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ABSTRACT: We demonstrate how the cascaded variational
quantum eigensolver (CVQE) can be applied to study molecular
systems for the family of Jastrow ansatzes. Specifically, we applied
CVQE to the water molecule. We find that CVQE has a number of
advantages. In particular, our results show that CVQE requires 2 to
3 orders of magnitude fewer quantum computing (QC) executions
than VQE for the water molecule. Furthermore, our results indicate
that CVQE might provide some robustness against two-qubit gate
errors given that the number of CNOT gates used in our
calculation was ∼300 and the errors in the QC calculations are still
comparable to those obtained by VQE.

1. INTRODUCTION
The properties of a molecule can generally be determined from
its electronic ground state. Solving for the many-electron ground
state, however, is an exponentially hard task as the size of the
Fock space increases exponentially with the number of spin
orbitals. Consequently, classical electronic structure methods
must use approximations for all systems but the smallest
systems. In contrast, quantum computing (QC) may allow us to
avoid approximations as the full Fock space can be represented
in a quantum register composed of a number of qubits
proportional to the number of spin orbitals.1,2

Present day quantum computers are limited by environmental
noise, errors in implementing gate operations, and read-out
errors. The variational quantum eigensolver (VQE)3−13 seeks to
address some of these limitations. VQE is a method to solve for
the ground-state energy of molecules by using quantum circuits
composed of relatively few quantum logic gates. The small
number of quantum logic gates allows the quantum circuit to run
quickly, thus avoiding limitations arising from short relaxation
times. A downside of VQE is that it requires many circuit
executions. Thus, VQE suffers from a different limitation,
namely, that there are a limited number of QC resources
available and that the competition for computation time is high.

We can address both the issue of short relaxation times and
resource scarcity using the cascaded variational quantum
eigensolver (CVQE). Unlike VQE, CVQE does not require
circuit executions to be repeated throughout the parameter
optimization process.14,15 Instead, measurement samples
obtained from the quantum computer are processed on a

classical computer according to a variational ansatz. A natural
choice of ansatz for CVQE is the Jastrow ansatz.6,15−36 The
Jastrow ansatz has been used in VQE-type algorithms in the past.
However, because the Jastrow operator is nonunitary, special
care needs to be taken when employing the ansatz for QC.
Previous methods for employing the Jastrow ansatz for QC
include adding auxiliary qubits,37,38 approximating the oper-
ator,37,39 and unitarization of the operator.32,35,40 CVQE allows
us to employ the Jastrow operator without auxiliary qubits,
approximations, or unitarization.

Herein, we explore the effectiveness of CVQE for studying
molecules using the Jastrow ansatz. In particular, we focus on the
water molecule. The insights we gain from studying the water
molecule can be extended to other molecules. We use both the
full Jastrow operator16 and a specific form of the Jastrow
operator that has only a single variational parameter. We
compare the single-parameter ansatz to the full Jastrow ansatz
and discuss the types of Hamiltonian terms that are well-
described using each. Furthermore, we compare CVQE using
the Jastrow ansatz to VQE using a hardware efficient (HE)
ansatz.6 We show that CVQE requires many fewer circuit
executions than VQE. We also find that we are able to
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implement many more quantum gates using the CVQE method
than would be expected from the gate errors, suggesting that the
postprocessing in CVQE is compensating for some of the
quantum hardware errors.

The remainder of the article has the following outline: Section
2 describes the methods used throughout this work; Section 3
presents the results of our demonstration using the water
molecule. Some concluding remarks are provided in Section 4.

2. METHODS
CVQE uses an ansatz of the form

| = |D U( ) ( ) 0 (1)

where D̂(θ) is a diagonal operator, which is applied during the
classical processing, θ is a collection of variational parameters, Û
is a unitary operator, which is applied to the quantum computer,
and |Ψ0⟩ is the initial state of the quantum computer. The goal is
to compute the energy expectation value

= | |
|

E
H

( )
( ) ( )

( ) ( ) (2)

of a Hamiltonian Ĥ. Given the measurement results of the
quantum state |U 0 , an analytical equation for E(θ) can be
derived that is efficiently computable on a classical com-
puter.14,15 The efficiency of the calculation is due to D̂(θ) being
diagonal. As long as D̂(θ) contains only operators that are
diagonal in the initial basis of the quantum computer, the energy
expectation value E(θ) can be calculated from sample
distributions measured in the same number of bases required
to calculate | |H0 0 . Thus, as long as Ĥ contains
subexponential terms and D̂(θ) is diagonal, E(θ) is efficient to
calculate. We use the Jastrow ansatz to define D̂(θ) and Û.15 The
form of the Jastrow ansatz motivates partitioning the
Hamiltonian into single-particle, diagonal two-particle, and
off-diagonal two-particle terms. We show that each Hamiltonian
term is treated differently by the ansatz.
2.1. Jastrow Ansatz. We will now define Û and D̂(θ) such

that the CVQE ansatz (1) becomes the Jastrow ansatz. Consider
a quantum computer composed of Q qubits indexed by the set

= { }Q0, 1, ..., 1 . We set the unitary operator to the
Thouless operator41

= [ ]†U f c cexp (ln )
qq

qq q q
(3)

where †cq and cq change the state of qubit q and f transforms the

index basis. The operators †cq and cq are related to the Fermionic
creation and destruction operators through a given trans-
formation, i.e., the Jordan−Wigner (JW) transformation.42 The
matrix f has the property

=† †a f cq
q

qq q
(4)

where †aq is the transformation of a creation operator in a new
basis. The Thouless operator has the property

= |

| = |

†

†
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q

q
n

n
q

q
n

q

q

(5)

for all families of occupation numbers =n n( )q q in the

Cartesian power = { }0, 1 Q , where |0⟩ is the vacuum state.
Thus, we can use the Thouless operator to change the basis of
any given occupation state.

