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Abstract: The total phenolic compounds content, free radical-scavenging capacity and capsaicinoid
content in populations of wild Piquin chili (C. annuum) were studied. Aqueous and hydroalcoholic
extracts from nine ecotypes were evaluated. High contents of phenolic compounds and free
radical-scavenging capacities were observed for both extracts; however, the values that were found
for the hydroalcoholic phase were substantially higher. LC-MS analysis allowed for the detection of
32 compounds, where apigenin-8-C-glucoside followed by vanillic acid 1-O-β-o-glucopyranosylester
(Isomer I or II) and 7-ethoxy-4-methylcoumarin were the most widely distributed; they were found in
more than 89% of the ecotypes. The diversity of identified phenolic compounds was different among
ecotypes, allowing them to be distinguished by chemical diversity, free radical-scavenging capacities
and heat Scoville units. The total capsaicinoid content was higher in Population I (23.5 mg/g DW) than
in Populations II and III, which had contents of 15.3 and 10.7 mg/g DW, respectively. This variability
could lead to phytochemical exploitation and the conservation of the natural populations of wild chili.
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1. Introduction

The natural variation of phytochemicals is an ecologically and evolutionarily important
characteristic for plant plasticity responses when they are faced with different environmental
challenges [1]. These are natural compounds that give plants their basic organoleptic characteristics,
such as color, flavor, and aroma and they are also associated with antioxidant, free radical-scavenging,
prebiotic, and medicinal effects, especially the prevention of diseases, such as diabetes and
hypertension [2]. Therefore, these substances could be responsible for the beneficial effects associated
with plants and have a direct impact on quality and consumer preferences [3].

A large number of studies have examined bioactive compounds and their diversity within
the genus Capsicum; most studies have focused on domesticated species [4]. Variability in the
expression and accumulation of metabolites (phenolic compounds, carotenoids, and capsaicinoids)
is associated with adaptations to the local environment where the genotype developed [5].
The morphological, genetic, and phytochemical diversity of C. annuum [6] has been dependent on
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human selection, management, and exploitation of its characteristics. For this reason, morphotypes
satisfy the requirements of different applications such as type, color, shape, ripeness, and pungency,
which depend on their phytochemical profiles [7] and determine their broad culinary, pharmacological,
and industrial utility.

Similar patterns of use have been observed in wild chili and primarily in chilis with culinary and
therapeutic applications. Nevertheless, few studies have analyzed the composition of metabolites in
C. annuum var. glabriusculum [8–10], which are mainly focused on the variation and quantitation of
capsaicinoids, because they are responsible for pungency and are also associated with chemopreventive
roles [11]). However, there is a substantial lack of knowledge regarding their biological and
eco-nutritional potential despite the great variability observed in their flavors and therefore in their
compositions and phytochemical concentrations. Fruits of Piquin chili, as a wild resource, present
wide variation in metabolite contents that are produced by environmental, genetic, phenological,
and processing conditions, which encourages the determination of the responsible phytochemicals
for biofunctional and nutritional characteristics. Variations in acidity, color, and pungency have been
reported during the ripening process, similar to that observed during processing for consumption
(drying and pickling). Additionally, the contents of antioxidants and capsaicinoids showed variations
in natural conditions but also during processing [8–10,12,13]. This highlights the need to know
the identity, quantity, and diversity of phytochemicals in the fruits to select better conditions for
preserving the nutritional potential and organoleptic characteristics for direct consumption or for
industrial purposes.

Previously, variation in the capsaicinoid content of Piquin chili was studied and related to
climatic conditions and vegetation; however, despite detailed descriptions of climate conditions,
other compounds were not identified or quantified [13]. Because this is a wild plant genetic resource,
it is important to describe traits for breeding programs and to develop efficient management and use
strategies. For this reason, exploration of the bioactive phytochemical constituents of wild chilis may
help to elucidate the compositional expression in different environments (micro niches) where the
plants develop and are harvested. To understand how the natural growing conditions could affect
phytochemical accumulations on this species, we studied the phenolic content, free radical-scavenging
capacity, and capsaicinoid content of Piquin chili (C. annuum var. glabriusculum) from different
geographic areas.

2. Results and Discussion

2.1. Total Phenolic Content and Free Radical-Scavenging Capacity

The samples that were analyzed in this study were from wild native populations that grew in
distinct geographic situations. Fruit gathering was performed in the same manner as the conventional
practices used by local gatherers. Therefore, the methods largely represent the common handling
conditions prior to consumption. Previously, the capsaicinoid contents of some samples of Piquin chili
were reported. However, the ripening stage of fruits and processing were not specified [13]; this is
relevant information due to its impact on the quantitation of metabolites.

