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Abstract 

The dinucleotide cyclic di-AMP (c-di-AMP) is synthesized as a second messenger in the Gram-positive model bacterium Bacillus subtilis 
as well as in many bacteria and ar c haea. Bacillus subtilis possesses three diadenylate cyclases and tw o phosphodiester ases that syn- 
thesize and de gr ade the molecule , r especti v el y. Among the second messengers, c-di-AMP is unique since it is essential for B. subtilis 
on the one hand but toxic upon accumulation on the other. This role as an “essential poison” is related to the function of c-di-AMP 
in the control of potassium homeostasis. C-di-AMP inhibits the expression and activity of potassium uptake systems by binding to 
riboswitches and transporters and acti v ates the activity of potassium exporters. In this way, c-di-AMP allows the adjustment of uptake 
and export systems to achieve a balanced intracellular potassium concentration. C-di-AMP also binds to two dedicated signal trans- 
duction proteins, DarA and DarB. Both proteins seem to interact with other proteins in their apo state , i.e . in the absence of c-di-AMP. 
For DarB, the (p)ppGpp synthetase/hydrolase Rel and the pyruvate carboxylase PycA have been identified as targets. The interactions 
trigger the synthesis of the alarmone (p)ppGpp and of the acceptor molecule for the citric acid cycle , oxaloacetate , r especti v el y. In the 
absence of c-di-AMP, many amino acids inhibit the growth of B. subtilis . This feature can be used to identify novel players in amino 
acid homeostasis. In this re vie w, we discuss the different functions of c-di-AMP and their physiological relevance. 

Ke yw or ds: potassium tr ansport; osmore gulation; Bacillus subtilis ; cyclic di-AMP; second messenger; third messenger; signal transduc- 
tion 
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Introduction 

Bacteria are exposed to constantly changing en vironments . Due 
to their small size, they experience this exposur e m uc h mor e 
se v er el y than lar ger or ganisms suc h as complex multicellular eu- 
karyotes do. Mor eov er, the r a pid gr owth of bacteria makes very 
fast responses extremely important. Ho w ever, in some cases, the 
original signals are not suited for direct signal transduction, or 
they have to reach out to a variety of different cellular targets. In- 
deed, to ac hie v e coordinated r egulation of a single biological pro- 
cess at multiple steps (such as gene expression and protein ac- 
tivity), which has been called sustained sensing (Orr et al. 2016 ),
classical protein-based signal transduction systems are often not 
well suited. In such instances, bacteria use so-called second mes- 
sengers; dedicated molecules that orc hestr ate a cellular response,
often by interaction with a variety of target molecules . T hese 
target molecules may be protein or RNA molecules (Nelson and 

Breaker 2017 , Hengge et al. 2019 ). The second messengers are typ- 
ically specific mono- or dinucleotides that are not used as building 
blocks for cellular nucleic acids . T he most intensiv el y studied of 
these second messengers is cyclic AMP (cAMP), which governs the 
paradigmatic glucose-lactose diauxie in Esc heric hia coli (Görke and 

Stülke 2008 ). In addition to carbon catabolite r epr ession, cAMP 
participates in other processes, including virulence or nitrogen 

utilization (Görke and Stülke 2008 , Green et al. 2014 ). 
The Gr am-positiv e model bacterium Bacillus subtilis is un- 

able to form the classical 3’,5’-cAMP; ho w e v er, this bacterium 
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ynthesizes cyclic dinucleotide second messengers , i.e . cyclic 
i-AMP (c-di-AMP) and cyclic di-GMP (c-di-GMP), as well as 
he alarmones guanosine tetr a phosphate and guanosine pen- 
a phosphate (collectiv el y r eferr ed to as (p)ppGpp) (Rhaese et
l. 1975 , Oppenheimer-Shaanan et al. 2011 , Diethmaier et al.
014 ). In addition, 5-amino-4-imidazole carboxamide riboside 5 ′ - 
riphosphate (ZTP) and diadenosine tetr a phosphate (Ap 4 A) wer e
 ecentl y shown to be second messenger molecules in B. subtilis
Chandrangsu et al. 2019 , Giammarinaro et al. 2022 ). 

Even though the role of c-di-GMP is poorly explored in B. sub-
ilis , it seems to contribute to the decision-making between two
 utuall y exclusiv e lifestyles: motility and biofilm formation. C-

i-GMP binds to the receptor protein MotI, and this complex inter-
cts with the flagellar stator protein MotA to inhibit motility (Chen
t al. 2012 ). In contrast, the synthesis of an extracellular polysac-
haride by the YdaJLMN complex requires a functional interac- 
ion with the c-di-GMP tar get pr otein YdaK (Bedrunka and Grau-

ann 2017 ). T hus , c-di-GMP-mediated signal transduction seems
o control lifestyle choice in B. subtilis , as observed for many other
acteria (Hengge 2009 , Jenal et al. 2017 ). 

