplementary-information
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IHC‑decision trees and machine learning classifiers, 
comparative performance analysis
The same metrics used for comparison between IHC 
and LDA were calculated to compare the IHC-decision 
trees and trained machine learning algorithms, for both 
approaches the VY subset is considered for classification 
comparison. Additionally, to statistically asses the con-
cordance between IHC and machine learning algorithms 
with the GEP true class, all outputs were analyzed by 
Cohen’s kappa (κ) for agreement analysis and Pearson’s 
Chi-squared test in Matlab. Kappa result was interpreted 
as follows: values ≤ 0 as indicating no agreement and 
0.01–0.20 as poor, 0.21–0.40 as fair, 0.41– 0.60 as moder-
ate, 0.61–0.80 as good, and 0.81–1.00 as very good agree-
ment. Per example, a κ = 0.01 comparing GEP to a model 
indicated no agreement, that is, a GCB patient identified 
by GEP was misclassified as non-GCB by an algorithm. 
Conversely, a κ = 0.85 indicated very good agreement, 
that is, the GCB patient identified by GEP was correctly 
classified as GCB by an algorithm.

Validation in a clinical sample set
To test the efficacy of COO molecular group classifica-
tion, we use an independent series of cases. Archived for-
malin-fixed, paraffin-embedded (FFPE) tissues from 60 
DLBCL Mexican-mestizo patients were collected from 
January 2009 to March 2011, after approval by the Insti-
tutional Review Board of Escuela de Medicina y Ciencias 
de la Salud from Tecnologico de Monterrey. Retrieved 
blocks dated from 1999 to 2010. Clinical data were 
incomplete for 11 cases; therefore, they were withdrawn 
from the analysis.

FFPE sections from clinical sample set patients were 
stained with standard hematoxylin–eosin (H&E) staining 
method. Each H&E slide was reviewed, and morphologi-
cally representative, non-necrotic tumor areas were used 
for tissue array (TA) assembly.

Immunohistochemical analysis was performed on 
3  µm thickness TA sections using a streptavidin–biotin 
complex technique. The antibodies utilized were FOXP1 
(abcam, clone JC2 at 1:300 dilution), GCET1 (abcam, 
clone RAM341 at 1:100 dilution), CD10 (Santa Cruz Bio-
technology, clone 56C6 at 1:10 dilution), BCL6 (Santa 
Cruz Biotechnology, clone 0.N.26 at 1:5 dilution), and 
MUM1 (Santa Cruz Biotechnology, monoclonal, at 1:50 
dilution). Each array slide was mounted with tonsil as 
positive control tissue. A comparison with the antibodies 
and dilutions used by Visco et al. is shown in Additional 
file 1: Table S2.

Three pathologists reviewed the slides independently. 
Difficult cases were examined and resolved by joint 
review on a multiheaded microscope. Such an event 
occurred in less than 5% of the cases. Immunoreactivity 

was scored as the percentage of positive tumor cells over 
total tumor cells. The data analysis included only the 
cases with both complete IHC scores readings and clini-
cal information.

Survival analysis
For VY subset and clinical sample set, survival of GCB 
and non-GCB COO groups identified by all algorithms 
were compared using Kaplan–Meier curves, and the sig-
nificance was calculated using log-rank test. For all the 
analysis, a p-value < 0.05 was considered to be statistically 
significant.

Results
Public database analysis
Visco–Young database comprised 231 GCB, 200 acti-
vated B-cell (ABC), and 44 unclassified (UC) cases iden-
tified by genetic profiling, resulting in 231 (48.6%) GCB 
and 244 (51.4%) non-GCB cases. In Visco–Young data-
base, 71% of the cases occurred in patients from North 
America, 6% from Asia, and the remainder were from 
Western Europe (Italy, Spain, Switzerland, Denmark, 
and The Netherlands). The median age was 62  years 
(61% > 60 years, and male patients ~ 57%). Patients were 
in advanced Ann Arbor stage (53%), with not favorable 
performance status (20% with ECOG ≥ 2), high lactate 
dehydrogenase values in serum (65%), with extranodal 
involvement (23% with ≥ 2), and with B-symptoms mani-
festations (32%). All these characteristics accounted for 
14% patients having a high intermediate to high IPI risk. 
Treatment consisted of R-CHOP (91%) or R-CHOP-like 
regimens (9%; epirubicin or mitoxantrone based combi-
nation chemotherapy). Patients that achieved complete 
remission on initial chemotherapy treatment were 76%.

