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Abstract

The mechanisms underlying the transition from acute to chronic pain remain unclear. Here,

we sought to characterize the transcriptome associated with chronic low back pain as well

as the transcriptome of the transition from acute to chronic low back pain. For the analysis,

we compared the whole blood transcriptome of: (a) patients at the onset of low back pain

who no longer had pain within 6 weeks after onset (acute) with patients who developed

chronic low back pain at 6 months (chronic T5); and, (b) patients at the onset of low back

pain (chronic T1) who developed chronic pain at 6 months with healthy pain-free (normal)

controls. The majority of differentially expressed genes were protein coding. We illustrate a

unique chronic low back pain transcriptome characterized by significant enrichment for

known pain genes, extracellular matrix genes, and genes from the extended major histo-

compatibility complex (MHC) genomic locus. The transcriptome of the transition from acute

to chronic low back pain was characterized by significant upregulation of antigen presenta-

tion pathway (MHC class I and II) genes and downregulation of mitochondrial genes associ-

ated with oxidative phosphorylation, suggesting a unique genomic signature of vulnerability

to low back pain chronicity.

Introduction

Low back pain (LBP) is one of the most common and costly pain conditions in the United

States, and affects nearly one in ten people worldwide at any given time[1]. For most
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individuals with an acute LBP episode, the pain resolves within 4–6 weeks along with the abil-

ity to resume normal activities. However, an estimated 20% of individuals with acute LBP have

sustained levels of pain after 4–6 weeks at a level that decreases normal activities, function, and

quality of life[2,3]. Chronic LBP (cLBP), which is defined as pain in the lower back occurring

for at least 3 of the past 6 months, is a common reason for initiation of long-term opioid ther-

apy, which raises the possibility for addiction, and may be a gateway to other comorbid pain

disorders[4]. Currently, cLBP is responsible for a third of work-related disability and among

the ten most expensive conditions in the United States[5,6].

Heritability of LBP is estimated to range from 30–60% with a higher familial incidence

being associated with increased severity of LBP[7,8]. Traditional methods for assessing vulner-

ability to cLBP have focused on candidate genetic polymorphisms and imaging for degenera-

tive disc disease (DDD) or specific LBP conditions such as herniated disc, lumbar stenosis or

spondylolisthesis[9–12]. However, noting that DDD is ubiquitous among adults and the

degree of degeneration is not consistently associated with the presence or severity of pain, this

approach has not led to a consensus list of objective risk markers[13], and consequently the

pathogenesis of cLBP remains unclear.

Due to the presumed etiologic heterogeneity of non-specific cLBP, very few investigators

have examined the associated molecular mechanisms even though this condition makes up

approximately 90% of individuals who seek healthcare for LBP[14]. One innovative approach

to studying the mechanisms leading to cLBP incorporates the perspective of systems biology

and aligns with the tenets of precision healthcare that are aimed at redefining clinical diagno-

ses and management strategies according to the molecular signature of the condition being

evaluated[15]. This approach is a significant departure from traditional clinical research based

on a priori assumptions regarding the mechanisms underlying a specific diagnosis, and

instead, seeks to identify variability in molecular pathways to refine a clinical phenotype and

optimize treatment regimens[16,17].

Gene expression analysis is a key tool in biomedical research that provides rich insight into

the mechanistic underpinnings of disease and defining a physiological phenotype[18]. Recent

cross-sectional studies, using microarray platforms to assay the repertoire of messenger RNA

(mRNA) within a tissue or cell at a specific timepoint, have identified unique mechanistic

pathways in human blood cells of patients with complex regional pain disorder[19], chronic

visceral pain[20], and rheumatoid arthritis[21]. However, while the transition from acute to

chronic pain can be assumed to represent a spectrum, none of these studies have specifically

included follow-up longitudinal approaches to enable the investigators to compare the tran-

scriptome signatures associated with transition from acute to chronic phase transcriptome

within and between participants with LBP who either develop or do not develop chronic pain.

Importantly, the acute phase of LBP represents a window of opportunity to strategically

intervene; and, predicting those patients who are more prone to chronicity can help develop

targeted pain therapies. Therefore, we sought to examine the cLBP transcriptome and compare

it with the transcriptome during the acute phase of LBP. We chose whole blood for the analysis

because it has proven to be a useful surrogate of gene expression in the peripheral and central

nervous system and can be collected in a minimally invasive manner that is amenable for

potential future diagnostic test development[22]. Data and samples were acquired from a com-

pleted case-control study in which participants were enrolled at the onset of acute low back

pain and followed up at 6-months if they continued to have low back pain (R01NR013932, PI:

Starkweather). Therefore, samples were only available at one-time point, at pain onset, for par-

ticipants whose pain later resolved (acute group).

To this end, we aimed to: 1) characterize the transcriptome associated with cLBP; and, 2)

characterize the transition from acute to cLBP transcriptome. To accomplish these aims, we
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sequenced 64 RNA samples and compared the whole blood transcriptome: (a) at onset (base-

line) of low back pain in patients who no longer had pain within 6 weeks after baseline (n = 11,

acute group) and at baseline in patients who developed chronic pain at 6 months (n = 13,

chronic T1 group); and, (b) at 6 months after baseline in patients with chronic pain (n = 19,

chronic T5 group) and healthy pain-free controls (n = 21, normal group).