The alarmone (p)ppGpp is synthesized by the bifunctional 
p)ppGpp-synthetase/hydrolase Rel in response to amino acid 

tarvation as well as by the so-called small alarmone synthetases
asA and SasB (Ronneau and Hallez 2019 , Bange et al. 2021 ). As
he name alarmone suggests, the formation of (p)ppGpp as a re-
ult of amino acid starvation indicates to the cell the need for a
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lobal r e-or ganization of cellular activities. Tr anscription, tr ans-
ation, and DNA r eplication ar e shut down, wher eas pathways for
mino acid syntheses are activated. This principal logic is con-
erved in different bacteria; ho w ever, the precise mechanisms of
p)ppGpp action ar e differ ent. While the molecules dir ectl y bind to
he RNA pol ymer ase in E. coli , the contr ol of tr anscription is indi-
ect in Gram-positive bacteria, including B . subtilis . Here , (p)ppGpp
pecifically inhibits the synthesis of purine nucleotides and par-
icularly of GTP. Since many mRNAs use a GTP as the initiation
ucleotide, the transcription of these mRNAs is inhibited upon the
ccumulation of (p)ppGpp. In contrast, mRNAs that initiate with
n ATP, ar e mor e str ongl y expr essed during the stringent r esponse.
imilarl y, (p)ppGpp negativ el y affects the accum ulation of purine
ucleotides in both E. coli and B. subtilis , but this is ac hie v ed in
ifferent wa ys . In E. coli , the stringent r esponse triggers the degr a-
ation of the nucleotides, whereas (p)ppGpp binds to multiple en-
ymes of purine biosynthesis to inhibit their activities in B. subtilis
Liu et al. 2015 , Anderson et al. 2019 , Zhang et al. 2019 ). 

The second messenger ZTP is involved in the mobilization of
inc under conditions of zinc limitation. This molecule binds to
he metalloc ha per one Za gA, whic h in turn mobilizes zinc ions
rom dispensable ribosomal proteins to the essential and strictly
inc-dependent GTP cyclohydrolase FolE that is r equir ed for folate
iosynthesis and tRNA modification (Chandrangsu et al. 2019 ). 

Finally, the dinucleotide Ap 4 A was only very recently shown to
e a bona-fide second messenger. This molecule binds to the IMP
ehydrogenase GuaB, an enzyme of the GMP biosynthetic path-
ay, and inhibits its activity (Giammarinaro et al. 2022 ). 
T hus , second messengers control a wide range of functions in B.

ubtilis (see http:// www.subtiwiki.uni-goettingen.de/ v4/ category?
d=SW.3.5 ; Pedr eir a et al. 2022 ). In this r e vie w, we will focus on
he regulatory functions of the second messenger c-di-AMP in B.
ubtilis . Strikingly, c-di-AMP and (p)ppGpp-mediated signal trans-
uction as well as their biosynthesis and degradation are tightly

ntertwined, highlighting the central role of both second messen-
ers for the physiology of B. subtilis . 

Among all second messengers, c-di-AMP is unique as it is on
he one hand essential for many of the bacteria that use it, and
n the other hand, it becomes toxic if the intracellular concentra-
ion gets too high. The molecule was ther efor e dubbed an essen-
ial poison (Gundlach et al. 2015b , Huynh and Woodw ar d 2016 ).
n addition, c-di-AMP is the only known second messenger that
an control a biological process by binding both to a protein and
he encoding mRNA molecule to pr e v ent activity and expression
f the protein. This was reported for two potassium transporters
n B. subtilis , KtrAB and KimA, which are controlled at both levels
y c-di-AMP (Gundlach et al. 2017b , Nelson et al. 2013 , Gundlach
t al. 2019 ). 