For automatic classifiers, a total of 354 cases were used 
during training, and the remaining 121 (VY subset) were 
used for testing and validation steps. This VY subset 
included 51.2% GCB and 48.8% non-GCB by GEP, a simi-
lar proportion to the training set, and was used to com-
pare classification metrics.

Clinical sample set characteristics
Our clinical sample set comprised of Mexican-mestizo 
patients (see Additional file  1: Table  S3) is similar to 
Visco–Young database. Main treatment was anthracy-
cline-based (36.7%), R-anthracycline-based (42.9%), 
and 20.4% as other chemotherapeutic regimens. It is 
important to mention that around 57% of the patients 
did not receive Rituximab since this treatment is not 
available in the entire public Mexican health system. 
In regards with response, almost half of the patients 
achieved complete remission (49.0%) on initial chemo-
therapy treatment, and 12.2% of them relapsed during 



Page 5 of 12Perfecto‑Avalos et al. J Transl Med          (2019) 17:198 

follow-up. Median follow-up time was 30.3  months, 
and 63.3% of the patients had a follow-up above 
9 months.

Even though the ethnic background of these sets 
is different, clinical characteristics were comparable. 
Regarding antibodies used, we used the same clones 
than Visco et al. for FOXP1, CD10, and GCTE1. Addi-
tionally, although most patients were not treated with 
Rituximab as in Visco et  al., early reports of DLBCL 
COO classification used samples from patients treated 
with mainly anthracycline-based chemotherapy 
[29–31].

IHC‑decision trees and classification by LDA, performance 
analysis
The metrics obtained for each IHC-decision tree con-
sidering the complete classification of the cases in the 
Visco–Young database are presented in Table 1. In the 
same table we show the equivalent classification after 
the LDA for the same antibody combination, according 
to the derived linear discriminant function (LDF). We 
have also included the most relevant combination that 
has not been evaluated by any IHC-decision tree algo-
rithms. The complete classification metrics for the rest 
of possible combinations by LDA and their respective 

set of linear coefficients can be consulted in Additional 
file 1: Tables S4, S5, respectively.

IHC‑decision tree algorithms performance
Three algorithms Choi, VY3, and VY4, reached the most 
considerable accuracy (Acc 0.88), representing the most 
balanced options of sensibility and specificity, with simi-
lar performance metrics (Table  1). These algorithms 
presented a better performance for the classification of 
GCB subjects (Sens 0.94 Choi, 0.92 VY3, 0.93 VY4) com-
pared with non-GCB classification (Spec 0.84); however, 
regarding to the probability that a subject classified as 
GCB was correctly classified, the outcome is fair (PPV 
0.84 Choi, 0.85 VY3, 0.85 VY4), but certainly better for 
non-GCB (NPV 0.93 Choi, 0.92 VY3, 0.92 VY4). Similar 
results were obtained for likelihood ratios, moderate for 
positive test results (LR+ 5.70 Choi, 5.92 VY3, 5.80 VY4) 
and excellent for negative test results (LR− 0.08 Choi, 
0.09 VY3, 0.09 VY4). It is important to remark that VY3 
considers only three antibodies (1,2,3), such combina-
tion is included in Choi and VY4 with a different cut-off 
in the decision tree branches. Nyman reached the best 
specificity (Spec 0.91); however, the probability that a 
subject classified as non-GCB was correctly classified is 
low (NPV 0.67), its LR− is also reduced (LR− 0.53). Hans 
algorithm, usually considered as a reference, had lower 
performance compared with VY3, VY4, and Choi. The 

Table 1  Performance metrics of classification of IHC-decision tree algorithms and LDA

The upper section corresponds to the performance of the IHC-decision tree algorithms. Lower section corresponds to equivalent combinations of antibodies, but with 
LDA classification, this includes the rest of combinations not reported by IHC-decision tree algorithms. Choi, VY3, and VY4 algorithms reached the most considerable 
accuracy, representing the most balanced options of sensibility and specificity, with similar performance metrics