Materials and methods

Participants

Men and women between the ages of 18–50 years of age diagnosed with an acute nonspecific

LBP episode and able to read and write in English were invited to participate from primary

healthcare clinics through advertisements. An acute nonspecific LBP episode was defined as

pain anywhere in the region of the low back bound superiorly by the thoraco-lumbar junction

and inferiorly by the lumbo-sacral junction, which had been present for>24 hours but<4

weeks duration and was preceded by at least 1 pain-free month[23]. This age range was

selected to provide a more homogeneous sample in terms of general health, work status and

contributing factors of persistent LBP. Recruitment and enrollment took place at two urban

university health systems after approval from the Institution Review Board. Informed consent

procedures were strictly followed. All participants provided written consent prior to study

participation.

Patients were excluded for the following conditions: (a) pain at another site or associated

with a painful condition (eg., degenerative disc disease, herniated lumbar disc, fibromyalgia,

neuropathy, rheumatoid arthritis, sciatica); (b) previous spinal surgery; (c) presence of neuro-

logical deficits; (d) history of comorbidities that affect sensorimotor function (e.g., multiple

sclerosis, spinal cord injury, diabetes); (e) pregnant or within 3-months postpartum; (f) taking

opioid, antidepressants or anticonvulsant medication; and, (g) history of psychological disor-

ders (major depression, bipolar disorder, schizophrenia) because of a possible associations

with biological markers[24–26]. Eligibility for the healthy no-pain control group included

men and women (a) between 18–50 years of age; (b) could read and write in English; (c) with

no known medical, psychological problems or prescribed medication; (d) not pregnant or

breastfeeding; and, (e) no recent history of pain at any location.

Procedures

After obtaining written consent, participants were scheduled to undergo baseline data collec-

tion as soon as possible but no longer than one week from the time of consent. Data collection

took place in a private research suite to complete questions about age, gender, socioeconomic

status, educational attainment, lifestyle behaviors (smoking, exercise), comorbidities, and past

episodes of LBP. Following completion of the questionnaires, participants underwent veni-

puncture for collection of blood samples and quantitative sensory testing (QST). The same

sequence of data collection was followed for all participants. Data collection visits were

repeated at 6 months only if the participant continued to report pain.

Study measures

Demographics. Age, gender, socioeconomic status, educational attainment, lifestyle

behaviors (smoking, exercise), body mass index, comorbidities, and past episodes of LBP were

collected at baseline.

Perceived pain. The Brief Pain Inventory-Short Form (BPI-SF) is a pain assessment tool

that has well-established reliability and validity for adult patients with persistent pain[27] and
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is sensitive to change over time[28]. The BPI assesses the severity of pain, location of pain,

pain medications, amount of pain relief in the past 24 hours and the past week, and the impact

of pain on daily functions[28]. To measure the affective and sensory descriptors of pain, the

McGill Pain Questionnaire Short-Form (MPQ-SF) was also used. The MPQ-SF is a reliable

self-report measure of pain perception[29,30]. It entails 15 verbal descriptors of sensory and

affective dimensions of pain and is scored on a 4-point scale (0-none to 3-severe) by adding

the numeric value of each pain dimension. Higher scores indicate higher levels of sensory and

affective components of pain (range 0–45).

Quantitative sensory testing. Quantitative sensory testing (QST) was used to evaluate

responses to experimental pain elicited with standardized stimuli to test both nociceptive and

non-nociceptive systems[31]. Quantitative sensory testing was performed in the lumbar region

(at the location of pain) and on the dominant forearm (remote area). A standardized protocol

of administration, including examination room conditions and instructions provided for the

participant, were strictly followed. Participants were given a practice run on the non-dominant

forearm in order to verify the participant’s understanding of the protocol.

Mechanical pain threshold and sensitivity were measured with a standard set of von Frey

hairs (Optihair2-Set, Marstock Nervtest, Germany) that exert forces between 0.25 and 512 mN

with a rounded tip that is 0.5 mm in diameter. The final threshold is calculated as the geomet-

ric mean of five series of ascending and descending stimuli intensities. Wind-up ratio (WUR)

was determined from this series with the mean pain rating of trains divided by the mean pain

rating to a single stimuli. Dynamic mechanical allodynia (ALL) was tested using a standardized

brush applied five times with a single stroke; the pain rating to each stroke was recorded.