The D̂(θ) operator must be diagonal on the initial basis of the
quantum computer. We choose the Jastrow operator16,17

=D n n( ) exp( )
qq

qq q q
(6)

where = †n c cq q q is the transformation of the number operator
and θqq′ is a real-valued variational parameter in the collection

= ( )qq qq . The accuracy of our method can be systemati-
cally improved by including higher-order interaction terms in eq
6. However, for the purposes of this work, we will limit the
operator to second-order interactions.

We initialize the system on the Hartree−Fock (HF) basis so
that nq is the occupation of the HF orbital q. We initialize to the
state with the lowest Ne spin orbitals occupied, where Ne is the
number of electrons. We then use the Thouless operator to
rotate into the basis where the noninteracting part of the
Hamiltonian is diagonal. The Jastrow operator D̂(θ) is applied
postmeasurement to account for interactions.
2.2. Defining theHamiltonian for Usewith the Jastrow

Ansatz. In order to apply the Jastrow ansatz, we need to solve
the noninteracting part of the Hamiltonian. Therefore, we need
to separate the Full-CI (FCI) Hamiltonian into interacting and
noninteracting parts

= +H H H1 2 (7)

where H1 contains only single-particle excitations

= †H h c c
pq

pq p q1
1

(8)

and H2 contains two-particle excitations

= † †H h c c c c
pqrs

pqrs p q r s2
2

(9)

where hpq
1 and hpqrs

2 are coefficients given by Ĥ. The non-
interacting Hamiltonian H1 can be efficiently diagonalized
classically. The eigenstates of H1 are used to form the matrix f.
When f is formed in this way, the operators †aq create electrons

which occupy the eigenstates of H1.

Table 1. CVQE Algorithm Using the Jastrow Ansatz

1: initialize the quantum register to |Ψn⟩
2: apply Thouless operator Û on the quantum computer
3: collect samples of measurements of Û|Ψn⟩
4: using the measurement samples of the quantum computer, compute E(θ) and E(θ + dθ)
5: evaluate g = α[E(θ + dθ) − E(θ)]
6: if g < ϵ, return E(θ), else, θ = θ − gdθ and go to step 4
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For the purpose of our demonstration, it is helpful to also
separate the interacting Hamiltonian into diagonal and off-
diagonal pieces

= +H H HD F2 2 2 (10)

where H D2 contains all of the diagonal two-particle operators

=H h n nD
pq

pq
D

p q2
2

(11)

and H F2 contains all of the off-diagonal two-particle operators

= † †H h c c c cF
pqrs

pqrs
F

p q r s2
2

(12)

where hpq
2D and hpqrs

2F are coefficients given by H2. The coefficient
hpqrs

2F is defined to have the property that hpqrs
2F = 0 when † †c c c cp q r s can

be written as a product of two number operators.
For the water molecule, we find that ∑pq|hpq

1 |>∑pq|hpq
2D|>∑pqrs|

hpqrs
2F | (see Appendix D). This hierarchy is beneficial for our

method as each of these types of terms is handled differently.
The Hamiltonian H1 is solved by the Thouless operator. We
show below that the interactions in the diagonal Hamiltonian
H D2 can be handled using a single-parameter ansatz. The
interactions in the off-diagonal Hamiltonian H F2 require the full
Jastrow ansatz. Furthermore, because we use D̂(θ) to
incorporate interactions into the ansatz, and because D̂(θ)
must be diagonal, we expect ∑pq|hpq

2D|>∑pqrs|hpqrs
2F| to be highly

important to the success of our algorithm in all cases.
2.3. Overview of the Algorithm. Table 1 shows the steps

of the CVQE algorithm. We begin, in step 1, by initializing the
quantum register to |Ψn⟩, see eq 5, where n is set so that the
lowest Ne spin orbitals are filled. In step 2, we apply the Thouless
operator to the quantum computer. See reference 1515 for a
detailed description of how to form Û out of standard quantum
gates. In step 3, we collect measurement samples of the quantum
state. As shown in references 1414 and 15,15 the number of
measurements we need is exactly the same as the number of
measurements required to calculate the bare expectation value

| |Hn n . In step 4, we compute the energy expectation value
E(θ) using the analytical equation derived in reference 15.15 In
step 5, we compute a second energy expectation value E(θ + dθ)
where dθ is determined by some predefined optimization
scheme. Unless otherwise stated, we will use the simultaneous
perturbation stochastic approximation (SPSA).43 In step 6, we
compute g = α[E(θ + dθ) − E(θ)] where α is the predefined
learning rate. It is common practice to have an α change during
the optimization. Unless otherwise stated, at a given iteration k,
we set

= +
+ +

a
k

A k
( 1)

( 1) (13)

with a = 0.0625 (Ha1−), γ = 0.101, β = 0.201, and A = 10. These
values are selected because they tend to provide the fastest
optimization without reducing the accuracy of the final energies.
In step 7, we check whether the energy has converged by
comparing g to a predefined tolerance ϵ. In practice, ϵ is often
chosen after optimization has been run for a specified number of
iterations in order to get a sense of the variance in the data. If the
energy has converged, then the algorithm is terminated and E(θ)
is returned. If the energy has not converged, then we return to
step 4 with an updated set of parameters.