Numeric tags 1 = CD10, 2 = BCL6, 3 = FOXP1, 4 = GCTE1, and 5 = MUM1

Acc: accuracy; Sens: sensitivity; Spec: specificity; PPV: positive predictive value; NPV: negative predictive values; LR+: likelihood ratio for positive test results; LR−: 
likelihood ratio for negative test result

Algorithm Antibody 
combination

Acc Sens Spec PPV NPV LR+ LR−

IHC-decision trees Nyman 3,5 0.72 0.52 0.91 0.84 0.67 5.56 0.53

Colomo 1,2,5 0.78 0.71 0.84 0.81 0.75 4.56 0.34

Hans 1,2,5 0.85 0.91 0.78 0.80 0.91 4.21 0.11

Hans* 1,5 0.82 0.94 0.70 0.75 0.92 3.14 0.09

Choi 1,2,3,4,5 0.88 0.94 0.84 0.84 0.93 5.70 0.08

Choi* 1,3,4,5 0.79 0.74 0.83 0.80 0.77 4.30 0.31

VY3 1,2,3 0.88 0.92 0.84 0.85 0.92 5.92 0.09

VY4 1,2,3,4 0.88 0.93 0.84 0.85 0.92 5.80 0.09

Linear discriminant analysis As in Hans* 1,5 0.84 0.77 0.91 0.89 0.81 8.59 0.25

As in Nyman 3,5 0.77 0.81 0.74 0.75 0.81 3.10 0.25

As in VY3 1,2,3 0.89 0.87 0.91 0.90 0.88 9.19 0.15

As in Hans/Colomo 1,2,5 0.87 0.86 0.88 0.87 0.87 7.25 0.16

– 1,4,5 0.87 0.81 0.92 0.90 0.84 9.93 0.20

As in VY4 1,2,3,4 0.87 0.84 0.90 0.89 0.86 8.24 0.17

As in Choi* 1,3,4,5 0.88 0.86 0.91 0.90 0.87 9.09 0.16

As in Choi 1,2,3,4,5 0.89 0.87 0.91 0.90 0.88 9.23 0.14
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worst evaluated were Colomo and Choi*, and the excel-
lent sensitivity of Hans* (Sens 0.94) it is not enough to 
match the performance of Choi, VY3, and VY4.

Linear discriminant analysis performance
Antibody combinations (1,2,3) and (1,2,3,4,5) reached the 
more considerable accuracy (Acc 0.89), these combina-
tions are the same used by VY3 and Choi respectively. For 
these linear discriminants the GCB classification gives a 
fair sensibility (Sens 0.87), which is lower than sensitiv-
ity for the equivalent IHC-decision trees; but, in terms of 
probability their PPV is better (PPV 0.90), and the like-
lihood ratio for LR+ (LR+ 9.19 (1,2,3), 9.23 (1,2,3,4,5)) 
overcome the performance of VY3 and Choi. This can 
be appreciated on Additional file 1: Figure S2, where the 
separation of COO groups increases using LDA in com-
parison to IHC-decision trees.

In accordance to results in Table  2, for combina-
tion (1,2,3), the higher coefficients of the LDF for GCB 
cases relays on antibody BCL6 = 6.99 and is followed 
by CD10 = 4.86, with less influence of FOXP1 = 0.64. A 
similar situation is for combination (1,2,3,4,5), its coef-
ficient for BCL6 = 6.31 and is followed by CD10 = 4.59; 
less impact is obtained from the rest of antibodies 
(CGET1 = 3.28, MUM1 = 1.02 and FOXP1 = 0.71). As 
can be appreciated in Table 2, the inclusion of BCL6 and 
CD10 in the LDF is strongly related to the classification 

of GCB cases, for any of the combinations in which they 
are included, their coefficients are the largest; keeping the 
coefficient relation: BCL6 larger than CD10 coefficient if 
they occur in the same combination. Antibody combina-
tions (1,2,3) and (1,2,3,4,5) have a larger specificity (Spec 
0.91); however, their NPV and LR− cannot overcome 
their counterparts IHC-decision trees. On average sense, 
performance metrics are improved by LDA classification 
for GCB classification, both diminish the non-GCB clas-
sification metrics. From Table 2, it is possible to confirm 
that the inclusion of MUM1 in any algorithm is related to 
non-GCB detection, getting the most considerable value 
in the LDF.