Thermal and pressure testing was performed using the Medoc Pathway System (Ramat

Yishai, Israel). The Medoc thermode, with contact area of 7.84 cm2, was placed in contact with

the participant’s skin in the area to be tested. The Medoc software guided the examiner

through a series of thermal testing procedures in the following order: cold detection threshold,

warm detection threshold, cold pain threshold, and heat pain threshold. The mean threshold

temperature of three consecutive measurements were calculated and used for analysis. All

thresholds were obtained with ramped stimuli (1˚C/second) that were terminated when the

participant pressed a button attached to the Medoc device. Cut-off temperatures were 0˚ and

50˚ C with a baseline temperature of 32˚C. For pressure pain threshold, the examiner used an

algometer (range from 50–600 kPa) attached to the Medoc Pathway system to increase the

pressure at a steady rate (30 kPa/s) until the participant indicated first pain sensation by press-

ing the button. The pressure pain threshold (PPT) was determined by repeating the procedure

at the same site until either: (1) Two values were recorded within 20 kPa of one another or (2)

Three trials were administered. In either case, the mean of the two closest values were recorded

as the threshold estimate. During the testing, the computer screen was positioned so that the

participant was not able to watch temperature and pressure fluctuations.

Blood collection and processing. Blood samples collected in PAXgene tubes were centri-

fuged and stored at -80˚C for bulk processing following the manufacturer’s protocol. RNA iso-

lation was performed using the PAXgene total RNA isolation system (Qiagen, Valencia, CA)

according to the manufacturer’s protocol and was reverse transcribed using iScript cDNA syn-

thesis kit (Invitrogen, Valencia, CA). Extracted RNA was run on Bioanalyzer gels to obtain the

RNA integrity number (RIN; those used were at least 8/10 on the quality score).

RNA-seq methods. RNA sequencing was performed on all of the samples using the Illu-

mina HiSeq sequencing technology following the manufacturer’s protocol. Raw sequences at a

read length of 151 base pairs (bp) were obtained in FastQ format files. On average, 86 million

paired reads per sample were generated. Read quality was assessed using the FastQC toolkit

[32] to ensure good quality reads were used for downstream analyses.
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RNA-seq analysis. The raw sequencing reads were used as input for the TopHat align-

ment tool (v2.1.1)[33]. TopHat is a splice-aware aligner for RNA-Seq reads which aligns reads

to mammalian sized reference genomes. The reads were aligned to the human reference

genome (GRCh38) downloaded from Ensembl[34] allowing for maximum 2 mismatches in

each 25 bp segment and a maximum of 20 alignment hits per read. The alignment results were

sorted and indexed for downstream analyses as BAM format files. The aligned reads were fur-

ther utilized to generate gene expression counts using the HTSeq count tool[35] against the

human reference annotation (GRCh38.86) which generates raw read counts for each genetic

feature using the uniquely mapped reads. The raw read counts for each gene were further nor-

malized for library size and gene length to generate ‘Reads per kilobase of the gene per million

mapped reads (RPKM)’. The gene expression values were further utilized to assess differential

expression between phenotypic conditions using R package ‘DESeq’[36]. DESeq provides

methods to test for differential expression by use of the negative binomial distribution and a

shrinkage estimator for the distribution’s variance. P-values are generated using a modified

Fisher’s exact test provided within DESeq and further corrected for multiple hypothesis testing

using the Benjamini-Hochberg correction method to decrease the false discovery rate (FDR).

Significant differential expressed genes were yielded at a false discovery rate (FDR) of 5% and

a minimum fold-change of 1.5X. Additional functional analyses were generated through the

use of IPA (https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis).

Validation qPCR. Custom primer sets were developed by the Institute for Genome Sci-

ences, University of Maryland, Baltimore, for validation qPCR. For analyses, delta Cq values

for each gene were normalized to the average expression of that gene in the pain-free healthy

control group. Results are based on normalization using the average of the three most stable

HKGs (GAPDH, ACTB, and B2M). For each of the non-housekeeping genes considered

“genes of interest” (GOI), the delta Cq value was calculated using the quantification cycle value

method to determine the normalized GOI expression level fold change. For each comparison,

a Univariate Analysis of Variance (ANOVA) was used to compare the fold change between

groups.

Statistical analysis. Due to the design of the study and lack of repeated data collection in

the acute and normal groups, a time series analysis (repeated measures analysis) was not possi-

ble. Therefore, we compared data from 11 participants at the onset of low back pain who were

pain-free by 6 weeks (acute) and at the onset of low back pain in the chronic group (chronic

T1; six of the baseline samples did not meet quality control standards and were not sequenced

for a total of 13 samples). We also compared data from 19 participants who continued to have

pain at 6 months (chronic T5) and 21 pain-free normal controls. Normality of the data were

tested using the Kolmogorov-Smirnov test. Student t-tests were used to test for group differ-

ences in demographic and QST variables that were normally distributed, whereas the Kruskal-

Wallis test followed by Bonferroni-Holm adjusted Mann-Whitney U test for post hoc analyses

were used for variables that were not normally distributed. Categorical variables were com-

pared using χ 2 tests. Post-hoc analyses were conducted as necessary to account for multiple

testing. For Euclidean clustering, model-based clustering for RNA-seq data was performed in

R statistics as described by Si et al[37].