ynthesis and degr ada tion of c-di-AMP in B. 
ubtilis 
he cellular le v els of c-di-AMP depend on the opposing activities
f diadenylate cyclases and phosphodiesterases that synthesize
nd degrade the second messenger, respectively. For an overview
n the enzymes involved in c-di-AMP synthesis and degradation,
ee Fig. 1 . All known diadenylate cyclases consist of a conserved
nzymaticall y activ e DAC domain that is responsible for the pro-
uction of the second messenger from two molecules of ATP. This
AC domain is then fused to other domains that control the ac-

ivity of the protein (see Commichau et al. 2019 , Galperin 2023
or r e vie w). Diaden ylate cyclases ar e pr esent in bacteria of the
lasses Firmicutes, Actinobacteria, and Cyanobacteria, and they
re also found in Chlamydia, Delta-proteobacteria, Spirochaetes,
nd in bacteria of the Cytopha ga/Flavobacterium/Bacter oides
r oup. Mor eov er, diaden ylate cyclases hav e r ecentl y been discov-
red in the Eury ar chaeota group of the Archaea (Braun et al. 2019 ,
alperin et al. 2021 ). The most widespread type of diadenylate cy-
lase, called CdaA, contains three N-terminal transmembrane he-
ices fused to a cytoplasmatic DAC domain (Rosenberg et al. 2015 ,
eidemann et al. 2019 ). Most bacteria contain only one diadeny-

ate cyclase, and this is usually of the CdaA type. Bacillus subtilis
nd its close r elativ es ar e peculiar in possessing thr ee diaden y-
ate cyclases. In addition to CdaA, they encode the DisA and CdaS
roteins. DisA is an octameric DNA-binding diadenylate cyclase

n which the DAC domain is fused to a linker and a DNA-binding
elix-hairpin-helix domain (Witte et al. 2008 ). Mor eov er, B. subtilis
nd its close r elativ es possess a third enzyme, CdaS, which con-
ists of a N-terminal autoinhibitory domain fused to the DAC do-
ain. CdaS is onl y expr essed during sporulation and is r equir ed

or efficient germination of B. subtilis spores (Mehne et al. 2014 ). 
The degradation of c-di-AMP is catalyzed by dedicated phos-

hodiesterases . T hese enzymes typically contain a so-called DHH-
HHA1 (aspartate-histidine-histidine) domain or a HD (histidine-
spartate) domain. In B. subtilis , an enzyme of each of these classes
s present. Both phosphodiesterases, GdpP and PgpH, are mem-
r ane pr oteins, and both ar e inhibited by (p)ppGpp (Rao et al. 2010 ,
uynh et al. 2015 ). Both enzymes cleave c-di-AMP to the linear
inucleotide pApA, which is finally cleaved to two molecules of
TP by the nano-RNase NrnA (Gall et al. 2022 ). 

The mechanisms of c-di-AMP synthesis and degradation have
een r e vie wed r ecentl y (Commic hau et al. 2019 , Stülke and Krüger
020 ) and will ther efor e not be detailed here. Ho w ever, recent re-
earch has shed some light on the regulation of the catalytic activ-
ty of the major diadenylate cyclase CdaA. This enzyme is encoded
n a conserved operon with a regulatory protein, CdaR, and with
he phosphoglucosamine mutase GlmM. CdaA interacts with both
roteins, and these interactions control the activity of CdaA in B.
ubtilis as well as in Staphylococcus aureus and Listeria monocytogenes
Gundlach et al. 2015b , Mehne et al. 2013 , Tosi et al. 2019 , Gibhardt
t al. 2020 , Pathania et al. 2021 ). CdaR consists of a transmem-
rane domain and four so-called YbbR domains that are struc-
ur all y similar to ribosomal protein L25 (Barb et al. 2011 ). L25 binds
he 5S ribosomal RNA (Sc hmalisc h et al. 2002 ,Kor obeinik ov a et al.
008 ), suggesting that CdaR might also interact with RN A. Ho w-
 v er, the YbbR domains of CdaR are faced to the extracellular side
f the membrane. Depending on the conditions, stimulation, and
nhibition of CdaA by CdaR were observed (Mehne et al. 2013 , Ris-

ondo et al. 2015 ). GlmM clearly inhibits the activity of CdaA, and
t was shown that this inhibition occurs under conditions of os-

otic stress in L. monocytogenes (Tosi et al. 2019 , Gibhardt et al.
020 , Pathania et al. 2021 ). This latter observation provides an im-
ediate explanation for how the bacteria can initiate potassium

ptake to counteract osmotic stress (see below). 

he role of c-di-AMP in potassium and osmotic 

omeostasis 

he initial identification of targets of c-di-AMP in S. aureus re-
ealed binding to proteins involved in potassium homeostasis
Corrigan et al. 2013 , see Stülke and Krüger 2020 and He et al. 2020
or a list of c-di-AMP targets in different bacteria). In fact, many
acteria that use c-di-AMP have multiple potassium-related tar-
ets . T he o v ervie w on c-di-AMP tar gets in B. subtilis (Table 1 , see
ig. 1 ) already suggests that the control of potassium homeosta-
is is a major function of the second messenger in this bacterium.

http://www.subtiwiki.uni-goettingen.de/v4/category?id=SW.3.5
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Figure 1. Components of c-di-AMP signaling in B . subtilis . The second messenger c-di-AMP is synthesized by the diadenylate cyclases DisA, CdaA, and 
CdaS through the condensation of two ATP molecules . Con versely, degradation of c-di-AMP to pApA is facilitated by the phosphodiesterases GdpP and 
PgpH. C-di-AMP binds to signal transduction proteins that can be regarded as third messengers and can control the expression and activity of several 
transporters by binding to mRNA riboswitches and proteins, respectively. Red arrows, inhibition; green arrows, activation; gray arrows, regulatory 
consequences unknown. 

