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Abstract

Background: Leaf stripe disease on barley (Hordeum vulgare) is caused by the seed-transmitted hemi-biotrophic fungus
Pyrenophora graminea. Race-specific resistance to leaf stripe is controlled by two known Rdg (Resistance to Drechslera
graminea) genes: the H. spontaneum-derived Rdg1a and Rdg2a, identified in H. vulgare. The aim of the present work was to
isolate the Rdg2a leaf stripe resistance gene, to characterize the Rdg2a locus organization and evolution and to elucidate the
histological bases of Rdg2a-based leaf stripe resistance.

Principal Findings: We describe here the positional cloning and functional characterization of the leaf stripe resistance gene
Rdg2a. At the Rdg2a locus, three sequence-related coiled-coil, nucleotide-binding site, and leucine-rich repeat (CC-NB-LRR)
encoding genes were identified. Sequence comparisons suggested that paralogs of this resistance locus evolved through
recent gene duplication, and were subjected to frequent sequence exchange. Transformation of the leaf stripe susceptible
cv. Golden Promise with two Rdg2a-candidates under the control of their native 59 regulatory sequences identified a
member of the CC-NB-LRR gene family that conferred resistance against the Dg2 leaf stripe isolate, against which the Rdg2a-
gene is effective. Histological analysis demonstrated that Rdg2a-mediated leaf stripe resistance involves autofluorescing
cells and prevents pathogen colonization in the embryos without any detectable hypersensitive cell death response,
supporting a cell wall reinforcement-based resistance mechanism.

Conclusions: This work reports about the cloning of a resistance gene effective against a seed borne disease. We observed
that Rdg2a was subjected to diversifying selection which is consistent with a model in which the R gene co-evolves with a
pathogen effector(s) gene. We propose that inducible responses giving rise to physical and chemical barriers to infection in
the cell walls and intercellular spaces of the barley embryo tissues represent mechanisms by which the CC-NB-LRR-encoding
Rdg2a gene mediates resistance to leaf stripe in the absence of hypersensitive cell death.
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Introduction

Leaf stripe disease on barley (H. vulgare) is caused by the seed-

transmitted hemi-biotrophic fungus Pyrenophora graminea (anamorph

Drechslera graminea) [(Rabenh. ex. Schlech.) Shoemaker]. The

disease causes severe yield reductions at high infection rates,

especially in organic farming systems [1,2]. The fungal mycelia

survive in seeds between the parenchymatic cells of the pericarp,

and in the hull and the seed coat, but not in the embryo [3].

During seed germination, the hyphae begin to grow intercellularly

within the coleorhizae, and then into the embryo structures, the

roots and scutellar node, to establish infection in the seedling.

During this first colonization phase the pathogen behaves as a

biotroph and degrades host cell walls using hydrolytic enzymes

without causing cellular necrosis [3–5]. Once infection spreads

into the young leaves, growth switches to a necrotrophic phase

with the production of a host-specific glycosyl toxin [6] that causes

longitudinal dark brown necrotic stripes between the leaf veins, as

well as spike sterility. Spores produced on the infected leaves of

susceptible plants spread to infect nearby plant spikes.

Race-specific resistance to leaf stripe is controlled by two known

Rdg (Resistance to Drechslera graminea) genes. These genes cause

hyphal degeneration in the basal part of the coleorhiza and

prevent stripe symptoms from appearing on leaves of young or old

plants [3,7,5]. H. spontaneum-derived Rdg1a has been mapped to the

long arm of chromosome 2H [8,9] while Rdg2a, identified in H.
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vulgare, has been mapped on the short arm of chromosome 7HS

[10]. Both resistance genes have been extensively used in classical

breeding, but neither has been cloned. Histological characteriza-

tion of the Rdg2a-dependent resistance response by [5] showed the

termination of P. graminea growth at the scutellar node and basal

region of provascular tissue of the barley embryo. The immune

response was associated with cell wall reinforcement through

accumulation of phenolic compounds and enhanced transcription

of genes involved in reactive oxygen species (ROS) production and

detoxification/protection, but no localized programmed cell death

(PCD), which is typically seen in race-specific immune responses

[11], was apparent.

In this study we describe the cloning of Rdg2a and the molecular

characterization of the Rdg2 locus. Bacterial artificial chromosome

(BAC) and cosmid libraries respectively derived from barley cvs.

Morex (which is susceptible to leaf stripe) and Thibaut (the donor

of the Rdg2a allele) were used for physical mapping of the locus,

leading to the identification of three Rdg2a candidates representing

sequence-related members of a gene family. Transformation

experiments showed that a coiled-coil, nucleotide-binding site,

leucine-rich repeat (CC-NB-LRR) encoding gene confers Rdg2a-

specific resistance. Similar to that of other R proteins [12], the

RDG2A protein localized to the nucleus and the cytoplasm, while

histological analysis confirmed that RDG2A involves cell wall-

localized autofluorescence and does not trigger a hypersensitive

cell death, consistent with physical/chemical defences mounted by

the living cells stopping the intercellularly growing leaf stripe

pathogen.

Results

Genetic and physical map of the Rdg2a locus
The Rdg2a locus resides in a chromosome region of high

recombination [7], which is a characteristic that would assist in

map-based cloning. To investigate the molecular basis of the

Rdg2a-based P. graminea resistance in barley, map-based isolation of

Rdg2a was initiated by constructing a high resolution genetic map

representing 2,800 F1 gametes. The locus was delimited to a

0.14 cM marker interval, and a PCR-based marker located

0.07 cM from Rdg2a was developed [7].