Results

Participant demographics

Across the 4 groups (normal, acute, chronic T1, chronic T5) there were no significant differ-

ences in age or gender, however the groups were significantly different with respect to race,

with a greater number of White participants in the normal control group compared to the
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acute and chronic T1 groups; more Black participants in the chronic T5 group compared to

the normal control and acute groups; and more participants in the “other” racial category

compared to the acute, chronic T1 and chronic T5 groups (Table 1). No significant differences

were found between groups for body mass index (BMI), number of exercise days, hours of

sleep, or general medication use (S1 Table). However, the acute group was significantly more

likely to be taking pain medication (nonsteroidal anti-inflammatory drugs/acetaminophen)

than normal controls (Table 1). The chronic group was significantly less educated, and under-

employed compared to the normal and acute group (S1 Table).

Characterization of the chronic LBP transcriptome

We obtained an average of 86.7 million 150 base pair (bp) paired end reads per sample. Of

those, an average of 81.9% of the read pairs mapped to the reference genome (Ensembl

Homo_sapiens GRCh.38.p.7 release 86) and 80% were properly paired. The majority were

exonic (90.3%), with 7.1% on average intronic and 2.6% intergenic. This enabled us to achieve

an average of 32X coverage of the transcriptome. We examined differential expression of

aligned reads using DESeq, and a gene was identified as differentially expressed if it showed a

log fold change (LFC) ±0.58 and had a False Discovery Rate (FDR) p-value� 0.05 based on

previous criteria established in assessing differentially expressed genes in pain populations

[22]. We performed Euclidean clustering on the differentially expressed gene (DEG) set of

5,632 genes and found that the chronic T5 group was distinctly clustered from the normal

(healthy pain-free) group, and that the acute group distinctly clustered from the baseline

chronic T1 group (Fig 1). There were 3,479 significantly differentially expressed genes between

the chronic T5 group and normal controls and 3,288 significantly differentially expressed

genes between the acute and chronic T1 group.

The majority of DEGs were identified as protein coding (Fig 1). There were 2,688 signifi-

cantly differentially expressed genes between the contrasted groups (Fig 2). The top 100 DEGs

in the chronic T5 compared with the normal group were identified and plotted in context with

the acute and chronic T1 data (Fig 2). The DEG set that differentiated the chronic T5 group

from the normal group was significantly enriched for known pain genes (Fig 2C; complete list

Table 1. Demographics and pain phenotype.

Normal

(healthy controls)

N = 21

Acute

N = 11

Chronic-baseline (T1)

N = 13

Chronic- 6 months (T5)

N = 19

P-value

Age, mean (SD) 30.9 (13.9) 34.4 (9.1) 38.5 (8.4) 38.7 (9.0) 0.184

Gender 0.993

Male (%) 9 (42.9) 5 (45.5) 6 (46.2) 9 (47.4)

Female (%) 12 (57.1) 6 (54.4) 7 (53.8) 10 (52.6)

Race <0.001

White (%) 12 (57.1) 6 (56.0) 6 (46.2) 8 (42.1)

Black (%) 1 (4.8) 3 (27.0) 7 (53.8) 11 (57.9)

Other (%) 8 (38.1) 2 (18.0) 0 (0.0) 0 (0.0)

Pain score right now (0–10) mean (SD) 0 (0.0) 2.9 (0.9) 5.5 (2.5) 5.7 (2.8) <0.001

Pain average score (0–10) mean (SD) 0 (0.0) 3.4 (1.6) 5.2 (2.0) 5.1 (2.4) <0.001

Heat pain tolerance mean (SD) 43.3 (3.7) 40.5 (4.6) 40.0 (3.0) 39.5 (3.3) 0.008

Pain medication (opioid) mean (0 = no, 1 = yes) (SD) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) —

Pain medication (NSAID/Tylenol) mean (0 = no, 1 = yes) (SD) 0 (0.0) 0.64 (0.50) 0.23 (0.44) 0.32 (0.48) <0.001

ap-values were calculated from ANOVA or Chi-square test(s), whenever applicable

https://doi.org/10.1371/journal.pone.0216539.t001
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can be found in S2 Table) and genes on the extended major histocompatibility complex

(MHC) locus (Fig 2).

To assess replication of RNA seq results from selected targets in each of these datasets we

performed qPCR (primer sets in S3 Table). Upregulated expression of the HLA-A, HLADRB5,

PDF genes from RNA seq and qPCR were consistent (S1 Fig). We next asked what biological

pathways were enriched in the DEG set between normal controls and chronic T5 group, and

the top pathway identified was the extracellular matrix (ECM) receptor interaction including

collagen genes, laminin genes, and others (Fig 3). The biological pathway enriched in the DEG

set between chronic T1 and acute group was the antigen processing and presentation pathway

including many HLA genes (Fig 3).

Co-expression analysis of the DEG set using STRING v10 showed several gene clusters, includ-

ing OXT, EGFR and TEMN2 (Fig 4). We then compared the expression levels (normalized read

counts) at the gene level for selected genes from the co-expression analysis, and found that while

Fig 1. Characterization of differential gene expression in whole blood from the chronic T5 versus normal (healthy pain-free) group and in the chronic

T1 and acute group. (A) Euclidean clustering demonstrates separation between the chronic T5 group compared with the normal control group. (B) Euclidean

clustering demonstrates separation between the acute and chronic T1 group. (C) Volcano plot showing log fold change (LFC) for significantly differentially

expressed genes (LFC ±0.58; FDR p-value� 0.05; N = 3,479 shown in green circles) in the chronic T5 versus normal group. (D) Volcano plot showing log fold

change (LFC) for significantly differentially expressed genes (LFC ±0.58; FDR p-value� 0.05; N = 3,288 shown in green circles) in the chronic T1 compared

with the acute group. (E) Pie charts depicting protein-coding and non-coding gene types for chronic T5 versus normal group (left) and chronic T1 versus acute

group (right).

https://doi.org/10.1371/journal.pone.0216539.g001
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some participants had levels of each gene that were comparable with normal participants, many

of the chronic T5 patients had statistically higher levels of each gene (Fig 5).