Variations dependent on the extraction solvent, geographic origin of the Piquin population
and the ecotype (within populations) were observed in TPC (total phenolics content) and levels of
free radical-scavenging capacity. Statistical analysis showed highly significant differences (p < 0.01)
among extraction solvents for all free radical-scavenging parameters evaluated; in particular,
the extraction with ethanol showed the highest values of TPC (381 ± 113.1 mg GAE/g DW
(Gallic acid equivalents/grams of dry weight)), DPPH• (2,2-diphenyl-1-picrylhydrazyl radical)
(70.3 ± 19.6 mM TE/g DW (Trolox equivalents/grams of dry weight), and ABTS•+ (2,2′-azino-bis
(3-ethylbenzothiazoline-6-sulphonic acid radical) (180.5 ± 74.0 mM TE/g DW) with respect to those
obtained when using water as solvent, whose values were 185.8 ± 76.9 mg GAE/g DW in the case of
TPC, 13.8 ± 9.6 mM TE/g DW for DPPH• and 89.3 ± 52.0 for ABTS•+ mM TE/g DW.
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Population II had the highest TPC and ABTS•+ inhibition in both extracts and the highest DPPH•

inhibition in the hydroalcoholic extraction. The aqueous extracts had the lowest levels of DPPH•

inhibition in all the populations, while the samples from Population I and Population III showed
similar free radical-scavenging capacities and TPC in both solvents.

When the TPC, DPPH•, and ABTS•+ inhibition in each ecotype of their respective populations
were analyzed, statistically significant differences (p ≤ 0.05) were observed, and when the obtained
intervals were compared, a very broad, obvious intra-population differentiation could be seen (Table 1).
Although the samples within the ecotypes of each population were generally similar, some samples
showed noticeably high values in both solvents.

The ecotypes from Population III were different from those of the other populations, III-1 had
the highest TPC and inhibition of the ABTS•+ radical; however, differences between the two ecotypes
were observed in DPPH• radical inhibition depending on the extraction solvent. This finding suggests
that the variations in the TPC levels and DPPH• and ABTS•+ inhibition were dependent on the solvent
and are associated with geographic origin, but, according to the intra-population variation observed,
they are independent of the ecotype within each population.

The TPC levels detected in this study indicate broad variations among ripe fruits within wild
populations. Thus, it is important to consider that local environmental differences and genetic
variation influence the accumulation of TPC and free radical-scavenging, as has been reported for
other metabolites and other species [14] The variations among different morphotypes of C. annuum
from different locations have been reported with ranges from 69.7 to 350.4 mg EAG/100 g fresh fruit
depending on the morphotype [15]. Moreover, the TPCs found in the samples used in this study were
similar to the contents that were found in C. annuum, L. var. Hungarian fruits subjected to different
types of drying even when the temperatures used were different. For this reason, we emphasize that
postharvest handling impacts the contents of these bioactive compounds [16].

The free radical-scavenging capacities of the aqueous and hydroalcoholic extracts were determined
and were consistent with previous reports [17]. Differences in phytochemical detections could be
mainly attributed to polarity variations between water and the alcoholic solution. Phytochemical
patterns from plant samples were influenced by the type of solvent, which, according to literature,
has a substantial impact on the levels of free radical-scavenging capacities detected. Additionally,
the diversity of compounds solubilized is dependent on the polarity of the solvent [18–21].

The extraction phase has a strong influence on the yields of phenolic compounds as pointed out by
Putnik, Bursać, Jezek, Sustić, Zorić and Dragović-Uzelac [22]. The aforementioned studies evaluated
methanol and ethanol in different concentrations as solvents for anthocyanins extraction from grape
skin, reporting that 70% concentration showed the highest extraction efficiency. Aqueous solvent
preparations that were used for phenolics and antioxidants extractions have been shown to be useful
when applied to a wide range of plants materials, being superior even with the use of concentrated
solvents [23]. Additionally, the use of water as a phase of extraction phase has shown good recovery of
phenolics from several materials, for example, those from purple sweet potatoes [24], which supports
the potential of both kinds of phases to extract phenolics as done in this research.

High free radical-scavenging capacities were detected in the samples of our study, and they were
higher than those of previous reports which indicated total free radical-scavenging capacities between
26.6 and 44.4 µmol TE/g dry tissue [21] in four varieties of C. annuum.
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Table 1. Inter- and intra-population phenols variation and free radical-scavenging capacities of wild Piquin chili in aqueous extracts and hydroalcoholic extracts.

Ecotype
Aqueous Extracts Hydroalcoholic Extracts

TPC DPPH• ABTS•+ TPC DPPH• ABTS•+

I-1 188.5 ± 8.6 A 29.8 ± 0.7 A 95 ± 0.8 A 272.3 ± 7.1 b 57.9 ± 0.9 b 125 ± 0.5 a

I-2 137.8 ± 10.2 B 17.4 ± 2.3 C 60.4 ± 1.1 B 309.8 ± 7.9 a 62.6 ± 3.3 a 124.8 ± 0.7 a

I-3 129.8 ± 3.2 B 22.8 ± 0.5 B 40 ± 0.4 C 252.8 ± 4.6 b 53.2 ± 0.2 ab 110 ± 5.7 b

I-4 127.2 ± 1.6 B 22 ± 0.9 B 39.8 ± 6.3 C 263.7 ± 5.1 c 55.6 ± 1.6 c 115 ± 4.2 b

HSD 18.1 3.4 8.4 16.5 5 9.3
Population mean 145.8 ± 26.7 23 ± 4.8 58.8 ± 23.6 274.6 ± 23 57.3 ± 4.0 118.7 ± 7.4

