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Protein folding homeostasis in the lumen of the endoplasmic

reticulum is defended by signal transduction pathways that are

activated by an imbalance between unfolded proteins and

chaperones (so called ER stress). Collectively referred to as the

unfolded protein response (UPR) this homeostatic response is

initiated by three known ER stress transducers: IRE1, PERK

and ATF6. These ER-localised transmembrane (TM) proteins

posses lumenal stress sensing domains and cytosolic effector

domains that collectively activate a gene expression

programme regulating the production of proteins involved in

the processing and maturation of secreted proteins that enter

the ER. However, beyond limiting unfolded protein stress in the

ER the UPR has important connections to lipid metabolism that

are the subject of this review.
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Lipid regulation of the endoplasmic reticulum
unfolded protein response is conserved in
eukaryotes
Clues to a lipid connection were provided by the very

earliest studies in which UPR components were first

identified. The genes encoding what we now know to

be the UPR transducer IRE1 (also known as ERN1, for

ER to nucleus transducer 1) and its downstream transcrip-

tion factor HAC1/IRE2 (the yeast ortholog of the metazoan

XBP1) were first identified as required for growth in

medium deprived of inositol [1,2], an essential building

block of yeast phospholipids. Depletion of inositol from
www.sciencedirect.com 
growth medium strongly activates IRE1 signalling [3],

whereas IRE1 and HAC1 are required for full expression

of genes involved in lipid metabolism in yeast [4]. Further-

more, deletion of genes regulating lipid metabolism

strongly activates UPR signalling in yeast [5��].

Lipid-dependent activation of IRE1 was also observed

following loading of yeast with saturated fatty acids and

sterol [6�] and following deletion of the regulators of

sphingolipid synthesis ORM1 and ORM2 [7]. These

findings established firm links between lipids and UPR

signalling in yeast: the UPR is activated by altered lipid

metabolism whose consequences are mitigated by UPR

signalling.

In mammalian cells, enhanced UPR signalling has been

observed in cholesterol-loaded macrophages [8], in pan-

creatic beta cells exposed to saturated fatty acids [9] and in

cells in which increased lipid saturation was achieved by

genetic or pharmacological inhibition of the D9 desaturase,

stearoyl-CoA desaturase 1 [10,11]. Perturbation of sphingo-

lipid metabolism causing increased levels of ceramides

also activated the UPR in mammalian cells [12,13].

Increased UPR markers have also been observed in the

liver and adipose tissue of mice fed a high fat diet and in

severely obese humans [14,15]. These observations

indicate that the ability of UPR transducers to sense

perturbations to lipid homeostasis is conserved in eukar-

yotes.

Linking lipid perturbation to activation of UPR
transducers
Lipid composition could modulate protein folding in, or

trafficking through, the ER, indirectly activating UPR

transducers by changing the level of unfolded proteins.

Changes in the lipid composition could, for example,

perturb ER calcium homeostasis, inhibiting the function

of calcium-dependent enzymes and chaperones. In support

of this idea, ER stress signalling in the liver of obese mice

correlated with perturbations of ER calcium homeostasis

through an inhibition of the SERCA transporter caused by

an increase in the ratio between phosphatidylcholine and

phosphatidylethanolamine in membranes of the hepato-

cytes [14]. UPR in cholesterol-loaded macrophages was

also linked to inhibition of the SERCA pump [16].

However, there are clues that lipid changes may affect

UPR signalling independently of their effect on protein

folding in the ER lumen. In yeast, depletion of the

phospholipid building block inositol strongly activated
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IRE1 but had no effect on the mobility of the ER

chaperone BiP/KAR2 (BiP mobility is strongly retarded

by unfolded protein stress) [17]. This indicates that

inositol depletion activates the UPR without causing

lumenal unfolded protein stress. In C. elegans, deletion

of mdt-15, a subunit of the transcriptional regulator

complex Mediator, was associated with an increase

in membrane lipid saturation and the activation IRE1

and PERK without evidence for concomitant formation

of protein aggregates in the ER, suggesting that acti-

vation of the UPR stress transducers may have a

component that is independent of unfolded protein

stress [18�].