We next examined the whole blood gene expression levels for a cluster of mitochondrial

genes associated with oxidative phosphorylation from the String 10 protein-protein interaction

analysis (Fig 4). This was performed for the 64 samples obtained from normal controls, acute,

chronic T1 and chronic T5. In all cases except MT-CYB, the expression levels were statistically

significantly lower in chronic T1 patients (Fig 6).

Characterization of the transition from acute to chronic LBP

transcriptome

To characterize the transition from acute to chronic pain, we performed Euclidean clustering

on the set of differentially expressed genes (DEG) and found that the chronic T1/T5 patients

were distinctly clustered from the normal control and acute patients (Fig 7). The top 100

DEGs in the chronic patients (CT1 and CT5) were identified and plotted in context with the

normal controls and acute group (Fig 2). In examining the heatmaps in Fig 2, it was apparent

that the normal control and acute group transcriptomes were more similar than the two

chronic T1/T5 patient transcriptomes. The top two differentiated genes between acute and

Fig 2. Comparisons in differential gene expression among normal control (single timepoint) and cases (acute and chronic T1 and T5). (A)

Venn diagram showing that 2,688 differentially expressed genes (LFC ±0.58; FDR p-value� 0.05) overlap between the two contrasts. (B) Heat map

showing the top 50 up-regulated (left) and down-regulated (right) protein-coding genes in all four groups [healthy participants (normal), acute,

chronic T1 and chronic T5]. Color key shows the z-score for downregulated genes (blue) and upregulated genes (red). (C) A one-tailed Fisher’s

Exact test was used to compute a hypergeometric p-value to determine whether the differentially expressed genes from each contrast (chronic T5

versus normal control group and chronic T1 versus acute group) were significantly enriched for known pain genes (dataset constructed from

multiple literature and online database sources (see supplemental methods for detail). The p-value for known pain genes = 1.26E-09 for the chronic

T5 versus normal participants contrast, and p = 2.62E-08 for the chronic T1 versus acute contrast and for genes that form the extended MHC locus.

The heatmap depicts known pain genes. Color key shows the z-score for downregulated genes (blue) and upregulated genes (red). (D) We computed

the one-tailed Fisher’s Exact test to obtain a p-value for genes that reside in the extended MHC genomic locus (see supplemental methods for detail).

The p-value for genes in the extended MHC genomic locus was only significant for the chronic T1 versus acute contrast (p = 1.43E-02).

https://doi.org/10.1371/journal.pone.0216539.g002
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chronic T1 groups were HLA-DMA and PDF (Fig 7). Mitochondrial gene, Peptide deformylase

(PDF), was significantly upregulated at T1—baseline compared to the acute group and at T5–6

months compared to the normal control group (Fig 7). We next compared selected targets

from the RNA seq analysis of the chronic T5 transcriptome using qPCR to confirm upregu-

lated expression in the HLA-A, HLADRB5, and PDF genes (S1 Fig). Finally, we conducted

unbiased gene ontology analyses, and the most significant pathway was the antigen processing

and presentation pathway (Fig 3), demonstrating that higher levels of HLA and MHC locus

genes were characteristic of the chronic T1 patients versus acute patients. Co-expression analy-

ses of the DEG list showed several main clusters of genes centered on OPRM1, EGFR, OXT,

AVP, and GRIN2B (Fig 5).

Fig 3. Unbiased pathway analysis demonstrates significant enrichment for extracellular matrix genes in chronic T5 versus the normal control group and

the antigen presentation pathway (MHC class I and II) genes in the chronic T1 patients compared with the acute group. Using the Impact Analysis

method in iPathway (Advaita Corporation), we conducted unbiased pathway analysis. Each pathway diagram is overlayed with the computed perturbation of

each gene. The perturbation accounts both for the gene’s measured fold change and for the accumulated perturbation propagated from any upstream genes