II-1 271.9 ± 15.8 B 1.1 ± 0.4 B 124.7± 0.4 B 515.2 ± 6.0 b 82.5 ± 1.0 c 287.5 ± 4.0 a

II-2 183.4 ± 3.0 C 8.6 ± 0.6 A 117.2 ± 1.9 C 544.6 ± 1.1 a 100 ± 0.3 a 188.3 ± 6.5 c

II-3 353 ± 16.8 A 1.4 ± 0.3 B 189.7 ± 2.4 A 434.4 ± 8.3 c 88.6 ± 1.1 b 263.7 ± 12.4 b

HSD 33.7 1.2 4.5 14.9 2.1 21
Population mean 269.5 ± 74.4 3.7 ± 3.7 143.9 ± 34.6 498 ± 49.7 90.4 ± 7.7 246.5 ± 45.4

III-1 174.3 ± 8.7 A 8.4 ± 0.5 B 117.2 ± 1.9 A 497.9 ± 17.5 a 90.3 ± 1.4 a 283.9 ± 2.5 a

III-2 106.4 ± 1.1 B 12.4 ± 1.0 A 20.2 ± 1.7 B 338.4 ± 17.9 b 41.6 ± 0.7 b 126 ± 0.8 b

HSD 14 1.8 4.1 40.1 2.5 4.2
Population mean 140.3 ± 37.6 10.4 ± 2.3 68.7 ± 53.2 418.1 ± 88.8 66 ± 26.7 204.9 ± 86.5

TPC = mg GAE/g dry weight (DW); DPPH• = mM TE/g DW; ABTS•+ = mM TE/g DW. Values in the same column and population with different letters are significantly different (Tukey,
p ≤ 0.05); ± Standard deviation (SD, n = 3). Tukey’s Honestly Significant Difference (HSD).
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In this study, the levels of phenolic compounds corresponded to the levels of free
radical-scavenging capacity for both DPPH• and ABTS•+ radicals; that is, the higher the phenolic
compounds content, the greater the free radical-scavenging capacity [21]. However, in other
cases, the free radical-scavenging capacities and phenolic compounds content are not always
correlated [16,17,19–21] because of a possible relationship between the phenolic compounds and
important chemical interactions, such as antagonism, which can occur due to the presence of several
phenolic compounds [25]. For this reason, it is important to consider sample processing and handling
as well as extraction and quantification techniques and the nature of the plant material and the
prevailing conditions where it grows.

Moreover, as noted by Durak, Kowalska, and Gawlik-Dziki [26], the TPC identified in the
evaluated populations could be used to increase the nutritional value of foods. The concentrations of
phenolic compounds and free radical-scavenging capacities identified in the ecotypes of wild Piquin
chili are greater than the values determined in apple, quince, chokeberry, cranberry, blackcurrant,
and bilberry [27], which are considered free radical-scavenging compounds-containing foods and
whose consumption positively and profoundly affects performance and health mainly through a lower
incidence of chronic pathologies.

2.2. Identification of Compounds by UPLC-ESI-Q/TOF-MSe

When the phenolic compounds of all the samples were analyzed by LC-MS, 32 compounds
were detected. Of those, 29 were identified and three were reported as unknown compounds and
only their retention times were established (Table 2). The distributions of the compounds varied;
some were found in most of the populations and some had limited distribution in at least one ecotype
of a population. The most common compound for all of the samples was apigenin-8-C-glucoside,
followed by vanillic acid 1-O-β-o-glucopyranosylester (Isomer I or II) and 7-ethoxy-4-methylcoumarin,
which were observed in more than 89% of the ecotypes.

All the populations shared nine compounds; Population I and Population II shared three
compounds; Population II and Population III shared two compounds; and, Population I and Population
III had two compounds in common. The remaining 15 compounds were present in at least one ecotype
of each population and were therefore considered compounds of exclusive distribution associated
with the geographic origin of the population.

Eleven compounds were distributed exclusively in Population I, namely genistein-4,7′-dimethylether,
ascorbic acid, 1-O-galloyl-β-D-glucose, citric acid, caftaric acid, 6′′-O-acetyl daidzin, quercetin
3,7-diglucuronide and caffeoyltartaric acid, gallic acid, apigenin-6-C-hexoside-8-C-pentoside,
and benzopyrano [4,3-b] quinoline-6-ones. In the case of Population II, two unknown compounds
had exclusive distribution, while in Population III, two compounds of restricted distribution were
found, namely citric acid (Isomer II) and spinochrome A. The ecotype I-2 had the highest number
of detected compounds, followed by I-1 and II-1; ecotype II-2 was less diverse. In ecotypes I-2 and
I-3, the largest number of exclusive distribution compounds was identified; ecotypes I-1, I-4, II-1, II-2,
III-1, and III-2 had only one exclusive compound. In contrast, ecotypes II-2 and II-3 did not have any
exclusive compounds.