3. RESULTS AND DISCUSSION
We demonstrate an algorithm for the water molecule. Herein,
we consider a 1s orbital for each hydrogen atom and 1s, 2s, and

2p orbitals for the oxygen atom. These orbitals are described by
using the minimal STO-3G basis set provided in Psi4. We then
performed classical HF calculations to obtain the HF orbitals.
We obtain the Hamiltonian coefficients hpq

1 , hpq
2D, and hpqrs

2F ,
describing the HF orbital interactions, by calculating the
Hamiltonian integrals using OpenFermion with the Psi4
plugin.44,45 The water molecule and its orbital energy levels
are depicted in Figure 1. The geometry of the water molecule is
set such that the oxygen is at the origin and the hydrogen atoms

Figure 1. Water molecule specifications. (a) Geometry of the water
molecule. The geometry is characterized by the distance r between the
hydrogen atoms and the oxygen atom and the angle ϕ between the
hydrogen atoms. Throughout, we set ϕ = 104.5°, which is the known
optimal angle for water. The equilibrium distance is r = 0.9584 Å;
however, r is varied below. (b) Orbital occupation. The red balls
represent electrons and the blue lines represent energy levels in the HF
basis. We consider all 14 orbitals of the water molecule and the orbitals
are filled with 10 electrons.

Figure 2. Energy expectation value using the single-parameter ansatz.
(a) Data for = +H H HD D1 2 . The solid gray curve ED is the ground-
state energy of HD found using direct diagonalization, the blue
diamonds SD

S are obtained from a noise-free simulation of our method,
and the light-blue triangles SD

Q are obtained from QC runs. (b) Data for
the FCI Hamiltonian except that Pauli terms with weight less than 0.05
Ha are cut. The solid black curve E0 is the exact ground-state energy of
the FCI Hamiltonian, the solid green curve E05 is from direct
diagonalization of the Hamiltonian cut at 0.05 Ha, the green diamonds
S05

S are obtained from a noise-free simulation of our method, and the
light-green triangles S05

Q are obtained from QC runs. Note that ED is
unbounded but E0 is bounded. The bounding can be seen more clearly
in Figure 8.
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are at x1 = ± r sin ϕ/2, y1 = −r cos ϕ/2, and z1 = 0. Each
hydrogen atom contributes 1 electron. The oxygen atom
contributes 8 electrons. In total, there are 14 orbitals and 10
electrons. We use the JW transformation to decompose the
Hamiltonian as a sum of Pauli terms. We use the construction in

reference 1515 to transform the Thouless operator into a
quantum circuit. These transformations map the 14 orbitals
onto 14 qubits. The electron number is fixed by the initial state,
and the ansatz does not change the particle number.
3.1. Using a Single Variational Parameter. Let us define

the single-parameter ansatz

=D H( ) exp( )D2 (14)

This single-parameter ansatz can be thought of as a
modification to the Gutzwiller ansatz, which is known to
capture the lowest-order effects of the electron−electron
interactions. In Figure 2, we plot the energy expectation value
results from CVQE using the single-parameter ansatz for the
water molecule, and in Figure 3, we plot the difference between
the energy results and the energy from direct diagonalization.
The optimization parameter θ is scanned from θi = −2 Ha1− to θf
= 2 Ha1− with a step size of dθ = 0.1 Ha1−. The ED data in Figure
2a shows the ground-state energy of = +H H HD D1 2 calculated
using direct diagonalization. The data SD

S represent a noise-free
simulation of the CVQE procedure for HD. For SD

S , the minimum
value of θ is found to be θ* = 0.2 Ha1− for all values of r. The
energies in SD

S have errors of less than 0.03 Ha. The high
accuracy of the single-parameter ansatz, in this case, is expected
because the two-body interactions that are included in HD are
completely captured by H D2 . Thus, we expect the two-body
interactions to alter the ground state according to an operator of
the form (14) when there are no off-diagonal interactions.

The curve E0 in Figure 2b shows the ground-state energy for
the FCI Hamiltonian found by direct diagonalization. The
remainder of the data in Figure 2b corresponds to the
Hamiltonian cut such that Pauli terms with weights less than
0.05 Ha are not included. See Appendix A for an explanation of
the cut. The data S05

S show the results from running a noise-free
simulation for cut at 0.05 Ha. For S05

S , the minimum values of θ
are found to be in the range 0 Ha1− < θ* < 1 Ha1−. The energies
in S05

S have errors near 1 Ha.

Figure 3.Difference in the energy expectation value between the energy
from direct diagonalization and from the single-parameter ansatz. (a)
Data for = +H H HD D1 2 . The energies are compared to ED from
Figure 2a. The blue diamonds SD

S are obtained from a noise-free
simulation of our method and the light-blue triangles SD

Q are obtained
from QC runs. (b) Data for the FCI Hamiltonian except that Pauli
terms with weight less than 0.05 Ha are cut. The energies are compared
to E05 Figure 2b. The green diamonds S05

S are obtained from a noise-free
simulation of our method, and the light-green triangles S05

Q are obtained
from QC runs. The energy differences in both plots are plotted on a log
scale.