(accumulation). The highest negative perturbation is shown in dark blue, while the highest positive perturbation is shown in dark red. The legend describes the

values on the gradient in logFC. Note: For legibility, one gene may be represented in multiple places in the diagram and one box may represent multiple genes

in the same gene family. A gene is highlighted in all locations it occurs in the diagram. For each gene family, the color corresponding to the gene with the

highest absolute perturbation is displayed. (A) Top differentially regulated pathway in the chronic T5 versus normal group is extracellular matrix (ECM)-

receptor interaction (KEGG: 04512; p = 0.005). (B) Bar graph of individual gene display for the ECM-receptor interaction pathway. The signed perturbation is

represented with negative values in blue and positive values in red. The box and whisker plot on the left summarizes the distribution of all gene perturbations in

this pathway. The box represents the 1st quartile, the median and the 3rd quartile, while circles represent the outliers. (C) Top differentially regulated pathway

in the chronic T1 versus acute group is antigen processing and presentation (KEGG: 04612; p = 0.006). (D) Bar graph individual gene display for the antigen

processing and presentation pathway. The signed perturbation is represented with negative values in blue and positive values in red. The box and whisker plot

on the left summarizes the distribution of all gene perturbations in this pathway. The box represents the 1st quartile, the median and the 3rd quartile, while

circles represent the outliers.

https://doi.org/10.1371/journal.pone.0216539.g003
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Discussion

This study took an innovative approach of following patients prospectively at the onset of

acute low back pain to monitor the transition to resolution or chronicity of low back pain and

analyzing the whole blood transcriptome of this process. We identified a unique cLBP tran-

scriptome characterized by significantly differentially expressed genes enriched for known

pain genes, with significant upregulation of ECM genes, and genes from the extended MHC

genomic locus. The chronic T1 and T5 groups demonstrated significant upregulation of

OPRM1, EGFR, OXT, AVP, and GRIN2B, which are genes known to be involved in pain pro-

cessing. In respect to the acute to chronic transcriptome, we identified significant downregula-

tion of mitochondrial genes involved in oxidative phosphorylation, MT-ND1, MT-ND2,

MT-ND5, MT-ND6, and MT-CO3 in the chronic T1 group compared to the normal and acute

groups. We also demonstrate that, at the gene level, the transition from acute to cLBP is char-

acterized by upregulation of HLA and MHC locus genes, including, HLA-DMA and PDF, with

continued upregulation of PDF at 6-months from the onset of pain.

Fig 4. Protein-protein interaction network analysis demonstrates clusters of co-expressed genes. Evidence for significant protein-protein interactions was

demonstrated using STRING v10. For both contrasts (chronic T5 versus normal controls; chronic T1 versus acute), we analyzed the top 500 differentially

expressed genes (250 upregulated, 250 downregulated). For the analysis, we specified high confidence (0.70) for cluster positions in the network as determined

by an algorithm that computes a global confidence binding score. We next removed all disconnected nodes and then applied the Markov Cluster Algorithm

(MCA) to extract clusters of densely connected nodes from biological networks. (A) String v10 analysis of gene expression analysis from chronic T5 compared

with normal controls. Of the top 500 differentially expressed genes, 327 were identified in the database. The final network is comprised of 327 nodes and 150

edges. The random number of edges is 92. The protein-protein interaction (PPI) enrichment p-value = 1.88E-08. (B) String v10 analysis of gene expression in

chronic T1 compared with the acute group. Of the top 500 differentially expressed genes, 263 were identified in the database. The final network is comprised of

263 nodes and 84 edges. The expected number of edges is 64. The PPI enrichment p-value = 0.0107.

https://doi.org/10.1371/journal.pone.0216539.g004
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Characterization of the transcriptome associated with chronic low back

pain

Similar to other cohorts of non-specific, or axial LBP, we identified several social determinants

of health that differed between the acute and cLBP groups, including levels of education and

employment. However, patients in this sample did not differ on other socio-economic factors,

body mass index or daily physical activity. Using Euclidean cluster analysis of our gene expres-

sion data described in the methods (see section Euclidean Clustering), we found that the sam-

ple separated into two distinct groups, healthy controls/acute versus chronic T1/T5, based

solely on their gene expression profiles.

Further, the performed analyses revealed that the list of genes differentially expressed

between the groups is highly enriched for genes known to be associated with pain, including

the extended MHC locus. This finding is indeed in line with the dearth of literature demon-

strating that the MHC locus has been found to be enriched in DRG tissue from a post herpetic

pain model in mice[38]. Moreover, the MHC complex was also shown to play a role in pain

behavior in a neuropathic pain model[39–41] in an MHC complex congenic strain of rats.

Investigators have also examined the role of MHC gene expression in humans with chronic

pain. MHC genes were found to be upregulated in patients with herpes simplex virus-induced

Fig 5. The whole blood gene expression levels for known or suspected pain genes that were members of major clusters from String 10 protein-protein

interaction analysis were plotted. The analysis demonstrates that levels of each gene are differentially higher in the chronic T1/chronic T5 patients compared

with acute and normal control participants. In each panel, the raw, normalized, non-zero gene expression counts from DESeq analysis are displayed as a scatter

plot for each cohort. Symbols indicate individual expression levels for each of the N = 64 participants. A Kruskal-Wallis 1-way ANOVA was used to examine

comparisons. In all cases, the expression levels for each gene were higher in the chronic T1 and chronic T5 groups compared with normal control participants

and the acute group. (A) Opioid receptor mu 1 (OPRM1) gene (H = 27.64, p< 0.0001). (B) Epidermal growth factor receptor (EGFR) gene (H = 15.29,

p = 0.0016). (C) Oxytocin (OXT) gene (H = 47.43, p<0.0001). (D) Arginine vasopressin (AVP) gene (H = 31.44, p<0.0001). (E) Glutamate ionotropic receptor