By LDA, we observed that BCL6 coefficient weight 
resembles with the molecular hallmark of GCB, since 
BCL6 expression is mainly restricted to germinal center 
cells [32, 33]. Moreover, CD10 has been reported as been 
positive and negative for GCB patients [18, 34, 35], and 
appeared to have higher influence for GCB identification 
according to the CD10 coefficient weight we obtained. 
Although in normal GC B-cells MUM1 and BCL6 are 
mutually exclusive, in tumor cells both proteins are coex-
pressed [36], and we observed a more significant influ-
ence of MUM1 for non-GCB group, in agreement with it 
post-germinal marker feature [18].

We want to remark that there is not any combina-
tion with better metrics than those usually used by the 

Table 2  Coefficients of linear discriminant functions (LDF) derived from LDA for all possible combination of antibodies

Columns (Antibody) show the coefficient associated with each antibody for GCB classification (Sensibility performance) and non-GCB classification (Specificity 
performance). The first column remarks the combinations of antibodies as were used by IHC-decision trees. BCL6 and CD10 in the LDF are strongly related to the 
classification of GCB cases, whereas the inclusion of MUM1 in any algorithm is related to non-GCB detection, getting the most considerable value in the LDF

Numeric Tags 1 = CD10, 2 = BCL6, 3 = FOXP1, 4 = GCTE1, and 5 = MUM1

Antibody combination Sens Spec COO Constant Antibody

1 2 3 4 5

CD10 BCL6 FOXP1 GCET1 MUM1

As in Nyman 3,5 0.81 0.74 GCB − 0.57 2.47 1.11

Non-GCB − 3.29 4.38 5.06

As in Hans and 1,2,5 0.86 0.88 GCB − 4.21 5.01 7.00 1.05

As in Colomo Non-GCB − 3.09 0.20 4.99 5.69

As in Hans* 1,5 0.77 0.91 GCB − 2.29 6.53 2.11

Non-GCB − 2.12 1.28 6.45

As in Choi 1,2,3,4,5 0.87 0.91 GCB − 4.80 4.59 6.31 0.71 3.28 1.02

Non-GCB − 3.98 − 0.41 3.80 3.75 1.24 4.73

As in Choi* 1,3,4,5 0.86 0.91 GCB − 3.34 5.67 1.78 4.03 1.67

Non-GCB − 3.46 0.24 4.39 1.69 5.12

As in VY3 1,2,3 0.87 0.91 GCB − 4.18 4.86 6.99 0.64

Non-GCB − 2.90 − 0.74 4.58 4.61

As in VY4 1,2,3,4 0.84 0.90 GCB − 4.75 4.49 6.44 0.91 3.26

Non-GCB − 2.97 − 0.86 4.40 4.70 1.12

– 1,4,5 0.81 0.92 GCB − 3.14 6.01 3.93 2.22

Non-GCB − 2.23 1.09 1.44 6.49
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IHC-decision trees. For that reason, machine learning 
approach was focused on the equivalent antibody combi-
nations proposed by previous authors.

Machine learning algorithms performance analysis
The metrics of the best five of 35 machine learning and 8 
IHC-decision tree algorithms in VY subset are shown in 
Table 3. Complete results of 43 algorithms are shown in 
Additional file 1: Table S6.

Our results show Hans as a fair performance classi-
fier and ranked 21 out of 43 algorithms tested (ranking 
by accuracy, Fig. 1a). Hans had a better performance for 
the classification of GCB subjects (Sens 0.95) compared 
with non-GCB classification (Spec 0.83); however, the 
probability that a GCB subject was correctly classified 
was fair (PPV 0.86), but better for non-GCB (NPV 0.94). 
An in terms of likelihood ratios, these were moderate for 
GCB (LR+ 5.52) and excellent for non-GCB (LR− 0.06). 
Nonetheless, Choi was the IHC-decision tree algorithm 
with better metrics (Acc 0.93), and ranked 8 out of 43 
algorithms tested (Fig.  1a), followed by VY3 and VY4 
(ranked 15 and 16, respectively). Choi presented an excel-
lent performance for GCB classification (Sens 1.00), but 
with interesting metrics for non-GCB cases considering 
probability and likelihood ratios (NPV 1.00, LR− 0.00).