Figure 4. Energy expectation value for the Hamiltonian cut at 0.05 Ha.
The solid black curve E0 is the ground-state energy for the FCI
Hamiltonian calculated using direct diagonalization. The green
diamonds S05

S are from a noise-free simulation of the single-parameter
ansatz. The light-green triangles S05

Q are from QC runs of the single-
parameter ansatz. The red squares H05

S are from a noise-free simulation
of the HE ansatz. The light-red inverted triangles H05

Q are from QC runs
of the HE ansatz.

Figure 5. Difference in the energy expectation value between the
simulated data and the data obtained from the quantum computer. The
light-green triangles S05

Q show the difference between QC runs of the
single-parameter ansatz and noise-free simulations of the single-
parameter ansatz. The light-red inverted triangles H05

Q show the
difference between QC runs of the HE ansatz and noise-free
simulations of the HE ansatz.
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Thus, we find that when there are no off-diagonal many-body
terms, the single-parameter ansatz is very accurate. However,
when H F2 is included, there is error. This is due to the ground
state living outside of the manifold that the single-parameter
ansatz can access.

In Figure 2, SD
Q and S05

Q represent QC data. For SD
Q, the

minimum value of θ is found to be θ* = −0.05 Ha1− for all values

of r. For S05
Q , the minimum values of θ are found to be in the

range −1 Ha1− < θ* < 0 Ha1−. The difference in the optimal
values of θ between the quantum data and the simulated data
suggests that the parameter adjusts for the errors due to QC
noise. Indeed, the errors are much less than expected given the
reported gate errors on the device which are between 0.5 and 2%
per CNOT gate. In the next section, we will compare the
quantum errors in CVQE to those found in VQE to get a better
understanding of how the QC noise accumulates with gate
number.
3.2. Comparison to the HE Ansatz. We compare the

results obtained from CVQE to those obtained from VQE. It is
not trivial to use the Jastrow ansatz with VQE; therefore, we use

Table 2. Number of Circuit Executions for the Simulations. From Left to Right, the Columns Represent the Distance r between
theOxygen andHydrogenAtoms, theNumber of Shots, theNumber of Pauli Terms in theHamiltonian, theNumber of Iterations
Required to Converge VQE, the Total Number of Circuit Executions for VQE, and the Total Number of Circuit Executions for
CVQE

r (Å) shots Pauli terms iterations NVQE NCVQE

0.25 1024 134 300 8.2 × 107 1.4 × 105

0.50 1024 150 152 4.7 × 107 1.5 × 105

0.75 1024 154 289 9.1 × 107 1.6 × 105

1.00 1024 162 278 9.2 × 107 1.7 × 105

1.25 1024 162 278 9.2 × 107 1.7 × 105

1.50 1024 166 289 9.8 × 107 1.7 × 105

1.75 1024 170 246 8.6 × 107 1.7 × 105

2.00 1024 170 253 8.8 × 107 1.7 × 105

Table 3. Number of Circuit Executions for the QC Data. From Left to Right, the Columns Represent the Distance r between the
Oxygen and Hydrogen Atoms, the Number of Shots, the Number of Pauli Terms in the Hamiltonian, the Number of Iterations
Required to Converge QC Runs of VQE, the Total Number of Circuit Executions Used during the QC Runs of VQE, and the
Total Number of Circuit Executions Used for QC Runs of CVQE

r (Å) shots Pauli terms iterations NVQE NCVQE

0.25 1024 134 189 5.2 × 107 1.4 × 105

0.50 1024 150 205 6.3 × 107 1.5 × 105

0.75 1024 154 122 3.8 × 107 1.6 × 105

1.00 1024 162 71 2.4 × 107 1.7 × 105

1.25 102f4 162 80 2.7 × 107 1.7 × 105

1.50 1024 166 68 2.3 × 107 1.7 × 105

1.75 1024 170 54 1.9 × 107 1.7 × 105

2.00 1024 170 69 2.4 × 107 1.7 × 105

Figure 6. Energy as a function of the optimization iterations of various
noise-free simulations. The thin black line E0 is the FCI ground-state
energy. The dark-green line E05 is the ground-state energy for the
Hamiltonian cut at 0.05 Ha, found using direct diagonalization. The
green curve S05

S is data from the single-parameter ansatz with the
Hamiltonian cut at 0.05 Ha. The thick purple curve J05

S is the Jastrow
ansatz with the Hamiltonian cut at 0.05 Ha. The thin brown line J01

S is
the Jastrow ansatz with the Hamiltonian cut at 0.01 Ha. The dashed
brown line E01 is the ground-state energy for the Hamiltonian cut at
0.01 Ha, found using direct diagonalization. Other dashed lines indicate
extrapolations of data that has converged.

Figure 7. Energy as a function of the optimization iterations of various
QC runs with a Hamiltonian cut at 0.05 Ha. The black line E0 is the
ground-state energy for the FCI Hamiltonian calculated using direct
diagonalization. The light-green curve S05

Q is the single-parameter
ansatz. The thin light-red curve H05

Q is the HE ansatz. The thick pink
curve J05

Q is the Jastrow ansatz. Dashed lines indicate extrapolations of
data that has converged.
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the HE ansatz. Each HE ansatz layer is built from a layer of
CNOT gates connecting every neighboring qubit (on the
hardware level) and a layer of RY gates (single qubit rotations
around the y-axis of the Bloch sphere) acting on every qubit.
There is a variation of the parameter for each RY gate. We use
SPSA as our optimizer for VQE. We start the optimization using
random angles, which tends to improve the final energies, see
Appendix C. We find that for more than 2 layers of the HE
ansatz, the energy expectation value does not converge within
300 iterations. Therefore, we restricted the algorithm to 2 layers.