NMDA type subunit 2B (GRIN2B) gene (H = 24.25, p<0.0001).

https://doi.org/10.1371/journal.pone.0216539.g005
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unilateral neuropathic-like pain[42], Reiter’s disease, a chronic condition that includes low

back pain and stiffness as a symptom[43] and a cross-sectional study of patients with temporo-

mandibular disorder or low back pain[22]. Noting that the control sample of the current study

had less Black participants compared to the chronic T5 group, one does need to be cautious in

drawing conclusions about DEGs, such as those in the MHC region, that show different pat-

terns in racially diverse groups. This finding requires further studies in larger samples with

adequate power to control for sex and race/ethnicity or that include matched comparison

groups, which is a major foci of this team of investigators. Nevertheless, it is known that the

human leukocyte antigen (HLA) locus of the MHC region is frequently associated with various

chronic pain phenotypes, and was found to have representative genes upregulated in this

study. We found that all three of the MHC class I genes (HLA-A, HLA-B, HLA-C) and three of

the six MHC class II genes (HLA-DQB1, HLA-DRB1, and HLA-DRB5) were upregulated in the

chronic T1 compared to the acute group. MHC class I gene upregulation has been associated

with chronic regional pain syndrome (CRPS)[44–46], chronic pancreatitis[47], and post her-

petic neuralgia[48,49]. MHC class II gene upregulation has also been associated with chronic

pain conditions including chronic pancreatitis[49–50], inguinal hernia repair[51], CRPS[19],

lumbar disc herniation[51], rheumatoid arthritis[52,53], chronic inflammatory response syn-

drome (CIRS), which includes pain as a major symptom[54] and in TMD and LBP[22]. Taken

together, the findings from the cLBP transcriptome analysis compared to healthy normal

Fig 6. The whole blood gene expression levels for a cluster of mitochondrial genes associated with oxidative phosphorylation from String 10 protein-

protein interaction analysis were plotted. Results demonstrate that levels of each gene are differentially lower in the chronic T1 compared with the acute

and normal participants. In each panel, the raw, normalized, non-zero gene expression counts from DESeq analysis are displayed as a scatter plot for each

cohort. Symbols indicate individual expression levels for each of the N = 64 samples. A Kruskal-Wallis 1-way ANOVA was used to examine comparisons. In

all cases except MT-CYB, the expression levels were statistically significantly lower in chronic T1 patients. (A) Mitochondrial encoded NADH

dehydrogenase 1 (MT-ND1) gene (H = 12.29, p = 0.0064. (B) NADH dehydrogenase 2 (MT-ND2) gene (H = 12.05, p = 0.0072). (C) NADH dehydrogenase 5

(MT-ND5) gene (H = 10.22, p = 0.0168). (D) NADH dehydrogenase 6 (MT-ND6) gene (H = 17.03, p = 0.0007). (E) Cytochrome B (MT-CYB) gene

(H = 7.333, p = 0.0620). (F) Cytochrome C oxidase III (MT-CO3) gene (H = 8.146, p = 0.0431).

https://doi.org/10.1371/journal.pone.0216539.g006
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controls in this study are in line with what is found in the literature and suggests that upregula-

tion of the genes found in the MHC locus might form a transcriptomic signature of patients

with cLBP.

Characterization of the acute to chronic pain transcriptome

However, the analysis above does not answer the question of what genes are differentially

expressed between LBP patients whose pain resolved and those who developed chronic LBP.

Thus, we compared the baseline transcriptomic profiles (at pain onset) of patients whose pain

resolved within six weeks (acute group) with those who developed cLBP (chronic T1 and T5).

This analysis was important to determine whether there was a genetic difference between the

groups as well as an expression profile that indicates increased risk of progressing to cLBP. As

with the chronic T5 versus healthy controls, Euclidean cluster analysis of our gene expression

Fig 7. Characterization of differential gene expression in whole blood over the transition from acute to chronic low back pain. (A)

Euclidean clustering demonstrates separation between normal control/acute group and chronic T1/T5. (B and C) HLA-DMA and PDF were the

top 2 differentially expressed genes between the acute group and chronic T1 group. (D) PDF was significantly differentially expressed between

normal controls and the chronic T5 group.

https://doi.org/10.1371/journal.pone.0216539.g007
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data showed that the sample separated into two distinct groups, acute versus chronic T1, based

solely on their transcriptomic profile. Further, like the previous analysis, the list of genes differ-

entially expressed between the groups was highly enriched for known pain genes and genes in

the extended MHC locus. This is an important finding because, unlike the initial analysis that

described the cLBP transcriptomic signature in the chronic pain phase, these genes could poten-

tially represent whole blood biomarkers to predict which LBP patients are at a higher risk for

developing cLBP. Genes in the MHC locus have been associated with nocifensive behaviors in

preclinical studies of noxious acute pain stimuli[55,56] in an MHC complex congenic strain of

rats and complete Freund’s adjuvant inflammation in MHC II mutant mice[22].