Table 1. Targets of c-di-AMP in B . subtilis . 

Target Nature of the target Function Effect of c-di-AMP binding Reference(s) 

Targets related to potassium homeostasis 
KimA Protein Potassium uptake Inhibition of activity Gundlach et al. 2019 
c-di-AMP riboswitch ( kimA ) RNA Control of kimA e xpression Transcription termination Nelson et al. 2013 
KtrA Protein Potassium uptake Inhibition of activity Gundlach et al. ( 2019) 
c-di-AMP riboswitch ( ktrAB ) RNA Control of ktrAB e xpression Transcription termination Nelson et al. ( 2013) 
KtrC Protein Potassium uptake Inhibition of activity Gundlach et al. ( 2019 ) 
CpaA Protein Potassium export Stimulation of activity Gundlach et al. ( 2019 ) 
KhtT Protein Potassium export Stimulation of activity Gundlach et al. ( 2019 ) 
Other targets 
OpuCA Protein Uptake of compatible solutes Inhibition of activity Gundlach et al. ( 2019 ) 
MgtE Protein Magnesium uptake ? Gundlach et al. ( 2019 ) 
Third messenger targets 
DarA Protein Signal transduction Not known Gundlach et al. ( 2015b ) 
DarB Protein Signal tr ansduction, contr ol 

of Rel and PycA activities 
No interaction with Rel 

and PycA 

Gundlach et al. ( 2019) 
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Potassium is the most abundant metal ion in any living cell.
This essential ion is important for the activity of many enzymes 
and proteins complexes such as the ribosome. On the other hand,
the accumulation of too large amounts of the ion is toxic for the 
cells (Gundlach et al. 2017a , Danchin and Nikel 2019 ). Potassium 

is closely linked to glutamate, the by far most abundant metabo- 
lite in any living cell, which, in addition to many other functions,
also serves as a counterion to potassium. T hus , the concentra- 
tions of potassium and glutamate must be car efull y balanced. In 

B. subtilis and other Gr am-positiv e bacteria, the intr acellular le v els 
of c-di-AMP are controlled by potassium and the nitrogen source.
The c-di-AMP concentrations increase with increasing potassium 

concentr ations. Mor eov er, the pr esence of glutamate stim ulates 
-di-AMP accumulation in B. subtilis (Gundlach et al. 2015b ). It is
mportant to note that potassium uptake is facilitated in the pres-
nce of glutamate and vice versa (Krüger et al. 2020 , Krüger et al.
021a ). The dir ect r esponse of c-di-AMP to potassium as well as
he fact that most of the c-di-AMP targets are involved in potas-
ium homeostasis suggest that c-di-AMP serves as a second mes-
enger that reports on the potassium availability. 

As mentioned abo ve , c-di-AMP can control KtrAB and KimA,
wo potassium transporters, by binding to the corresponding 

RNA, thus pr e v enting their expression at a riboswitch as well
s by binding to the proteins to inhibit their activity (Gundlach et
l. 2019 ). T hus , the nucleotide binds completely different classes
f molecules—protein and RNA—to achieve a unified regulation,
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.e. to reduce potassium uptake when the ion is already present at
igh concentrations in the cell. The potassium transporters KtrAB
nd KimA are not related to each other and belong to different
rotein families . T hus , c-di-AMP can also bind completely differ-
nt proteins to control their activity. 