Figure 4 shows a comparison of the energy expectation values
obtained from a 2-layer HE ansatz using VQE and the single-
parameter ansatz using CVQE. Figure 5 shows the differences in
energy between the data obtained from the simulations and the
quantum computer. The data S05

S and H05
S represent results from

the noise-free simulation for the single-parameter ansatz and the
HE ansatz, respectively. We find that the single-parameter ansatz
provides an energy closer to the true ground-state energy than
the HE ansatz. This is remarkable as the 2-layer HE ansatz has 28
variational parameters. The accuracy of the single-parameter
ansatz demonstrates the advantage of using a physically
motivated ansatz.

The S05
Q and H05

Q in Figures 4 and 5 represent QC data for the
single-parameter ansatz and the HE ansatz, respectively. The
energy differences from the QC data for the single-parameter
ansatz and the HE ansatz are comparable. This is remarkable as
the 2-layer HE ansatz has only 26 CNOT gates, while our
construction of the Thouless operator contains 364 CNOT
gates. Furthermore, the CNOT error for the IBM quantum
computers we used ranges between about 0.5 and 2%. With 364
CNOT gates each applying 0.5% error, we would not expect any
useable results. The relatively high fidelity of our approach can
be explained by the postprocessing in CVQE. Because CVQE
adjusts the probability distribution after the quantum measure-
ments are taken, some of the QC noise is effectively removed
during the classical optimization step. This could be a major
advantage for CVQE.

Another advantage of the CVQE algorithm is the low number
of required circuit executions. In Table 2, we show the total
number of circuit executions used during the simulations of both

CVQE and VQE. The number of executions required for VQE is
NVQE = 2 × shots × Pauli terms × iterations. For CVQE, the
iterations are performed classically; thus, the number of circuit
executions is only NCVQE = shots × Pauli terms. The factor of 2 in
NVQE comes from the fact that we calculate two energy
expectation values per iteration using SPSA. From the table, we
see a 2-order-of-magnitude decrease in NCVQE as compared to
NVQE.

Table 3 shows the number of circuit executions used during
the QC execution of both VQE and CVQE. The difference in
the number of circuit executions is less pronounced in the QC
data. The QC noise makes it impossible to resolve fine-tuned
optimization, and thus, the number of iterations until
convergence is fewer.
3.3. Free Variational Parameters. We consider the full

Jastrow operator (6) and allow each of the Nθ = (Q + 1) × Q/2 =
105 (one for each unique operator in eq 6) variational
parameters to vary independently. The full Jastrow ansatz does
not introduce additional complexities for the quantum
computer, and in fact, the same measurement results are used
for the full Jastrow ansatz as were used for the single-parameter
ansatz. In Figure 6, we show the energy during the optimization
procedure for a noise-free simulation of CVQE. See Appendix B
for a description of the optimization procedure. The data J05

S

show runs of the Jastrow ansatz with independent variational
parameters. We find that there is a substantial improvement over
the single-parameter ansatz. The difference between E05 and the
final value of J05

S is less than 0.017 Ha. This error is less than the
error due to cutting the low-weight Pauli terms in the
Hamiltonian. Therefore, we ran the algorithm again, including
Pauli terms with weights greater than 0.01 Ha. The difference
between E0 and the final value of J01

S is less than 0.05 Ha.
In Figure 7, we show the energy during the optimization

procedure using the QC results. The data J05
Q represent data

using the Jastrow ansatz. We find that the full Jastrow ansatz
outperforms both the single-parameter ansatz and the 2-layer
HE ansatz by approximately an order of magnitude. The
difference between E05 and the final value of J05

Q is less than 0.14
Ha. Furthermore, the energy obtained from QC runs of the full
Jastrow ansatz is closer to its noise-free simulation than is that of

Table 4. Specifications of IBMQ Hanoi Based on the Date the Data Was Taken

physical qubit q25 q22 q19 q16 q14 q13 q12 q10 q7 q4 q1 q2 q3 q5

frequency (GHz) 4.81 4.92 5.0 4.88 5.05 4.96 4.72 4.82 4.92 5.07 5.16 5.26 5.1 5.21
T1 (μs) 233.5 194.7 161.0 193.9 160.6 277.9 266.0 211.1 218.2 153.3 106.6 155.9 117.0 144.9
T2 (μs) 99.9 85.3 236.5 191.1 25.0 322.7 198.6 234.6 239.8 20.7 102.5 183.6 32.1 187.2
readout error (%) 1.11 3.04 0.64 1.01 0.93 5.67 1.75 2.42 1.21 1.01 1.14 1.72 1.66 0.67
√X error (%) 0.017 0.019 0.014 0.031 0.021 0.019 0.021 0.022 0.012 0.026 0.031 0.053 0.122 0.019
CXq0,qi error 0.811
CXq1,qi error 0.811 0.815
CXq2,qi error 0.815 0.669
CXq3,qi error 0.669 2.358
CXq4,qi error 2.358 0.563
CXq5,qi error 0.563 0.491
CXq6,qi error 0.491 0.794
CXq7,qi error 0.794 0.565
CXq8,qi error 0.565 1.085
CXq9,qi error 1.085 0.562
CXq10,qi error 0.562 0.571
CXq11,qi error 0.571 1.878
CXq12,qi error 1.878 1.131
CXq13,qi error 1.131
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the single-parameter ansatz. This is expected as increasing the
number of free variational parameters increases the ability of the
classical optimization procedure to mitigate QC errors.