Interestingly, IHC-decision tree algorithms could not 
overcome any of the remarkable metrics obtained for 
the best five of our machine learning algorithms: Per-
fecto–Villela (Bayesian simple of CD10, FOXP1, GCTE1, 
and MUM1 combination, from now on PV algorithm), 
ANN (1,2,3,4,5), BS (1,2,3,4,5), SVM (1,2,3,4,5) and SVM 

(1,2,3,4). All of them ranked in the 1st to 5th positions 
out of 43 algorithms tested (Acc 0.94, Fig. 1a). PV, ANN 
(1,2,3,4,5), and BS (1,2,3,4,5) were excellent for both COO 
groups identification (Sens 0.95, Spec 0.93), with high 
probability of correct classification (PPV 0.94, NPV 0.95), 
and likelihood ratios (LR+ 13.80, LR− 0.05). Follow-
ing them closely were SVM (1,2,3,4,5) and SVM (1,2,3,4) 
with excellent COO groups identification (Sens 0.97, 
Spec 0.91), with high probability of correct classification 
(PPV 0.92, NPV 0.96), and likelihood ratios (LR+ 11.23, 
LR− 0.04). It is important to notice that while some of 
the eight IHC-decision tree algorithms presented high 
PPV and NPV values, they were not predictive of COO 
group diagnosis as the positive likelihood ratios were low. 
Moreover, the best five machine learning algorithms were 
strongly predictive of COO group diagnosis as the posi-
tive likelihood ratios were substantially higher than 10, 
and their negative likelihood ratios were below 0.1, ruling 
out the COO group diagnosis with confidence.

It should be noted that although in LDA analysis BCL6 
antibody had emerged as a relevant component in COO 
classification, PV algorithm does not include it. BCL6 
influence in the linear discriminate is not necessary for 
the BS (Bayesian simple), since this structure relies on a 
probability function instead of a linear component. It is 
consistently observed in the rest of the machine learning 
algorithms, which are more complex structures and do 
not need the weight of BCL6, CD10, and MUM1 as such 
in simpler structures like IHC-decision tree or LDA.

Based on the ROC spaces computed for each algo-
rithm (Fig. 1b), the best performances were obtained for 

Table 3  Metrics of IHC-decision tree and machine learning algorithms

Metrics correspondent to eight IHC-decision tree algorithms and the best five machine learning algorithms are shown, cases of the VY subset were classified. Numeric 
Tags 1= CD10, 2 = BCL6, 3 = FOXP1, 4 = GCTE1, and 5 = MUM1. IHC-decision tree algorithms could not overcome any of the remarkable metrics obtained for the 
best five machine learning algorithms

Acc: accuracy; Sens: sensitivity; Spec: specificity; PPV: positive predictive value; NPV: negative predictive values; LR+: likelihood ratio for positive test results; LR−: 
likelihood ratio for negative test result; PV: Perfecto–Villela; ANN: artificial neural networks; BS: Bayesian simple; SVM: support vector machine