Direct evidence that lipids may activate the UPR inde-

pendently of their effects on unfolded protein burden

in the lumen was provided by the observation that IRE1

and PERK lacking their lumenal unfolded protein stress-

sensing domains were activated in yeast deprived of

inositol [19��] or mammalian cells exposed to saturated

fatty acid [20��]. Activation of the mutant IRE1 and

PERK lacking their lumenal domain required ER

membrane tethering via a TM domain [20��]. Further-

more, sensitivity to the lipid composition of the mem-

brane bilayer was observed in a reconstituted system

composed only of liposomes and a truncated PERK

lacking its lumenal domain, but retaining the TM and

cytosolic effector domains [20��]. Thus, perturbations of

ER membrane lipids can directly activate IRE1 and

PERK independently of unfolded proteins in a process

that requires TM domain insertion into the ER lipid

bilayer (Figure 1).
Figure 1
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Activation of the UPR signal transducers hinges on the

transition from an inactive monomeric state to an active

dimer/higher order oligomeric structure (reviewed in

[21]). The recent findings obtained with mutant UPR

signal transducers lacking their lumenal domains suggest

that the TM domain of PERK and IRE1 could promote

dimerization by responding to changes in the biophysical

properties of the ER membrane [20��]. In comparison to

other organelles, the ER lipid bilayer is a thin and fluid

membrane, characterized by low cholesterol content (for a

review of the key differences in the lipid composition of

the different organelles, see [22]). Changes in the lipid

composition, such as increased acyl chain saturation, are

therefore likely to modify the ER membrane biophysical

properties and influence the behaviour of TM peptides

within the lipid bilayer.

In the lipid bilayer, proteins and lipids are subject to three

types of interactions: peptide–peptide, peptide–lipid

and lipid–lipid (Figure 2). The relative strength of which

influences the oligomeric state of a TM peptide in the

lipid membrane [23]. The biophysical properties of mem-

branes significantly influence the partitioning of TM

peptides between their monomeric and dimeric/oligomeric

state. This is played out through several defined mechan-

isms that might contribute to lipid regulation of UPR

signalling, independently of unfolded proteins (Box 1).

A measure of lipid-mediated activation of the mutant

IRE1 lacking its lumenal domain was retained when the

TM domain of IRE1 was swapped to that of calnexin, an

unrelated ER protein, or when the TM peptide
ΔLD mutant
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Figure 2
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Molecular interactions in the plane of the lipid bilayer. Within the plane

of the membrane, a TM helix can interact solely with neighbouring

lipids and therefore remain as a monomer, or it can also interact with

another TM helix and therefore form a dimer or higher order structure.

The monomer/dimer equilibrium is modulated by the strength of the

three types of interactions taking place in this simplified model of TM

helices in a lipid bilayer: (1) peptide–lipid interaction, (2) lipid–lipid

interaction and (3) peptide–peptide interaction. Changes to the lipid

composition can affect the strength of these competing interactions

and therefore modify the monomer/dimer equilibrium of the embedded

TM [56].
sequence was scrambled [20��]. These findings suggest

that lipid-dependent activation of the UPR transducers

has relaxed specificity  with respect to protein–protein or

protein–lipid interactions involving the TM amino

acid side chains, but rather proceeds through generic

biophysical mechanisms of dimerization and approxi-

mation that are shared by diverse TM domains,

described in Box 1. As long as it allows insertion

in the ER membrane, the TM domain of the UPR

transducers can tolerate a range of amino acid substi-

tutions in its sequence. However, the sensitivity of the

assays used to measure the effects of TM swaps on

intensity of UPR signalling is rather limited. It thus

remains possible that more sensitive assays might reveal

sequence constrains on TM domains of the UPR trans-

ducers driven by the need to respond to lipids.