Bacillus subtilis encodes three potassium importers, KtrAB,
trCD, and KimA that are all inhibited by c-di-AMP. Of these, KtrAB
nd KtrCD are potassium channels that are driven by the pro-
on motive force . T he KtrB and KtrD subunits ar e integr al mem-
r ane pr oteins that can transport potassium. The KtrA and KtrC
ubunits consist of two different regulator of potassium conduc-
ance (RCK) domains that bind to the membrane subunits to mod-
late their activity (Sc hr ec ker et al. 2019 , Stautz et al. 2021 ). Of the
wo paralogous potassium channels, KtrAB has a very high affin-
ty for potassium, whereas KtrCD has a low affinity (Holtmann et
l. 2003 , Gundlach et al. 2017a ). Ho w e v er, KtrCD also becomes a
igh-affinity channel in the presence of glutamate (Krüger et al.
020 ). The third potassium importer, KimA, is a potassium/proton
ymporter. This protein has a medium affinity for potassium. Un-
er standard conditions, potassium is imported via KtrCD and
imA, whereas KtrAB is only expressed under conditions of ex-

reme potassium starvation (Gundlach et al. 2017a ). 
The ktrC and ktrD genes are constitutively expressed in B. sub-

ilis (Krüger et al. 2021a ). This is a typical feature of the ma-
or low-affinity transporters. In contrast, the kimA gene and the
trAB oper on ar e str ongl y induced at low potassium concentra-
ions . T his regulation is achieved by a c-di-AMP-responsive ri-
oswitch in the 5’ leader regions of the corresponding mRNAs

Nelson et al. 2013 , Gundlach et al. 2017a ,b ). Binding of c-di-
MP to the riboswitc h r egion of the nascent transcript results

n a structural rearrangement of the mRNA and in the forma-
ion of a tr anscription terminator. Ther efor e, these tr anscripts
re no longer elongated (Gao and Serganov 2014 , Ren and Patel
014 ). In this way, the expression of the high-affinity uptake sys-
ems can be reduced if sufficient potassium is available for the
acteria. 

Many bacteria also possess the high-affinity ATP-driven potas-
ium importer KdpFABC. In L. monocytogenes and S. aureus , the
xpression of this transporter is controlled by the KdpDE two-
omponent system. In these bacteria, c-di-AMP binds to the KdpD
ensor kinase via its cytoplasmic N-terminal universal stress pro-
ein domain and inhibits its activity (Corrigan et al. 2013 , Moscoso
t al. 2015 , Gibhardt et al. 2019 ). Inter estingl y, the close pathogenic
 elativ es of B. subtilis , B . anthracis , B . cereus , and B . thuringiensis also
ave the KdpFABC potassium transporter. Ho w ever, these bacte-
ia lack the KdpDE two-component system. Instead, their kdpFABC
per on is contr olled by the c-di-AMP-sensitiv e riboswitc h (Wang
t al. 2019 ). This r egulation is r emarkable for two r easons: (i) the
-di-AMP-controlled sensor kinase KdpD represents yet another
lass of independently evolved c-di-AMP target that is involved
n the regulation of potassium homeostasis . (ii) T he replacement
f KdpDE by the c-di-AMP riboswitch in the pathogenic Bacilli
hows that the components of c-di-AMP signaling in the control
f potassium homeostasis can be plugged together in multiple
a ys . 
Biochemical studies on the regulation of the potassium chan-

els r e v ealed that KtrA has a 100-fold lo w er affinity for c-di-AMP
s compared to KtrC. T hus , c-di-AMP-mediated control of KtrAB
s exerted mainly at the le v el of the c-di-AMP-sensitive riboswitch
Rocha et al. 2019 ), whereas the constitutively expressed KtrC is
he main target for c-di-AMP-mediated control at the protein level
Rocha et al. 2023 ). T hus , by contr olling the expr ession and activ-
ties of potassium transporters to different extents, c-di-AMP can
nsure that the cell can transport the required amounts of potas-
ium under each condition. 

As mentioned abo ve , potassium becomes toxic for the cell upon
ccum ulation. This r equir es a shutdo wn of potassium uptake b y
-di-AMP-mediated switch-off of the transporters. In addition, c-
i-AMP can bind to potassium exporters to stimulate their activity,
hus resulting in a reduction of the intracellular potassium con-
entration. In B. subtilis , c-di-AMP binds to the potassium exporter
paA and to the KhtT subunit of the KhtUT potassium/proton an-

iporter (Gundlach et al. 2019 ). In both cases, c-di-AMP binds to the
CK_C domains of these proteins, as in the potassium importers

Chin et al. 2015 , Cereija et al. 2021 ). 
In conclusion, the antagonistic control of potassium importers

nd exporters provides B. subtilis an efficient way to ac hie v e the
ptimal intracellular potassium concentration under any condi-
ion (Fig. 1 ). 