4. CONCLUSIONS
We have demonstrated that CVQE, using the Jastrow ansatz, is
an effective algorithm for studying the water molecule. As we
have not tailored our algorithm based on any of the symmetry
properties of the water molecule, we expect our method to be
effective for molecules in general.

Furthermore, we have demonstrated that CVQE has a
number of advantages over VQE. For one, CVQE requires
orders of magnitude fewer QC executions. This is especially
important for molecular Hamiltonians, which can contain
thousands of Pauli terms, even for small molecules. Second,
we find that the postprocessing in CVQE provides robustness to
quantum hardware errors. This allows the quantum part of the

algorithm to contain many more gates than are otherwise
possible.

The results of this work demonstrate that CVQE is
particularly suited for near-term QC studies of molecules,
where the QC noise is high and resources are limited. As
quantum hardware continues to improve, studying larger
molecules will become practical.

■ APPENDIX A

Cutting Pauli Terms
The Hamiltonian cut in the main text is made to reduce the
number of Pauli terms in order to improve the run time of the
optimization. As we are limited to two-body interactions, the
number of Pauli terms does not grow exponentially but it can
still be a bottleneck for large systems. For the water molecule, we
have nearly 3000 Pauli terms in H F2 . Cutting the terms that have
weights less than 0.05 Ha reduces the number of terms to around

Table 5. Specifications of IBMQ Mumbai Based on the Date the Data Was Taken

physical qubits q1 q4 q7 q10 q12 q15 q18 q21 q23 q24 q25 q22 q19 q20

frequency (GHz) 4.93 5.02 4.89 4.96 4.74 4.85 4.78 4.93 4.88 4.67 4.76 4.91 4.82 5.04
T1 (μs) 183.7 104.0 128.2 114.3 182.3 184.5 136.4 76.6 74.8 152.3 217.5 50.8 148.3 143.1
T2 (μs) 89.7 36.7 89.2 262.9 190.9 187.8 149.9 98.4 22.1 65.5 64.9 65.1 246.5 131.0
readout error (%) 1.25 1.75 1.67 1.52 3.06 1.79 6.23 3.09 8.26 3.91 1.71 1.11 1.76 1.43
√X error (%) 0.016 0.027 0.022 0.02 0.015 0.018 0.021 0.028 0.056 0.036 0.02 0.023 0.021 0.018
CXq0,qi error 0.846
CXq1,qi error 0.846 1.327
CXq2,qi error 1.327 0.757
CXq3,qi error 0.757 0.536
CXq4,qi error 0.536 0.839
CXq5,qi error 0.839 0.751
CXq6,qi error 0.751 0.657
CXq7,qi error 0.657 1.248
CXq8,qi error 1.248 2.067
CXq9,qi error 2.067 0.562
CXq10,qi error 0.562 0.616
CXq11,qi error 0.616 0.681
CXq12,qi error 0.681 0.542
CXq13,qi error 0.542

Table 6. Specifications of IBMQ Guadalupe Based on the Date the Data Was Taken

physical qubit q15 q10 q7 q4 q1 q2 q3 q5 q8 q9 q11 q14 q13 q12

frequency (GHz) 5.13 5.43 5.2 5.35 5.16 5.31 5.47 5.3 5.17 5.25 5.39 5.2 5.04 5.26
T1 (μs) 88.4 77.9 127.1 35.8 98.2 49.9 109.9 139.3 134.3 100.3 75.2 69.8 154.3 86.5
T2 (μs) 115.9 124.0 138.7 63.8 136.6 76.1 152.4 109.8 145.6 74.2 81.5 104.7 105.9 145.7
readout error (%) 1.62 3.4 1.8 2.42 1.42 1.79 1.51 1.47 2.07 2.18 2.36 1.95 1.02 1.59
√X error (%) 0.022 0.02 0.019 0.294 0.033 0.036 0.025 0.032 0.022 0.031 0.089 0.026 0.021 0.02
CXq0,qi error 0.61
CXq1,qi error 0.557 1.424
CXq2,qi error 0.557 6.328
CXq3,qi error 6.328 1.759
CXq4,qi error 1.759 0.962
CXq5,qi error 0.962 1.261
CXq6,qi error 1.261 1.116
CXq7,qi error 1.116 0.571
CXq8,qi error 0.571 0.789 0.92
CXq9,qi error 0.789
CXq10,qi error 0.92 1.229
CXq11,qi error 1.229 0.954
CXq12,qi error 0.954 0.57
CXq13,qi error 0.61 1.424 0.57
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300. This cut tends to cause large errors in the ground-state
energy; however, these errors are much less than the errors due

to the QC noise. As quantum hardware improves, we can reduce
the cut value so that the QC noise is always the dominant source
of error. With the absence of QC noise, as the cutoff is reduced
to zero, the results will converge to the FCI results. Cutting the
terms that have weight less than 0.01 Ha only reduces the
number of terms to around 1500 but the ground-state energy is
nearly identical to the FCI ground state. Figure 8 shows the
ground-state energy calculated by diagonalizing the Hamil-
tonian cut at 0, 0.05, and 0.01 Ha. The error from cutting at 0.05
Ha is smaller than the error from using the single-parameter
ansatz. The error from cutting at 0.01 Ha is smaller than the
error from using the full Jastrow ansatz.