Overall, by population, the highest number of compounds detected was in Population I,
with 80.6% of the detected compounds, followed by Population II and Population III, which contained
48.4% of the compounds, respectively. Population I had a notably different composition due to
the number of exclusive distribution compounds, while the other populations had fewer exclusive
compounds and more compounds in common with ecotypes of different populations. Regarding
unknown compounds, the unknown compound present at the retention time of 5.514 min in both
Populations I and II had a [M − H]− of 374.0412, and the unknown compounds present at a retention
time of 2.909 min and 4.872 min had a [M − H]− of 233.1501 and 457.1479, respectively; and, they were
registered only in ecotypes from Population II. No unknown compounds were detected in the ecotypes
of Population III.
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We confirmed that there is great diversity among the phenolic compounds in wild Piquin chilis,
and some of these compounds have been previously reported. For example, the presence of organic
acids, nucleosides, amino acids, derivatives of fatty acids, derivatives of amino acids, derivatives of
isoflavones, phenolic acids, coumaroyl, feruloyl and benzyl glucosides as well as quercetin, apigenin,
luteolin and kaempferol conjugates in the form of glucosides has been reported in the chemical
compositions of C. annuum [5].

This composition is similar to that of wild Piquin chili, where we found phenolic acids, glucosides,
nucleosides, aminoacids, and phenolic derivatives using UPLC-ESI-Q/TOFMS listed in Table 2.
Nevertheless, ours is the first report of polygalaxanthone and of spinochrome A. In the first case,
polygalaxanthone III was isolated from the roots of Polygala tenuifolia and is associated with the diverse
bioactivities of plants of the genus Polygala [28], and it belongs to a group of xanthonoids that are
known for their antioxidant activity. Spinochrome A was reported as a natural pigment isolated
from the spines of sea urchin and is a derivate of naphthoquinone [29]; this is the first time that this
compound has been reported in chili fruits.

Some of the identified compounds in the chili samples were associated with antioxidant and
free radical-scavenging capacity according to previous reports, some of them with differential
contributions to the total free radical-scavenging capacity. Such differential contribution could be
related to the chemical structure, number of free hydroxyl groups, solubility, and concentration in
the sample. For example, in the identification and quantitative determination of antioxidants from
prune, it was observed that some structural-related phenolics presented similar activities. From these,
the 4-O-caffeoylquinic acid had slightly higher activity against superoxide radicals than that of ascorbic
acid [30]; this compound was detected in four ecotypes of Piquin chili.

On the other hand, the free aromatic amino acids are frequently associated with antioxidant
activity. These were detected in eight ecotypes, where tyrosine was detected in seven of those ecotypes.
Nevertheless, despite tyrosine being considered as an antioxidant, its capacity against the DPPH•

and ABTS•+ radicals is lower than those shown by L-DOPA and other antioxidants, including the
Trolox [31]. Gallic acid and quercetin were also detected in some Piquin chili samples. Both phenolics
are considered as good antioxidants and are used as standards for antioxidant determinations,
and although they have different behavior against DPPH• and ABTS•+ radicals, they have higher
capacities when compared with other standards [32].

In contrast to the above-mentioned, the apigenin-8-C-glucoside, a phenolic present in all
chili ecotypes, has been considered as an agent with no contribution to total antioxidant activity
against ABTS•+ [33]. This allows us to see that the total free radical-scavenging capacity is a
result of the differential contribution of each compound, and that this is a common fact in natural
antioxidant activities; in this case, from Piquin chili fruits. The broad heterogeneity of the components,
present among the population samples, is likely the result of the influence of ecological conditions
interacting with the genetic background of the samples. These components could be associated with
the biofunctional properties and they can also affect the organoleptic characteristics of the Piquin chili
fruits [34].
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Table 2. Compounds in wild Piquin chili populations identified by LC-MSe.

Peak N◦ Rt
(min)

[M − H]−

(m/z)
Tentative Assignment Molecular

Formula
MS2 Dominant
Fragments Ions

Compound
Type

Ecotype (Population-Sample)
Reference

I-1 I-2 I-3 I-4 II-1 II-2 II-3 III-1 III-2

1 0.846 191.0874 Quinic acid C7H11O6 - Phenolic acid x x x x x [34]
2 1.116 191.0492 Citric acid C6H8O7 - Organic acid x [34]
3 1.15 180.0985 Tyrosine C9H10NO3 163.0791 Amino acid x x x x x x x [34]
4 1.218 383.1263 Kaempferol-7,4′-Dimethoxy-8-Butyryl ester C21H20O7 - Flavonoid x x x x [35]

5 1.252 312.0973 1,2,4-trihydroxynonadecane C19H38O3
313.0905, 225.1853,
279.1969, 293.2083 Fatty alcohol x x x x [36]

6 1.319 169.0607 Gallic acid C7H6O5 125.0751 Phenolic acid x *
7 1.421 282.0933 Guanosine C10H13N5O5 150.0444 Nucleoside x x x x x x [37]
8 1.522 297.1259 Genistein-4,7′-dimethyl ether C17H14O5 - Flavonoid x x [35]

9 1.725
2.165 174.9907 Ascorbic acid Isomer C6H7O6 - Vitamin x x x [37]