Algorithm Antibody 
combination

Acc Sens Spec PPV NPV LR+ LR−

IHC-decision tree Nyman 3,5 0.79 0.65 0.95 0.93 0.71 12.47 0.37

Colomo 1,2,5 0.84 0.77 0.91 0.91 0.79 8.98 0.25

Hans 1,2,5 0.89 0.95 0.83 0.86 0.94 5.52 0.06

Hans* 1,5 0.86 0.95 0.76 0.81 0.94 3.94 0.06

Choi 1,2,3,4,5 0.93 1.00 0.84 0.87 1.00 6.44 0.00

Choi* 1,3,4,5 0.83 0.79 0.86 0.86 0.79 5.73 0.24

VY3 1,2,3 0.90 0.97 0.83 0.86 0.96 5.61 0.04

VY4 1,2,3,4 0.90 0.97 0.83 0.86 0.96 5.61 0.04

Machine learning PV 1,3,4,5 0.94 0.95 0.93 0.94 0.95 13.8 0.05

ANN 1,2,3,4,5 0.94 0.95 0.93 0.94 0.95 13.8 0.05

BS 1,2,3,4,5 0.94 0.95 0.93 0.94 0.95 13.8 0.05

SVM 1,2,3,4,5 0.94 0.97 0.91 0.92 0.96 11.23 0.04

SVM 1,2,3,4 0.94 0.97 0.91 0.92 0.96 11.23 0.04
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machine learning algorithms, grouping mainly altogether 
with high true positive rate and low false positive rate. 
IHC-decision tree algorithms as Nyman, Colomo and 
Choi* showed a more conservative performance.

An agreement heatmap (Fig.  1c) of IHC-decision tree 
and machine learning algorithms was constructed. Hans 
had a good agreement (κ = 0.78, p < 0.001), whereas 
Choi had a very good agreement when compared with 

GEP (κ = 0.85, p < 0.001). Machine learning algorithms 
provided a very good agreement with GEP, being ANN 
(1,2,3,4,5), BS (1,2,3,4,5), PV, SVM (1,2,3,4,5), and 
SVM (1,2,3,4) with the highest values (all with κ = 0.88, 
p < 0.001). Moreover, the agreement between IHC-
decision tree algorithms was from moderate to good (κ: 
0.41–0.79), except for Choi having a very good agree-
ment with VY3 and VY4 (κ = 0.95, p < 0.001). Conversely, 

Fig. 1  Performance and agreement comparison of IHC-decision tree and machine learning algorithms. a Accuracy ranking. Machine learning 
(gray bars) and IHC algorithms (white bars) were ordered by accuracy. PV, ANN (1,2,3,4,5), BS (1,2,3,4,5), SVM (1,2,3,4,5), and SVM (1,2,3,4) algorithms 
showed the highest accuracy, whereas Hans ranked in 21th place. b ROC space. Machine learning algorithms (gray markers), particularly PV 
(blue marker), ANN (1,2,3,4,5), BS (1,2,3,4,5), SVM (1,2,3,4,5), and SVM (1,2,3,4) allocated in the far left-hand side of the graph, suggesting a better 
performance when compared with IHC-decision tree algorithms (white markers). Nyman, Colomo and Choi* showed a more conservative 
performance. c Agreement heatmap. Scale represents moderate (0.41 ≤ κ ≤ 0.60), good (0.61 ≤ κ ≤ 0.80), to very good agreement (κ > 0.81) with red, 
black and green, respectively. Machine learning algorithms provided an almost perfect agreement with GEP, being ANN (1,2,3,4,5), BS (1,2,3,4,5), PV, 
SVM (1,2,3,4,5), and SVM (1,2,3,4) with the highest values (all with κ = 0.88, P < 0.001). A very good agreement within machine learning algorithms 
was observed (κ: 0.77–1.00). The concordance between IHC-decision tree algorithms was from moderate to good (κ: 0.41–0.79), except for Choi 
having a very good agreement with both VY3 and VY4 (κ = 0.95, P < 0.001). Numeric Tags 1 = CD10, 2 = BCL6, 3 = FOXP1, 4 = GCTE1, and 5 = MUM1. 
PV: Perfecto–Villela; B: Bayesian; BS: Bayesian simple; BN: Naïve Bayesian; ANN: artificial neural networks; SVM: support vector machines
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a very good agreement within machine learning algo-
rithms was observed (κ: 0.77–1.00). According to our 
results, PV appeared to be the best algorithm, given the 
use of less number of antibodies, 4 instead of 5, and good 
overall metrics, ensuring the investment of less time and 
resources.

Survival analysis
A survival analysis with VY subset and our Mexican-
mestizo clinical sample set was performed, using the 
eight IHC-decision tree and the 35 machine learning 
algorithms here proposed.

Kaplan–Meier curves of DLBCL COO molecular 
groups classified by Hans and the best five machine learn-
ing algorithms were carried out using VY subset data. As 
expected, GCB overall survival was significantly better 
than non-GCB cases (Fig. 2). Our machine learning algo-
rithms provided a clear difference in GCB patients out-
come (for PV, p = 0.011), along with Hans IHC-decision 
tree algorithm (p = 0.002).