In B. subtilis and many other bacteria, a sudden increase of the
ntr acellular potassium concentr ation is the first r esponse to os-

otic stress (Bremer and Krämer 2019 ). T hus , the control of potas-
ium homeostasis by c-di-AMP might also be part of a larger pic-
ure of the regulation of osmoadaptation. Indeed, c-di-AMP also
inds and inhibits transporters of compatible compounds that are
oxic in the absence of an osmotic upshift. In B. subtilis and se v er al
ther bacteria, c-di-AMP binds and inhibits the ATPase subunit
f the Opu-compatible compound ABC transporter (Huynh et al.
016 , Schuster et al. 2016 , De v aux et al. 2018 , Gundlach et al. 2019 ,
ikkema et al. 2020 ). In lactic acid bacteria, e v en a transcription
actor that controls the expression of compatible solute uptake
ystems is controlled by c-di-AMP (Devaux et al. 2018 , Pham et
l. 2018 , Bandera et al. 2021 ). For B. subtilis , the dir ect contr ol of
otassium homeostasis has been shown to be the major essential
unction of c-di-AMP (Gundlach et al. 2017b , Stülke and Krüger
020 ). Ho w e v er, this is not the case for L. monocytogenes (Gibhardt
t al. 2019 ), and the mor e gener al contr ol of osmotic homeostasis
as been suggested to be the main function of c-di-AMP in this
rganism (Wang et al. 2022 , Schwedt et al. 2023 ). T hus , the precise
unctions of c-di-AMP may differ e v en between closel y r elated or-
anisms. 

arA and DarB: c-di-AMP-binding third 

essengers? 
he search for c-di-AMP-binding proteins in S. aureus , L. mono-
ytogenes , and B. subtilis also identified proteins without an ob-
ious enzymatic or transport functions. Two of these proteins,
arA and DarB, ar e pr esent in B. subtilis . DarA is a member of

he PII superfamily of signal transduction proteins . T his pro-
ein is also present in S. aureus and L. monocytogenes but is in-
er estingl y absent fr om the pathogenic Bacilli (Gundlac h et al.
015a , Forchhammer and Lüd deck e 2016 ). The DarB protein con-
ists of two nucleotide-binding CBS domains that together form
he so-called Bateman domain (Gundlach et al. 2019 , Heide-

ann et al. 2022 , Biemans-Oldehinkel et al. 2006 ). DarB is also
resent in L. monocytogenes but not in S. aureus. DarA and DarB
an be present in their apo form or in the c-di-AMP-bound
orm, depending on the intracellular potassium and c-di-AMP
oncentrations (Krüger et al. 2021b ). It is tempting to specu-
ate that both proteins act as a kind of third messenger that
ransduces signals to other proteins and thus controls their
ctivity. 

The proteins of the large PII superfamily are signal transduc-
ion proteins that bind small-molecule effectors and control the
ctivity of enzymes , transporters , and transcription factors . T he
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classical PII proteins are best known for their role in the con- 
trol of nitrogen assimilation (Forchhammer and Lüd deck e 2016 ).
It ther efor e seems likel y that the c-di-AMP-binding PII-like pr o- 
tein DarA also binds to one or more other proteins to regu- 
late them in response to potassium availability . Unfortunately ,
and despite extensive efforts, the potential interaction partner 
of DarA has escaped its identification until toda y, in B . sub- 
tilis , L. monocytogenes , and S. aureus . Under the standard growth 

conditions, the inactivation or ov er expr ession of B. subtilis DarA 

does not result in phenotypic effects (Gundlach et al. 2015a ).
T hus , the role of DarA remains enigmatic and a task for future 
r esearc h. 

For DarB, functions have been identified both in B. subtilis and 

in L. monocytogenes as well as in Streptococcus agalactiae . In these 
bacteria, DarB binds the (p)ppGpp synthetase/hydrolase Rel (Pe- 
terson et al. 2020 , Krüger et al. 2021b , Covaleda-Cortés et al. 2023 ).
Under conditions of potassium starv ation, a po-DarB binds to the 
Rel protein to stimulate and inhibit its alarmone synthetase and 

hydr olase activities, r espectiv el y. The r esult is an intr acellular ac- 
cumulation of (p)ppGpp under conditions of potassium starvation 

(Krüger et al. 2021b ). The second alarmone (p)ppGpp in turn binds 
to se v er al pr oteins of nucleotide biosynthesis and the central ge- 
netic pr ocesses, r esulting in a shutdown of centr al cellular pr o- 
cesses, among them translation (Hauryliuk et al. 2015 , Bange et 
al. 2021 ). As the ribosome depends on potassium ions for activity,
alarmone production and the resulting stop of translation help 

the cell to adapt to conditions of potassium starvation (Krüger et 
al. 2021b ). Recent structural studies have suggested that the bind- 
ing of c-di-AMP to DarB results in protrusion of the nucleotide at 
the site of interaction with Rel, thus preventing binding of the two 
proteins (Heidemann et al. 2022 ). Binding of Apo-DarB to Rel sup- 
ports a conformation of the synthetase domain that increases the 
affinity of Rel for ATP and switches off hydrolase activity (Ainelo 
et al. 2023 ). 