10 2.03 164.108 DL-Phenylalanine C9H10NO2 147.044 Amino acid x x x x x x [34]
11 2.842 301.1075 Quercetin C15H10O7 173.1554 Flavonoid x x [38]
12 2.909 233.1501 Unknown - - - x x -
13 3.282 203.1112 Tryptophan C11H11N2O2 - Amino acid x [34]
14 3.315 203.1091 7-Ethoxy-4-methylcoumarin C12H12O3 - - x x x x x x x [35]

15 3.349
3.484 310.1175 Benzopyrano [4,3-β] quinoline-6-ones C21H13NO2 - Alkaloid x [39]

16 3.417 329.086 Vanillic acid 1-O-B-glucopyranosyl ester C14H18O9 - Phenolic acid x x x x x x x x [34]
17 3.518 331.1016 1-O-galloyl-β-D-glucose C13H16O10 - Phenolic acid x [40]

18 3.552
3.721 311.0905 2-Caffeoyl-L-tartaric acid C13H12O9 133.0135, 115.0034 Phenolic acid x x [38]

19 3.958 337.1437 Coumaroyl quinic acid I or II C16H17O8 191.0571 Phenolic acid x x x x x x [37]
20 4.161 263.1557 Spinochrome A C12H8O7 235.9501, 207.9648 - x [38]
21 4.702 325.0885 Coumaryl-hexoside C15H18O8 163.0762 Phenolic acid x x x x x x [37]
22 4.736 325.0894 Coumaric acid hexose C15H17O8 163.0762 Phenolic acid x x x [37]
23 4.838 457.1463 6′ ′-O-Acetyldaidzin C23H21O10 - Flavonoid x [35]
24 4.872 457.1479 Unknown - - - x -
25 5.075 503.1013 Quercetin-3-O-(6′ ′-O-acetyl)-β-D-glucopyranoside C23H21O13 - Flavonoid x x [35]
26 5.075 653.0688 Quercetin 3,7-diglucuronide C27H26O19 - Flavonoid x [35]

27 5.108
5.446 563.0996 Apigenin 6-C-hexoside-8-C-pentoside Isomer C27H28O14 545.0913, 503.1136 Flavonoid x [41]

28 5.244 355.0937 Feruloyl-β-D-glucose C16H20O9 175.0408 Phenolic acid x x x x x x [40]
29 5.278 567.1243 Polygala xanthone III C25H28O15 - Xanthone x x x [42]
30 5.379 352.0956 4-O-caffeoylquinic acid C16H18O9 134.8 Phenolic acid x x x x x x [43]
31 5.447 431.1585 Apigenin 8-C-glucoside C21H19O10 311.0561 Flavonoid x x x x x x x x x [44]
32 5.514 374.0412 Unknown - - - x x x x x -

x Present in the ecotype. * Identification confirmed by commercial standard. – Not available information.
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2.3. Capsaicinoids and SHU

The analysis of capsaicinoids showed significant differences among populations and within each
population. The average percentages of capsaicin and dihydrocapsaicin (C:DHC) in the populations
were 65.2% and 34.8%, respectively. The capsaicin content was higher than that of dihydrocapsaicin in
the three populations analyzed (Table 3). The ratios of these capsaicinoids showed that capsaicin was
the major compound with contents that were 1.4 to 2.5 times greater than that of dihydrocapsaicin.
This comparison highlighted the fact that the samples from Population II had the lowest C:DHC ratios
of all the analyzed samples.

The significance of differences between mean values was determined by an analysis of variance,
which indicated that Population I (15.6 mg/g DW (Dry weight)) had the highest capsaicin content,
followed by Populations II (11.5 mg/g DW) and III (mg/g DW). All of the populations had different
average contents of dihydrocapsaicin. Thus, the average variation in dihydrocapsaicin was lower
(11.2%) than that of capsaicin (15.2%). Using the Tukey’s Honestly Significant Difference (HSD),
the significant differences among the means revealed significant variation within the populations.
The ecotypes of Population II were similar to accession III-1, and the capsaicin content in III-2 was
similar to that of the Population I ecotypes. Additionally, the dihydrocapsaicin content in III-1 and III-2
was similar to that in II-1. All of the populations had different capsaicin contents. The greatest variation
of this capsaicinoid within a population was observed within Population III, but the dihydrocapsaicin
content was the same between ecotypes.

The total capsaicinoid content (CAPT) was determined by adding the values of capsaicin and
dihydrocapsaicin, which were the most abundant capsaicinoids and contributed the most to the
pungency. Differences in the CAPT were associated with the geographic origin of the population.
The average CAPT was higher in Population I, which had a CAPT of 23.5 mg/g with a CV of 14.0%,
than in Populations II and III, which had average CAPTs of 15.3 and 10.7 mg/g, respectively.

Capsaicinoid contents (ppm) were converted to Scoville pungency heat units (SHU), because that
scale is regarded as the best indicator of pungency [45] and it is directly related to CAPT levels.
Therefore, the chili populations that had high total capsaicinoid content had high SHU values.
Significant differences in pungency among the populations were identified. The Population I showed
high levels of variability (30,693.9 to 41,039.3 SHU), with a population average of 38,115.3 SHU.
These values were higher than those observed in Populations II and III (25,495.1 and 27,081.4 SHU,
respectively). The greatest variation within a population was observed in Population III; this was
equivalent at 9781.4 SHU, which was in contrast to the narrow distribution observed in Population
II. The pungency values of Population III overlapped with those of Population I and Population II.
The SHU means of Populations II and III were proportional and very similar, although there were
significant differences between them.