In the case of our clinical Mexican-mestizo sample 
set, Hans IHC-decision tree algorithm classified 23 GCB 
patients and 26 non-GCB patients, whereas PV clas-
sification resulted in 32 GCB patients and 17 non-GCB 
patients (Fig.  2). The validation set of 49 cases is small 
but sufficient to show a statistical significant survival 

difference. In both scenarios, GCB patients overall sur-
vival was better (p = 0.466 by Hans and p = 0.033 by PV 
classification), as has been clinically observed in other 
populations. When we analyzed the most important clin-
ical variables according to the COO (non-GCB vs GCB), 
we observed that only the high-risk group according to 
the NCCN-prognostic index was higher in non-GCB 
than GCB (23.5% vs 3.1%, respectively, p = 0.016). We 
also observed a trend of less extranodal involvement in 
2 or more sitesin non-GCB than GCB (29.4% vs. 40.6%, 
respectively, p = 0.07). Regarding the response after 
treatment (complete response vs. partial response + 
refractory) and the relapse, no differences were observed 
either. To the best of our knowledge, our study is the first 
analyzing and classifying a Mexican-mestizo sample set.

Discussion
Gene expression profiling is the gold standard for DLBCL 
cell-of-origin classification. The presence of MYC/BCL2 
translocations, overexpression of specific genes or the 
presence of mutations will be part of COO classifica-
tion in the near future, since two large multiplatform 
genomic analysis have described four [37] and five [38] 
prominent genetic subtypes in DLBCL that will unravel 
the pathogenesis of the disease beyond the cell-of-origin 
classification. Unfortunately, GEP wide application is still 

Fig. 2  Survival analysis comparison of IHC-decision tree and machine learning algorithms. Overall survival of patients classified by Hans and the 
best five machine learning algorithms is shown. GCB (black) overall survival was significatively better than non-GCB (grey) cases for both VY subset 
and clinical sample set, except for Hans when used in clinical sample set. Numeric Tags 1 = CD10, 2 = BCL6, 3 = FOXP1, 4 = GCTE1, and 5 = MUM1. 
PV: Perfecto–Villela; BS: Bayesian simple; ANN: artificial neural networks; SVM: support vector machines
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prohibitive to many health institutions and diagnostic 
laboratories. Hans remains the most popular IHC-deci-
sion tree algorithm used for COO DLBCL classification 
and has a reasonable correlation with the GEP [3]. How-
ever, some issues have arisen about the proportion of 
misclassified cases by IHC-decision tree algorithms com-
pared with GEP, since a higher percentage of misclassi-
fied cases in the GCB than in the non-GCB group has 
been observed, with proportions of up 60.0% and 38.0% 
for GCB and non-GCB, respectively [15, 39]. In our 
analysis, Hans IHC-decision tree algorithm misclassified 
17.2% of GCB and 4.8% of non/GCB cases (PPV NPV). 
Additionally, Hans* had the worst proportions of cases 
that were not correctly allocated for GCB with 24.1%, 
whereas Nyman had the worst for non-GCB with 35.5%. 
Remarkably, PV had 6.9% and 4.8% of misclassified cases 
for GCB and non-GCB, respectively. As has been dis-
cussed by Meyer [11], this reflects that IHC-decision 
tree algorithms use a combination of antibodies for pro-
teins expressed predominantly by either GCBs or non-
GCB cases and examined in a specific order. Because of 
reliance on the order of examination, the result of an 
antibody early in the algorithm can make the results of 
antibodies used later in the algorithm irrelevant. Moreo-
ver, our LDA analysis showed higher influence over the 
linear discriminant function (LDF) of BCL6 and CD10 
for GCB, and MUM1 for non-GCB, consistent with the 
hallmarks of both COOs. Furthermore, there was not an 
antibodies combination with better performance metrics 
tan such explored by IHC-decision trees; however, clas-
sification by LDF derived from LDA improved LR+ and 
LR− metrics. Thereby for machine learning analysis we 
only assessed the antibodies combination proposed by 
previous authors.