In addition to the control of the stringent response , B . subtilis 
apo-DarB also binds to the pyruvate carboxylase, an enzyme that 
replenishes the citric acid cycle by providing oxaloacetate. Bind- 
ing of apo-DarB under conditions of potassium starv ation r esults 
in a stimulation of pyruvate carboxylase activity and, thus, in in- 
cr eased oxaloacetate pr oduction (Krüger et al. 2022 ). This meets 
the increased demand for citric acid cycle intermediates during 
potassium limitation (Krüger et al. 2022 ). Inter estingl y, c-di-AMP- 
mediated control of pyruvate carbo xylase acti vity was also found 

in L. monocytogenes . In this bacterium, it is not DarB but c-di-AMP 
dir ectl y that binds the pyruvate carboxylase resulting in enzyme 
inhibition (Sureka et al. 2014 ). While the mechanisms are differ- 
ent, the logic of c-di-AMP-dependent regulation of pyruvate car- 
boxylase is similar in both bacteria: at high potassium concen- 
tr ation, c-di-AMP is pr esent and causes inhibition or lack of DarB- 
de pendent acti vation of the enzyme in L. monocytogenes and B. sub- 
tilis , r espectiv el y. In contr ast, the enzyme is not inhibited or e v en 

activated by apo-DarB at low potassium concentrations. As a re- 
sult, c-di-AMP-mediated contr ol r esults in low or high pyruvate 
carbo xylase acti vity in the presence or absence of potassium, re- 
spectiv el y, in both bacteria. 

It is interesting to note that it is apo-DarB that binds to 
and controls the Rel and pyruvate carboxylase enzymes. No ac- 
tivity has so far been assigned to DarB in complex with c-di- 
AMP . Importantly , in the absence of c-di-AMP, inactivation of ei- 
ther DarA or DarB allows the adaptation to growth on other- 
wise toxic complex medium. This has been observed for both 

B. subtilis and L. monocytogenes (Whiteley et al. 2015 , Krüger et 
al. 2021a ) and suggests that the a po-pr oteins hav e some ac- 
ivity that is detrimental to the growth of the bacteria. This
ndir ect contr ol by c-di-AMP may help to r eac h out to pro-
eins that are unable to submit to direct control by the second

essenger. 

he lack of c-di-AMP makes the cells susceptible 

o growth inhibition by amino acids 

 B. subtilis strain lacking c-di-AMP (the �dac mutant) is unable to
row in the presence of otherwise well-tolerated potassium con- 
entr ations, and gr owth is also se v er el y inhibited in the pr esence
f glutamate (Krüger et al. 2021a ). Similarly, c-di-AMP is essen-
ial for growth on complex medium in several bacteria. In addi-
ion to glutamate, other amino acids inhibit the growth of B. sub-
ilis strains lacking c-di-AMP. These include histidine, alanine, as- 
ar a gine , glutamine , arginine , and proline (Meißner et al. 2022 ,
npublished results). One particular reason for the growth inhibi-
ion of the �dac mutant is the generation of glutamate as a result
f amino acid degradation. Glutamate converts the low-affinity 
otassium channel KtrCD to a high-affinity channel, thus even the

ow concentrations of potassium that are tolerated by the strain
acking all diadenylate cyclases become toxic for the cells (Krüger
t al. 2020 , Krüger et al. 2021a ). 

While the physiology of B. subtilis is in general very well under-
tood, ther e ar e still se v er e ga ps in our knowledge on amino acid
omeostasis (Wicke et al. 2023 ). The growth inhibition of the �dac
utant by amino acids is an excellent tool to identify novel com-

onents of amino acid homeostasis. Suppressor analyses with the 
dac m utant gr own in the pr esence of glutamate r e v ealed that
an y of m utants had m utations affecting one of the potassium

 hannel pr oteins. A similar r esult was obtained at high histidine
oncentration (Krüger et al. 2021a , Meißner et al. 2022 ) (Fig. 2 ).
hese observations support the idea that the stimulation of potas-
ium uptake is a major problem for the strain in the presence of
mino acids. 