The wild populations of Piquin chili from northern Mexico have higher capsaicinoid
contents than those reported for wild populations of Piquin chili from southern Mexico [15].
Differences in the capsaicinoid contents may be associated with genotype, physiological maturity,
environmental conditions, or geographic origin [46]. However, Gurung Techawongstien, Suriharn,
and Techawongstien [47] suggested that the expression and content of capsaicinoids are closely related
to the genetic background of the plant. Nevertheless, the impact of the adaptations of each population
to local growing conditions should be considered.

These adaptations may have resulted in the different capsaicinoid contents of the northern and
southern populations. For example, when northern populations are compared, the values of capsaicin
and dihydrocapsaicin are similar in populations of Chiltepín chili (regional name for Capsicum annuum
var. glabriusculum) from northeastern Mexico, where the conditions are generally drier than in the
southern region [8]. That is, in terms of pungency, the northern populations of Piquin chili are
similar, although they are not markedly different from the southern populations. In this sense,
Votava, Nabham, and Bosland [48] noted that geographically close wild chili populations are more
similar because of factors, such as self-pollinating, a factor that can partially impact the characteristic
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patterns of each ecotype. Nevertheless, we observed that within each population the pungency
varied. Valiente-Banuet, and Gutiérrez-Ochoa [49] observed a positive correlation between increased
capsaicinoids and water deficit.

Our study, however, found different values, even though the ecotypes are from semi-arid and
subtropical regions of Tamaulipas. Soil nutrition and fertilization also affect the synthesis and
accumulation of capsaicinoids [50], which varies with chili ecotype and variety, especially in wild
ecotypes [8]. Moreover, an increase in the concentration of capsaicinoids has been associated with heat
stress, which elicits particular responses from each chili type and cultivar, and for this reason, there is
broad variability in pungency both among and within ecotypes [51]. The increase in capsaicinoids
has been proposed as a survival strategy, highlighting the potential of these metabolites as chemical
defenders protecting the seed against attack by pathogens [52].

Table 3. Capsaicinoid content in wild populations of Piquin chili.

Ecotype
(Population-Sample) Capsaicin Dihidrocapsaicin Total

Capsaicinoid Content C:DHC SHU

I-1 16.8 ± 0.2 b 8.4 ± 0.6 a 25.2 ± 0.7 a 2.0:1 41,039.3 ± 1145.7 a

I-2 12.5 ± 0.1 d 6.4 ± 0.05 b 19.0 ± 0.1 c 2.0:1 30,693.9 ± 232.2 c

I-3 18.6 ± 0.2 a 8.6 ± 0.1 a 27.2 ± 0.3 a 2.2:1 44,034.9 ± 465.2 a

I-4 14.6 ± 0.3 c 8.0 ± 0.2 a 22.6 ± 0.5 b 1.8:1 36,693.3 ± 874.5 b

Population mean 15.6 7.9 23.5 38,115.3
HSD 1.0 1.3 2.2 3469.6
CV% 15.3 12.5 14.0 14.1

II-1 8.8 ± 0.1 b 5.3 ± 0.05 b 14.1 ± 0.1 b 1.7:1 22,867.2 ± 227.6 b

II-2 9.7 ± 0.3 a 6.7 ± 0.2 a 16.4 ± 0.5 a 1.4:1 26,460.6 ± 783.1 a

II-3 9.8 ± 0.05 a 6.9 ± 0.03 a 16.7 ± 0.1 a 1.4:1 27,157.4 ± 38.7 a

Population mean 11.5 6.3 15.7 25,495.1
HSD 0.8 0.5 1.3 2045.2
CV% 5.9 12.1 8.3 8.3

III-1 8.9 ± 0.05 b 4.8 ± 0.01 b 13.7 ± 0.1 b 1.9:1 22,190.7 ± 111.3 b

III-2 14 ± 0.4 a 5.6 ± 0.2 a 19.5 ± 0.6 a 2.5:1 31,972.1 ± 917.6 a

Population Mean 9.4 5.2 16.6 27,081.4
HSD 1.1 0.4 1.5 2566.3
CV% 24.4 9.1 19.7 20.1

Average value (mg/g DW) ± Standard deviation (n = 3); C:DHC = capsaicin dihydrocapsaicin ratio; SHU = Scoville
pungency heat units; CV = coefficient of variation. Different lower-case letters indicate significant differences
(p ≤ 0.05). Tukey’s Honestly Significant Difference (HSD).