It is noteworthy that the response of full-length IRE1 and

PERK to lipid perturbation was considerably stronger

than their lumenal domain-deleted derivatives [20��].
This observation is consistent with an important contri-

bution of unfolded protein stress to lipid-mediated acti-

vation of IRE1 and PERK. Alternatively, as the lumenal

domain stabilises the dimer [24,25], it may contribute to

lipid-mediated activation of the UPR even in circum-

stances that are not associated with any further increase
www.sciencedirect.com 
in unfolded protein stress. Cooperativity in dimerization

suggests that perturbations in the ER lipid bilayer com-

position may lower the threshold for unfolded protein

stress-mediated activation and that direct lipid-dependent

regulation and conventional lumenal unfolded protein

stress mediated activation of the UPR transducers are

likely to modulate each other.

UPR modulation of lipid metabolism
IRE1 and PERK also modulate lipid metabolism, placing

the UPR transducers as both sensors of primary lipid

perturbations and regulators of lipid homeostasis. In yeast,

the importance of IRE1 to lipid metabolism is stressed by

the dependence of IRE1 mutant yeast on exogenous

inositol for their survival [1,3]. In the absence of exogenous

inositol, yeast IRE1 is required for the expression of INO1
encoding inositol-3-phosphate synthase, an enzyme cata-

lysing a rate-limiting step in the synthesis of phosphati-

dylinositol [3,26]. Yeast genes controlling the expression

of key enzymes in lipid metabolism are upregulated

following induction of the UPR [4]. The role of IRE1 in

regulating phospholipid synthesis is conserved in mam-

mals, where activated splicing of its downstream effector

XBP1 has been shown to contribute to ER membrane

expansion through the stimulation of the expression of

genes involved in phospholipid synthesis [27�]. In

addition, IRE1 and PERK signalling have been shown

to regulate lipid metabolism in vivo [28,29].

Remarkably, lipid perturbations in yeast triggered pre-

dominantly compensatory changes affecting protein qual-

ity control, contrasting with minimal adjustments to lipid

metabolism [30��]. Restoration of protein quality control

was dependent on IRE1, while expression of lipid metab-

olism genes previously identified as IRE1 targets

remained largely unchanged. In this study, lipid disequi-

librium was triggered by genetic deletion of CHO2 or

OPI3, two enzymes catalysing respectively the initial

and late steps of phosphatidylcholine synthesis from

phosphatidylethanolamine. It should be noted that

OPI3 expression is upregulated following IRE1 activation

[4,31], raising the possibility that IRE1-dependent com-

pensatory changes in lipid composition might have been

blocked by the mutation in OPI3.

Following perturbation of the ER membrane lipid com-

position, compensatory changes to lipid homeostasis and

protein homeostasis could be equally important to alle-

viate cellular stress. Indeed, as discussed earlier, lipid

disequilibrium within the ER membrane is likely to

affect protein folding within the ER lumen, for example

by perturbing ER calcium homeostasis [14]. Lipid per-

turbations could also cause proteotoxicity by affecting

protein folding within the membrane, protein transloca-

tion or trafficking, or by causing membrane protein

aggregation. Activation of IRE1a and PERK by changes

in ER membrane lipid composition may be a mechanism
Current Opinion in Cell Biology 2015, 33:67–73
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Box 1 Biophysical principles regulating TM–TM dimerization

Hydrophobic mismatch

Stable membrane integration of single-pass proteins is favoured by matching TM length to the thickness of the lipid bilayer, as evidenced by the

gradual increase in TM length of single pass resident proteins that matches the increase in the lipid bilayer thickness along the secretory pathway

[43��]. However, a mismatch can occur when changes to lipid composition causes the thickness of the lipid bilayer to be different from the length of

the hydrophobic TM peptide. The thickness of the lipid bilayer depends on the length of the acyl chains and on the degree of their unsaturation. The

less flexible saturated acyl chains remain in an extended conformation and therefore tend to increase the thickness of the lipid bilayer [44].

As lipid bilayer thickness increases, polar amino acid side chains that would otherwise be located at the water–lipid interface are forced into the

hydrophobic lipid bilayer. Their presence in the lipid bilayer creates a thermodynamically unfavourable situation, which can be relieved by tilting or

by the formation of hydrogen bonds or salt bridges between polar side chains from adjacent TMs, favouring dimerization [45–47].

Acyl chain flexibility

The degree of phospholipid unsaturation can also influence TM–TM interactions, independently of effects on the thickness of the lipid bilayer.