Coutinho et  al. [15], investigated the concordance of 
nine IHC-decision tree algorithms for the molecular 
classification of a 298 sample set of DLBCL diagnostic 
biopsies. They used Hans, Hans*, Nyman, Choi, Choi*, 
VY3, VY4, Natkunam, Tally, Muris IHC-decision tree 
algorithms, the last three not considered in our study. 
They found an extremely low concordance across those 
nine IHC-decision tree algorithms, with only 4.1% of the 
tumors classified as GCB and 21.0% as non-GCB by all 
IHC-decision tree algorithms. Moreover, poor and fair 
κ values were detected in 44.4% on pairwise concord-
ance assessment; and in only 20.0% was κ good or very 
good. The highest level of agreement was found between 
Choi, and VY3 and VY4 IHC-decision tree algorithms 
(κ = 0.85). GEP data for their sample set was not available, 
and therefore no further conclusions can be done. Con-
sidering our analysis, we found a moderate concordance 
across the eight IHC-decision tree algorithms here tested, 
with 30.0% of both GCB and non-GCB cases classified 

as such. Moreover, a higher concordance was observed 
across our five best machine learning algorithms, with 
50.0% of the cases classified as GCB and 45.0% as non-
GCB by the five machine learning algorithms. On pair-
wise concordance assessment, we observed 46.4% of 
IHC-decision tree algorithms with moderate κ values, 
39.3% were good, and 4.0% were very good within them-
selves. The highest level of agreement was found between 
VY3 and VY4 (κ = 1.0). This can be explained since 
Visco [12] evaluated using the same clones. Conversely, 
machine learning algorithms outperformed with 8.9% 
good, and 91.1% very good κ values. The highest level of 
agreement was found between the SVM (1,2,3,4,5) and 
SVM (1,2,3,4) algorithms (κ = 1.0). This machine learning 
algorithms performance is portrayed as the abundance 
of green color region in the heatmap depicted in Fig. 1c, 
compared with the red and black regions correspond-
ent to IHC-decision tree algorithms concordance. Nev-
ertheless, parameters such as accuracy, sensitivity, and 
specificity for GEP data is a better approach to describe a 
classifier performance.

In the case of DLBCL, the adequate identification of 
GCB and non-GCB COO groups represents a major 
concern in personalized treatment. Nowadays, clini-
cal guidelines for DLBCL patients includes R-CHOP as 
first-line treatment regardless COO group [40, 41]. It 
is important to point out that current clinical trials rely 
COO DLBCL classification on Hans IHC-decision tree 
algorithm, compromising final outcomes since this algo-
rithm has less accuracy and overall performance metrics 
than Choi, VY3, and VY4, as we observed in our study. 
The lack of significant differences between GCB or non-
GCB treatment outcomes using precision medicine regi-
mens under investigation (i.e. lenalidomide, ibrutinib, 
and bortezomib) [42–44] is evidence of this. The machine 
learning approach can achieve improvement of accuracy 
and the rest of the performance metrics in immunohisto-
chemistry-based COO DLBCL classification, and further 
study is needed. In our case, it was not possible to ana-
lyze the clinical sample set by GEP; however, the clini-
cal protocol to test our PV algorithm is at an early stage. 
Translation strategy will comprise an embed process of 
PV algorithm in a software application, as an auxiliary 
tool in the diagnostic for the pathologist when GEP is 
not available, as well as a guide to the clinician for better 
treatment choices.

Conclusions
In conclusion, our results suggest that the use of Hans 
should be reconsidered in favor of new classification 
techniques when GEP analysis is not accessible. By har-
nessing all of the available immunohistochemical data 
without reliance on the order of examination or a cut-off 
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value, we demonstrated that even linear discriminant 
analysis allowed to improve the performance metrics 
compared to IHC-decision tree. Furthermore, auto-
matic classification approach based on machine learning 
algorithms with more complex decision functions are a 
competitive alternative that facilitates the classification 
problems in a clinical setting. It is important to men-
tion that this is the first study using a machine learning 
approach to improve DLBCL COO identification by IHC, 
and represents a promising, affordable and time-saving 
alternative to common IHC-based decision tree algo-
rithms. Testing with a larger clinical sample set with GEP 
data will enforce the validity of this result.

Additional file

Additional file 1. Additional Figures S1, S2 and Tables S1–S6.
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