■ APPENDIX B

Optimizer
For CVQE, we modified the SPSA in the following way. In
SPSA, two near but arbitrarily different parameter sets are

Table 7. Specifications of IBMQ Kolkata Based on the Date the Data Was Taken

physical qubit q22 q25 q24 q23 q21 q18 q15 q12 q13 q14 q11 q8 q5 q3

frequency (GHz) 5.12 4.92 5.0 5.14 5.27 5.09 5.03 4.96 5.02 5.12 4.88 4.96 5.1 4.87
T1 (μs) 136.8 191.7 76.1 159.4 83.4 137.3 82.2 195.5 171.4 170.4 15.4 144.3 95.3 104.6
T2 (μs) 38.8 168.1 32.0 163.9 94.6 87.9 157.4 90.3 224.2 132.2 18.4 133.8 40.4 57.6
readout error (%) 1.44 0.84 0.72 0.69 0.63 0.78 0.96 1.12 0.94 0.66 4.68 1.44 2.41 3.71
√X error (%) 0.028 0.017 0.056 0.018 0.021 0.015 0.026 0.049 0.027 0.019 0.153 0.013 0.017 0.146
CXq0,qi error 0.517
CXq1,qi error 0.517 100
CXq2,qi error 100 0.548
CXq3,qi error 0.548 0.5
CXq4,qi error 0.5 0.663
CXq5,qi error 0.663 1.174
CXq6,qi error 1.174 0.588
CXq7,qi error 0.588 0.697
CXq8,qi error 0.697 0.565
CXq9,qi error 0.565 4.883
CXq10,qi error 4.883 1.979
CXq11,qi error 1.979 0.603
CXq12,qi error 0.603 2.064
CXq13,qi error 2.064

Table 8. Specifications of IBMQ Washington Based on the Date the Data Was Taken

physical qubit q43 q34 q24 q25 q26 q27 q28 q29 q30 q31 q32 q36 q51 q50

frequency (GHz) 5.03 4.94 4.77 4.87 5.0 5.08 5.2 4.99 5.08 5.13 5.2 5.1 5.21 5.02
T1 (μs) 103.9 78.2 142.6 136.3 92.8 146.0 109.5 81.3 136.7 63.0 92.4 125.5 118.9 99.9
T2 (μs) 135.2 138.3 156.5 119.1 164.6 60.4 90.4 18.7 172.2 58.4 32.0 128.4 87.4 174.8
readout error (%) 2.92 2.41 4.69 0.84 0.24 5.1 0.33 0.81 0.23 0.31 0.29 0.69 0.46 5.86
√X error (%) 0.025 0.027 0.328 0.023 0.056 0.024 0.022 0.022 0.038 0.035 0.025 0.043 0.023 0.025
CXq0,qi error 1.041
CXq1,qi error 1.041 2.54
CXq2,qi error 2.54 0.973
CXq3,qi error 0.973 0.729
CXq4,qi error 0.729 0.845
CXq5,qi error 0.845 1.454
CXq6,qi error 1.454 0.653
CXq7,qi error 0.653 0.81
CXq8,qi error 0.81 0.779
CXq9,qi error 0.779 0.798
CXq10,qi error 0.798 0.819
CXq11,qi error 0.819 0.838
CXq12,qi error 0.838 0.711
CXq13,qi error 0.711

Figure 8. Ground-state energy calculated using direct diagonalization
as a function of r. The thin black line E0 is the FCI ground-state energy.
The thick dark-green line E05 is for a cut at 0.05 Ha. The dashed brown
line E01 is for a cut at 0.01 Ha.
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chosen. The parameters are then adjusted proportional to the
energy difference from the two parameter sets. We find that
simply choosing the better parameter set as the updated set
shows better convergence. In this way, energy never increases.
We initialize the optimization using random angles.

■ APPENDIX C

Initialization of VQE Angles
In the main text, we use randomly initialized angles for the HE
ansatz. This was chosen because random angles tend to produce
better final energies than initializing to the HF state. Figure 9
shows the optimized energies using both random initial angles
and angles initialized to the HF state. We see that the randomly
initialized angles perform better.

Table 9. Specifications of IBMQ Montreal Based on the Date the Data Was Taken

physical qubits q3 q5 q8 q11 q14 q13 q12 q15 q18 q21 q23 q24 q25 q26

frequency (GHz) 5.1 5.03 4.91 5.03 4.96 4.87 4.97 5.03 4.98 5.07 4.97 5.05 4.93 5.0
T1 (μs) 75.6 131.0 112.0 105.7 97.5 99.6 58.0 111.0 80.5 101.2 144.8 109.5 95.3 92.9
T2 (μs) 65.4 98.5 142.3 51.7 97.1 68.9 66.8 130.6 27.3 49.0 38.7 64.0 77.7 165.1
readout error (%) 1.11 2.09 1.48 1.27 0.98 0.71 3.27 2.05 3.23 2.19 9.67 3.96 0.83 0.98
√X error (%) 0.026 0.033 0.019 0.025 0.022 0.016 0.025 0.027 0.037 0.047 0.023 0.022 0.029 0.045
CXq0,qi error 0.915
CXq1,qi error 0.915 0.651
CXq2,qi error 0.651 0.74
CXq3,qi error 0.74 0.559
CXq4,qi error 0.559 0.735
CXq5,qi error 0.735 0.7
CXq6,qi error 0.7 1.204
CXq7,qi error 1.204 1.186
CXq8,qi error 1.186 1.327
CXq9,qi error 1.327 0.791
CXq10,qi error 0.791 0.947
CXq11,qi error 0.947 0.871
CXq12,qi error 0.871 0.692
CXq13,qi error 0.692