It has been reported that the pungency of Piquin chili varies from 30,000 to 40,000 SHU [48].
However, the values that were found in the populations of this study were higher and more varied.
According to Weiss [53], 22% of the accessions analyzed were classified as hot on the pungency scale
(3000 to 25,000 SHU) and the rest of the wild chilis were classified as very hot on the pungency scale
(25,000 a 70,000 SHU). Although the native populations of Piquin chili were classified in only two
categories, there were wide intervals within each category. The levels of pungency in our study varied
among the populations and ecotypes of each population. This variation may be associated with
genetic characteristics and be indicative of the particular environment of each micro-region where the
samples were collected, which influenced the accumulation of metabolites as part of the population’s
adaptations to its particular surroundings.

Although Piquin chili is characterized by high capsaicinoid contents, there were also substantial
variations that resulted in the heterogeneity of this organoleptic property. Variations in capsaicinoids
and other metabolites depend on adaptations to a particular environment; thus, the geographic
variation of species and populations of chili is considered to be an adaptive strategy to cope with biotic
and abiotic pressures [5].

Plant biochemical plasticity is a survival strategy that includes the activities of many metabolites,
and particularly in chili fruits, many of those metabolites of ecological importance are related to
sensorial characteristics and their anthropocentric and industrial uses. The results of our study also
suggest that the broad variation of the compositional patterns of phytochemical accumulation in
natural populations of Piquin chili was related to geographic and ecological differences of the sites
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where the samples were collected. Finally, knowledge of production patterns, influential factors,
and responses could form a foundation for the exploration of ecotypes and microenvironments that
would lead to production guided by consumer requirements and avoid excess extraction pressure on
wild populations.

3. Materials and Methods

3.1. Plant Material and Sample Preparation

From August to September 2016, samples of ripe fruits from wild Piquin chili populations were
collected from different geographic locations and environments in the central region of Tamaulipas,
Mexico. Three populations (ID = I to III) were sampled with different numbers of ecotypes (4, 3,
and 2 accessions, respectively) in each population (Table 4). Samples from each population are
indicated by the numbers following the hyphen. All the collected fruits were washed with water
and common soap and then rinsed with abundant distilled water. They were then stored in paper
bags and dried in a drying convection oven (Jeio Tech, Geumcheon-gu, Seoul, Korea) (30 ± 5 ◦C for
96 h). After drying, the seeds were removed, and the placenta and pericarp were pulverized in an
electric mill (Krups GX4100®, Mexico City, Mexico). The samples were stored in polypropylene tubes
at −20 ◦C until extraction.

Table 4. Origin and environment of wild populations of C. annuum var. glabriusculum from
Tamaulipas, Mexico.

Population
Ecotype

(Population-Sample) Place
Environment

Geographic Location
(Decimal Grades) Altitude (m) Vegetation Type, Clime, Precipitation and Soil

I

I-1

Llera

23.2781 N −99.0681 W 414 Annual rainfed agriculture; Aw1; Precipitation in the
driest month less than 60 mm; Vertisol.

I-2 23.2761 N −99.0844 W 403
Secondary vegetation of low deciduous forest;
Aw1; Precipitation in the driest month less than
60 mm; Regosol.

I-3 23.2825 N −99.0635 W 503 Annual rainfed agriculture; (A) C (wo); Precipitation in
the driest month less than 40 mm; Vertisol.I-4 23.2824 N −99.0624 W 504

II

II-1

Hidalgo

24.1258 N −99.2569 W 242
Permanent irrigation agriculture; (A) C (wo);
Precipitation in the driest month less than
40 mm; Vertisol.

II-2 24.1255 N −99.2567 W 249

II-3 24.1143 N −99.2496 W 232

III
III-1

Soto La
Marina

23.7927 N −98.1129 W 30 Annual irrigation agriculture; BS1 (h′) w; Summer
showers; Rendzine.

III-2 23.8073 N −98.0352 W 60 Cultivated pasture; (A) C (wo); Precipitation in the
driest month of less than 40 mm; Litosol.

3.2. Methods of Extraction

Water and 70% ethanol were each used as extraction solvents. For each sample, 0.5 g of chili
material was mixed with either distilled water or 70% ethanol in a 1:6 ratio (sample: solvent).
The mixture was kept at −4 ◦C for 20 min and vortexed every 5 min. The resulting mixture was
centrifuged at 9200 times gravity (× g) for 5 min. The supernatant was then recovered, mixed with cold
acetone (1:3, v/v) at −20 ◦C, and then centrifuged again at 9200× g to obtain the pellet by precipitation
of polar compounds due to their low solubility in the saturated solvent with acetone [54]. The sample
pellet was re-suspended in either water or 70% ethanol for polyphenol and free radical-scavenging
capacity analyses.

3.3. TPC

The TPC was determined with the Folin-Ciocalteu method [55]. After adding 250 µL of 1 N
Folin-Ciocalteu reagent to a 500 µL sample or standard, the mixture was incubated for 5 min, and then
1250 µL of 20% Na2CO3 was added. The mixture was then left to stand for 2 h, after which the
absorbance was read at 750 nm in a spectrophotometer (UV-6000, Metash instruments Co. Ltd.,
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Shanghai, China). A gallic acid (3,4,5-trihydroxybenzoic acid) calibration curve was prepared using a
0.1 mg mL−1 solution. The results are expressed in mg of equivalent gallic acid per g of dry weight
(mg GAE g−1 dry weight).