Ho w e v er, all glutamate-r esistant m utants also had m utations
hat mor e dir ectl y addr ess the amino acid used in the suppres-
or screen. In the case of glutamate, most suppressor mutants
ad the aimA gene inactivated. AimA was onl y r ecentl y identified
s the main serine transporter of B. subtilis (Klewing et al. 2020 )
nd is also the major low-affinity transporter for glutamate. More-
v er, in se v er al m utants, glutamate degr adation to 2-oxoglutar ate
 as activated b y a mutation that decryptifies the normally inac-

ive glutamate dehydrogenase GudB. Finally, some of the mutants 
ere able to export glutamate by a combination of mutations af-

ecting lipid biosynthesis and the mec hanosensitiv e c hannel YfkC
Krüger et al. 2021a ). T hus , the use of the �dac mutant allo w ed the
dentification of the so far unknown major importer and an export

echanism for glutamate. 
The �dac mutant also adapted to the presence of histi-

ine by the acquisition of mutations. In this case, of a large
ollection of suppressor mutants, each contained a mutation 

hat inactivates the azlB gene . T his gene encodes the r epr es-
or of the azlBCD-brnQ-yrdK operon (Meißner et al. 2022 ). The
zlCD complex is a bipartite amino acid exporter that has
lready been shown to export toxic analogues of br anc hed-
 hain amino acids, suc h as 4-azaleucine (Belitsky et al. 1997 ).
he identification of histidine as an additional substrate of 
zlCD suggests that this exporter has a broad substrate 
pecificity. 

The identification of novel importers and exporters for gluta- 
ate and histidine suggests that the �dac mutant is an excellent

ool to study novel players in amino acid homeostasis. 
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Figure 2. Effects of amino acids on a c-di-AMP-free strain of B . subtilis . Amino acids, primarily glutamate, make up by far the lar gest fr action of the 
metabolite pool of B . subtilis cells. Without c-di-AMP, ho w e v er, glutamate becomes toxic as it causes an affinity change of the potassium-channel 
KtrCD, leading to an increased influx of potassium ions, whic h ar e harmful to the cell in the absence of c-di-AMP. Bacillus subtilis responds to glutamate 
stress via mutations in AimA, the major glutamate transporter, and KtrCD itself (Krüger et al. 2021). Higher concentrations of glutamate cause 
downregulations in general metabolism. Here, the essential genes fusA (involved in translation) and accA (involved in fatty acid biosynthesis) are 
affected. Furthermore, nhaK also acquires a gain-of-function mutation resulting in enhanced potassium export under glutamate stress. Other amino 
acids feed into glutamate production and therefore might also be harmful in a c-di-AMP-free setting. Stressing the cells with histidine leads to 
mutations in the transcriptional repressor AzlB, which causes an overexpression of the bipartite exporter AzlCD. This causes histidine to be exported 
out of the cell with higher efficiency (Meißner et al. 2022 ). 
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 diaden yla te cyclase in volved in monitoring 

nd repairing DNA 

-di-AMP was originally identified as a so-far unknown metabo-
ite bound to the DNA integrity-scanning protein DisA and as the
roduct of the diadenylate cyclase activity of DisA (Witte et al.
008 ). The DisA protein consists of a N-terminal enzymatically
cti ve DAC domain, a link er, and a C-terminal DNA-binding helix-
inge-helix domain. DisA scans the c hr omosome and causes a
elay in sporulation if it detects c hr omosome dama ge (Bejer ano-
agie et al. 2006 , Oppenheimer-Shaanan et al. 2011 ). By interac-
ions with DNA repair and recombination proteins such as RadA,
ecA, and RuvB DisA contribute to the maintenance of DNA in-
egrity (Torres et al. 2019 , Torres et al. 2019a , Gándara et al. 2021 ).
t has also been proposed that DisA might actually monitor the
otassium concentration in the nucleoid since potassium neu-
ralizes the negative charge of DNA (Gundlach et al. 2018 ). The
recise link betw een DN A damage , c-di-AMP synthesis , and the
ontribution of DisA to DNA repair remains to be elucidated. 

uture directions of research 

ven though the very existence of c-di-AMP was discovered only
5 years ago, an impressive amount of knowledge on the diverse
unctions of this unique essential second messenger has accu-

ulated. Ho w ever, there are still open questions that should be
ddressed in future research: 

(1) Which signals and mechanisms control the expression and
activity of the enzymes that make and break c-di-AMP? 

(2) What is the function of the third messenger protein DarA? 
(3) How does DisA contribute to DNA integrity? 
Another exciting prospect is the possible use of the diadenylate
yclase CdaA as a novel target for antibiotic compounds. CdaA is
he onl y diaden ylate cyclase in man y pathogens, and it is essential
or these bacteria. A recent report on such an inhibitor that was
dentified based on computer-based design (Neumann et al. 2023 )
hows that this is a promising line of research. 
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