Finally, we performed an unbiased pathway analysis of the differentially expressed genes

from the previous comparisons (chronic T5 vs. normal controls and acute vs. chronic T1). In

the chronic T5 group versus normal controls comparison, there was significant enrichment

for extracellular matrix (ECM) genes. The top differentially regulated pathway was the ECM-

receptor interaction, which has been associated with spinal disc degeneration[57] and neuro-

pathic pain in a rodent spared nerve injury model[58]. In the chronic T1 versus acute group

comparison, there was significant enrichment for MHC class I and II genes in the antigen pro-

cessing and presentation pathway, to which the HLA genes belong. A string analysis of the co-

expression of genes revealed several clusters of genes. We followed up on this finding by exam-

ining the expression levels of genes in our study that are included in those clusters. We found

that the chronic T1 and T5 groups had higher expression levels of OPRM1, EGFR, OXT,

GRIN2B, and AVP compared to the acute and normal control groups. The OPRM1 gene,

which codes for the mu opioid 1 receptor[59–61], EGFR interactions with epiregulin[62],

OXT, which codes for oxytocin[63–66], and GRIN2B, which codes for the N-methyl-D-aspar-

tate (NMDA) glutamate receptor 2b subunit[67–69] are all known to be significant compo-

nents in pain processing.

We also found, in the acute versus chronic T1, a significant cluster of genes (MT-ND1,

MT-ND2, MT-ND5, MT-ND6, and MT-CO3) centered around MT-ND2, the gene encoding

for mitochondrial encoded NADH dehydrogenase 2. Single nucleotide polymorphisms (SNPs)

in the MT-ND2 gene have been shown to be associated with oxidative phosphorylation system

deficiency, which causes a variety of inborn errors of energy metabolism depending upon the

specific SNPs mutated and the affected gene(s)[70]. SNPs in other MT-associated genes have

been shown to be associated with migraine headache[71], a pain disorder that is very common

in patients with maternally inherited mitochondrial dysfunction[72]. In the chronic T1 versus

acute group, all of the mitochondrial associated genes were significantly downregulated. These

genes were not found to be differentially regulated in the chronic T5 patients compared with

healthy controls, nor did this gene cluster appear in the gene co-expression analysis of the cLBP

cohort versus healthy controls. Mitochondria have a critical role in cellular energy metabolism

and produce nearly all of the cellular energy via enzymatic coupling of oxidative phosphoryla-

tion[73]. One of the most immediate consequences of a deficiency in the oxidative phosphoryla-

tion system is an increase the production of superoxide, which can lead to increased production

of reactive oxygen species (ROS)[74–76]. Oxidative stress has been shown to be a contributor of

a variety of chronic pain conditions including those with inflammatory and neuropathic com-

ponents[77–79]. Thus, our results suggest that in addition to known pain and MHC locus

genes, (including upregulation of HLA-DMA and mitochondrial gene, PDF), that blood gene

expression of mitochondrial genes involved in oxidative phosphorylation could be potentially

useful as biomarkers of those at risk for developing cLBP at a very early time point.

This paper has several limitations that warrant caution in interpreting the results. First, due

to the design of the study we were limited to analyzing baseline data and samples of the acute

group because data was not collected after pain resolution. In addition, due to the small sample
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sizes, we did not examine differential gene expression between patients based on sex or race.

The second limitation is the lack of congruence between the RNA seq results and several of the

genes that we attempted to validate via qPCR. In some respects, one could argue that qPCR

validation of RNA seq is a “low tech” method to validate a high-tech method, however there is

still interest in doing so. We optimized the primer pairs on non-patient samples and then ran

qPCR for the selected genes. One possibility for the lack of congruence in some cases might be

that we were amplifying a different isoform of the gene than was captured in the LFC data at

the whole gene level. We plan future replication studies with additional samples, which should

provide insight into this issue and also, with increased statistical power, provide additional

confidence in our findings.

Despite these limitations, chronic low back pain continues to be a leading cause of disability

and one of the most expensive medical conditions in the United States[78–80], with nearly

40% of cases of acute low back pain persisting for more than 12 weeks from the time of onset

[81–83]. Studies have focused on identifying psychosocial, environmental, structural, and

somatosensory factors that might predict who is at risk for developing cLBP[84–88]. However,

despite recent findings, the mechanisms underlying the transition from acute to chronic LBP

and predictors of those patients who may be at risk of developing chronic pain remain unclear.

Thus, we assert that in spite of the limitations, this study is quite innovative, and adds signifi-

cantly to our body of knowledge regarding potential blood biomarkers of chronic pain. Taken

together, the findings from this study identified several genes and pathways that are upregu-

lated at the time of initial onset of pain in patients who develop cLBP compared to patients

who have acute resolution of pain and healthy controls, including a set of known pain genes,

MHC locus genes, and mitochondrial genes linked to oxidative phosphorylation. This suggests

that these genes could be potential blood biomarkers of LBP patients who are at high risk for

developing cLBP. The pathways identified offer potential targets for developing new therapeu-

tic strategies for preventing the development of cLBP, or once it forms, to potentially reduce

chronic pain in this patient population.
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