3.4. Antioxidant Capacity

The DPPH• radical scavenging activity was determined following the Brand–Williams
procedure [56]. A mixture of 975 µL of 600 µM DPPH• radical in methanol and 25 µL of each
extract was prepared. The reaction was left in the dark at 25 ± 2 ◦C for 30 min after which the
absorbance was measured at 515 nm. For quantification, a standard curve of Trolox in concentrations
ranging from 0 to 1200 µM was prepared. The results are reported in mM Trolox equivalents (TE) per
gram of dry weight.

Evaluation of the ABTS•+ free radical-scavenging activity was conducted following the procedure
that was described by Re, Pellegrini, Proteggente, Pannala, Yang, and Rice [57]. A stock solution of a
mixture of 7 mM ABTS•+ and 2.45 mM potassium persulfate was incubated for 16 h at 25 ± 2 ◦C in
darkness. The solution was later adjusted to 0.7 absorbance at 732 nm to afford the working solution.
A 10 µL aliquot of each extract was mixed with l mL of ABTS•+ working solution, and the absorbance
was recorded at the beginning and end of the reaction (after 6 min). The 4 mM Trolox solution was used
to prepare the calibration curve for determining the free radical-scavenging capacity. The scavenging
of free radicals was expressed in mM Trolox equivalents (TE per gram of dry weight).

3.5. UPLC-ESI-Q/TOF-MSe Analysis

The present compounds were identified using an Acquity ultra-performance liquid
chromatography (UPLC) system attached to an auto-sampler and a binary pump with a 10 µL
loop. Chromatographic separations were conducted following the methodology that was proposed
by Kumari, Elancheran, Kotoky, and Devi [58], with slight modifications using a BEH PHENYL
(2.1 mm × 100 mm, 1.7 µm; WATERS, Elstree, Herts UK) analytical column at 40 ◦C. The compounds
in the various extracts were identified by using their full mass spectra and their unique mass
fragmentation patterns. Comparison of the observed MS spectra with those found in the literature and
databases, such as MassBank (http://www.massbank.jp/), ChemSpider (http://www.chemspider.
com), and PubChem (https://pubchem.ncbi.nlm.nih.gov), was the main tool for the identification of
the compounds.

3.6. Capsaicinoid Analysis

Determination and quantification of capsaicin and dihydrocapsaicin was achieved with the
technique described by Collins, Wasmund, and Bosland [59]. The injection volume was 20 µL,
the column was a Hypersil ODS C18 column (25 cm × 4.6 mm, 5 µm), the mobile phase consisted
of a gradient of acetonitrile: water (45:55), the flow rate was 1.5 mL/min, the runtime was 20 min,
and Agilent 1260 Infinity (Agilent Technologies, Santa Clara, CA, USA) HPLC system was used.
The capsaicinoids were identified by a comparison of their retention times to those of the capsaicin
(natural capsaicin) and dihydrocapsaicin (Capsicum sp., ~90%) standards (SIGMA-ALDRICH, St. Louis,
MO, USA). The calibration curve was generated with 0.25, 0.5, 1.0, 2.0 mg/mL solutions of each
standard, and the capsaicinoid content in parts per million (ppm) was converted to the Scoville scale
(SHU) with the formula (Equation (1)) that was proposed by Topuz, and Ozdemir [60]:

SHU = [(Capsaicin (ppm) + dihydrocapsaicin (ppm)) × 16.1] (1)

The ratio between the major capsaicinoids (C:DHC) was obtained by dividing the capsaicin and
dihydrocapsaicin contents (mg/g PS) by the total capsaicinoid content.

http://www.massbank.jp/
http://www.chemspider.com
http://www.chemspider.com
https://pubchem.ncbi.nlm.nih.gov
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3.7. Statistical Analysis

Analyses of the TPC, free radical-scavenging capacity and capsaicinoid content were performed
in triplicate. The one-way ANOVA, comparison of arithmetic means (Tukey p ≤ 0.05), and correlation
analysis were carried out with SAS V 9.3 (SAS Institute, Cary, NC, USA) [61].

4. Conclusions

Quantification of phenolic compounds, free radical-scavenging capacities, and capsaicinoid
content showed that the phytochemical compositions of wild populations of Piquin chili varied widely
among populations and among their ecotypes. Population I presented the highest values for phenolic
and capsaicinoid contents, while Population II showed the highest free radical-scavenging capacity,
followed by Population III. Population III showed similar phenolic and pungency values to those
of Population I, which demonstrated the presence of different combinations of phytochemicals and
differential accumulations of free radical-scavenging capacities in each population that could be
attributed to the plasticity of each wild ecotype in their particular environments.

Differences in the free radical-scavenging capacity are a result of the differential contributions
of each identified compound, whose presence or absence produces a mosaic of phytochemical and
functional capacities in each ecotype. However, more detailed studies are needed to understand the
individual contributions and physiological roles of each compound.

Based on these results, several new applications and natural resource management strategies for
the native populations of Piquin chili from Tamaulipas can be established, because they constitute a
wild resource that could be exploited for its phytochemicals. Therefore, the results obtained herein
help to elucidate the phytochemical composition of natural populations of Piquin chili.
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