Saturated acyl chains are less flexible than unsaturated acyl chains. As a consequence saturated acyl chains interact less efficiently with the

surface of the TM helices than unsaturated acyl chains. Weakening of TM–lipid interaction by acyl chain saturation favours the competing TM–TM

interaction thereby promoting dimerization [48].

Lipid microdomains

Biological membranes composed of heterogeneous lipids can segregate into lipid microdomains, such as liquid ordered domains and liquid

disordered domains [22,49]. TM proteins preferentially localize into different membrane domains where their local density increases [50,51].

Changes in lipid composition can modify the relative size of these membrane domains. As a consequence, the local concentration of a TM protein

that partitions asymmetrically between lipid domains, may change, thereby affecting the monomer–dimer equilibrium [48,52]. In comparison to the

plasma membrane, the relative low cholesterol and sphingolipid content of the ER makes the formation of liquid ordered microdomains unlikely.

However, this observation does not exclude the possibility that microdomains with specific lipid composition are formed in the ER, either locally at

the site of sphingolipid or cholesterol synthesis [53], or in the spatially distinct sub-compartments of the ER (sheets, tubules, ER exit sites,

mitochondrial associated membrane) [54,55].

Current Opinion in Cell Biology
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allowing the cell to adapt the flow of protein entering the

ER, as well as the folding apparatus in response to

changes in the lipid composition that might otherwise

promote unfolded protein accumulation.

Physiological significance of lipid activation of
the UPR
Activation of the UPR and perturbations in the ER lipid

composition are observed in morbid obesity [15,32]. More-

over, UPR activation has been linked to the development

of insulin resistance or beta-cell death in morbid obesity

[9,14,33]. Altogether these observations suggest that lipid-

dependent activation of the UPR transducers could

contribute to the pathogenesis of morbid obesity.

Flaviviral non-structural proteins are ER membrane associ-

ated proteins triggering membrane rearrangements [34].

Though they lack substantial ER lumenal domains, they

have been shown to activate the UPR, suggesting that

lipid-dependent activation of the UPR could operate in

Flavivirus infected cells [35–37]. Lipid-dependent acti-

vation of the UPR transducers could also occur during

cellular processes marked by a discrepancy between the

level of UPR activation measured and the level of unfolded

proteins detected in the ER, such as B lymphocyte de-

velopment [38–40]. In line with this hypothesis, modifi-

cations of the ER lipid membrane could also initiate what

has been called anticipatory ER stress [41,42] in which the

UPR is triggered independently of unfolded proteins,

thereby allowing the cells to adapt their ER folding

capacity in anticipation of unfolded protein stress.

Gaging the physiological or pathological significance of

lipid-mediated activation of the UPR transducers

represents a major challenge for the future. Currently,

direct lipid-dependent activation is isolated from any

affects of unfolded protein stress by the expression of

mutant UPR transducers lacking their lumenal domain.

Unfortunately this technique cannot be readily applied to

study physiological circumstances, such as those listed

above.

Conclusions and perspective
The proposed tuning of UPR signalling by lipids,

mediated by simple biophysical principles, could

represent an addition strand in the lipid-UPR dialectic;

the physiological significance of which remains to be

explored. Major lipid perturbations are found alongside

UPR activation in important pathophysiological circum-

stances such as viral infection and severe obesity, and

these would be good candidates for testing the biological

role of the lipid-UPR dialectic.

The highly cooperative nature of IRE1 (and likely

PERK) activation is poised to respond to subtle variation

in the factors that alter the tendency of TM proteins to

dimerize. Acting alone, each of these simple biophysical
www.sciencedirect.com 
principles would probably have only weak effects on

protein dimerization. This may account for the consider-

able redundancy in the sequence requirements for a

functional IRE1 TM domain [20��]. However, we pro-

pose that in association with dimerization-competent

lumenal and cytosolic domains that respond to other cues,

these weak forces acting on the TM domains might allow

lipids to tune UPR signalling.

Changes in membrane properties are likely to influence

other TM proteins by such generic mechanisms. The

identification of such proteins and a better understanding

of the biophysical parameters of the membrane that

govern the modulation of their function represent an

interesting challenge for cell biology.
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