Table 10. Specifications of IBMQ Toronto Based on the Date the Data Was Taken

physical qubits q6 q7 q4 q1 q2 q3 q5 q8 q11 q14 q13 q12 q15 q18

frequency (GHz) 5.15 4.92 5.09 5.0 5.14 5.21 5.17 5.03 5.12 5.02 5.13 4.93 5.09 5.06
T1 (μs) 82.7 138.8 117.4 125.8 94.1 112.2 119.6 117.0 127.7 125.5 111.1 98.6 102.3 94.0
T2 (μs) 56.8 196.1 124.9 126.8 117.4 153.9 184.7 133.7 207.7 233.8 137.5 143.4 60.5 116.3
readout error (%) 8.61 3.59 4.58 3.76 0.98 1.26 1.18 1.48 1.16 1.34 21.06 7.93 27.45 1.57
√X error (%) 0.032 0.017 0.018 0.035 0.028 0.05 0.032 0.026 0.025 0.02 0.028 0.252 0.112 0.146
CXq0,qi error 0.629
CXq1,qi error 0.629 0.875
CXq2,qi error 0.875 0.727
CXq3,qi error 0.727 1.265
CXq4,qi error 1.265 0.779
CXq5,qi error 0.779 0.917
CXq6,qi error 0.917 0.776
CXq7,qi error 0.776 0.571
CXq8,qi error 0.571 0.908
CXq9,qi error 0.908 0.904
CXq10,qi error 0.904 3.307
CXq11,qi error 3.307 2.016
CXq12,qi error 2.016 1.886
CXq13,qi error 1.886

Figure 9. Ground-state energy calculated using the VQE with the HE
ansatz as a function of r. The thin black line E0 is the FCI ground-state
energy. The dark-red squares E05

random are for a cut at 0.05 Ha using
random initialized angles for the HE ansatz. The light-red hexagons
E05

HF are for a cut at 0.05 Ha using angles initialized to the HF state.
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■ APPENDIX D

Hamiltonian Hierarchies
I n t h e m a i n t e x t , w e c l a i m t h a t t h e

| | > | | >h h hpq pq pq pq
D

pqrs pqrs
F1 2 2 . In Figure 10, we plot each

of these terms. We see that the inequalities do indeed hold over
the range of r values used in the main text.

■ APPENDIX E

Single-Parameter Scans
In Figure 11, we show plots of the energy as a function of the
parameter in the single-parameter ansatz. Often, there is a large

range in the parameter values where the energy is relatively flat.
The fact that the reported optimal value for the HD scans is the
same for all r is likely due to the discretization of θ. With a
smaller step size, we expect the optimal value to vary slightly.

■ APPENDIX F

Bare Thouless Energies
In Figure 12, we plot the energies obtained from the QC runs
including the unoptimized energies calculated by applying the
Thouless operator and taking the energy expectation value of the
resulting quantum state. We see that the single-parameter ansatz

shows significant improvement over the unoptimized data.
Furthermore, the full Jastrow ansatz applied an order of
magnitude’s improvement over the unoptimized data.

■ APPENDIX G

Device Specifications
We chose the backend with the shortest queue for each job.
Because CVQE requires only a single QC run, we were able to
collect all of the data for CVQE in a single job, which was run on
IBM Hanoi. This data was used in both the single-parameter
ansatz and the full Jastrow ansatz for all values of r.

For VQE, each optimization step requires a new QC run.
Thus, we ran each value of r as a separate job. The data for r =
0.25, r = 1.0, and r = 1.5 was obtained from IBM Montreal. The
data for r = 0.5 was obtained from IBM Mumbai. The data for r =
0.75 was obtained from IBM Guadalupe. The data for r = 1.25
was taken from IBM Kolkata. The data for r = 1.75 was obtained
from IBM Toronto. The data for r = 2.0 was taken from IBM
Washington.

In (Tables 4−10), the physical qubits refer to the actual qubits
on the chip and they are presented in the order in which the
orbitals are mapped. When transpiling the circuits to the
quantum chip, the qubit indices are mapped using the built-in
Qiskit transpiler. The CXq qi j

gates represent controlled NOT

gates controlled by logical qubit qi and targeting logical qubit qj.
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Figure 10. Strength of each Hamiltonian as a function of r. The thick
blue line is for H1, the orange line is for H D2 , and the thin green line is for
H F2 .

Figure 11. Scans of energy as a function of the parameter in the single-
parameter ansatz at different values of r. (a) Simulations for the HD
Hamiltonian. (b) Simulations for the Hamiltonian cut at 0.05 Ha. (c)
Quantum data for the HD Hamiltonian. (d) Quantum data for the
Hamiltonian cut at 0.05 Ha.

Figure 12. Energy expectation values from the QC including
unoptimized data. The solid green curve E05 is from direct
diagonalization of the Hamiltonian cut at 0.05 Ha; the orange plus
signs are obtained from QC runs without applying any postprocessing
optimization; the light-green triangles S05

Q are obtained using the
single-parameter ansatz; the pink circle is obtained from the full Jastrow
ansatz. We ran the full Jastrow ansatz for only a single r value as the
calculations take weeks to complete.
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