Leaf stripe isolate Dg2, which is recognised by Rdg2a [10] (Table

S1), is virulent on cv. Morex, indicating that this cultivar does not

contain a functional Rdg2a allele. However, due to the availability

of a Morex BAC library [13], we took advantage of this resource

for marker development. Utilization of the Morex BAC library for

marker development and recessive allele isolation is an approach

that was previously used for the isolation of homologues and

functional alleles at the Mla powdery mildew resistance locus in

barley [14–16]. Screening of the library with a probe derived from

the CAPS marker MWG851 (Methods S1), allowed identification

of BAC clones 146G20, 244G14 and 608H20 that were subjected

to end sequencing (Methods S1). The 146G20 and 608H20 clones

were also subjected to low-pass (0.3-fold) shotgun sequencing and

nine additional CAPS, dCAPS or RFLP markers were identified

(Figure 1A; Table S2). Two of these (146.60-1-2 and 146.9-5-6)

showed complete linkage with Rdg2a. These PCR-based markers

were tested on the three BAC clones, allowing the markers to be

located to sections of the contig (Figure 1B). The estimated size of

the 146G20 insert was about 140 kbp. 146.1F-1R and 146.4F-3R

markers mapped 0.32 cM apart (9 recombinants out of 2,800

gametes), indicating a genetic to physical ratio of about 440 kb per

cM in this Rdg2a interval.

To clone the region containing the Rdg2a resistance gene, we

constructed a genomic cosmid library of the Rdg2a-containing cv.

Thibaut (Methods S1). Screens using markers 146.9-5-6 and

608.32-3-4 identified the clones 95-3-3 and 17-1-1. Analysis of

these two clones with other PCR markers from the region

indicated that the clones spanned the Rdg2a interval bounded by

the closest flanking genetic markers (Figure 1C). The two cosmids

which overlapped by 5.9 kb were sequenced, providing a

contiguous sequence of 72,630 bp. In BLASTX analyses, the

sequenced region was shown to contain three gene models with

similarity to plant R genes encoding NB-LRR proteins (GenBank

accession number HM124452). The three NB-LRR encoding

Figure 1. Genetic and physical maps of the Rdg2a locus. (A) Genetic map of Rdg2a. Crossovers identified in the 1,400 F2 plants from a cross
between Thibaut (Rdg2a) and Mirco [7] are shown at the top (CO). Orientation is indicated by Tel (telomere) and Cen (centromere). (B) Contig of
Morex BAC clones. (C) Thibaut cosmid contig and genes at the Rdg2a locus. Transcription direction of the genes are indicated by arrows.
doi:10.1371/journal.pone.0012599.g001
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genes were predicted using the AutoPredgeneset tool of the

RiceGAAS software (http://ricegaas.dna.affrc.go.jp/, [17]) and

designated Nbs1-Rdg2a, Nbs2-Rdg2a and Nbs3-Rdg2a with their

relative locations shown in Figure 1C.

RFLP analysis of BamHI digested genomic DNA with probes

derived from the NB-LRR genes detected only one fragment of

about 50 kbp in the resistant cv. Thibaut and in NIL3876

containing Rdg2a (Figure S1), which agreed with the 52 kbp

fragment size predicted from the sequence assembly (Figure 1C).

In susceptible genotypes, either three fragments were detected (cvs.

Mirco and Golden Promise) or a single ,20 kbp fragment was

detected (cv. Morex) indicating large deletion(s) in this last

genotype.

Structure of Rdg2a candidate genes
All three Rdg2a candidates were found to be transcribed in

resistant embryos, and the transcript structures (Figure 2A) were

determined by random amplification of cDNA ends (RACE) and

RT-PCR. Nbs1-Rdg2a and Nbs2-Rdg2a had single introns of 217

or 305 bp in the 59 UTR, and predicted full-length NB-LRR

protein products of 1,232 and 1,158 amino acids, respectively.

The Nbs3-Rdg2a transcript contained a repeat structure, com-

prising similarity to a full-length NB-LRR protein followed by

similarity to part of a NB domain and a full LRR domain (Figure

S2). However, the following observations lead us to conclude that

Nbs3-Rdg2a encodes only predicted truncated proteins. In

addition to a 305 bp intron in the 59 UTR and a 70 bp intron

in the 39 UTR, Nbs3-Rdg2a had one 44 bp intron located shortly

after the start codon, which was spliced out in only a third (4/12)

of the RACE clones analysed. Splicing of the intron causes a

frame-shift, resulting in termination after the first 37 amino acids

and addition of one novel amino acid (Cys), while retention of

this intron results in termination after the first four and a half

LRR units (725 amino acids) due a nonsense substitution

mutation (Figure 2A). We thought it unlikely that Nbs3-Rdg2a

encodes a functional resistance protein so we did not pursue it

further as an Rdg2a candidate.

Apart from the major structural differences, the ORFs of the

three genes were 87–90% identical to one another at the DNA

level and 81–86% identical and 91–93% similar at the protein

level. Comparisons of the 59 untranscribed regions showed that

Nbs2-Rdg2a and Nbs3-Rdg2a were 93% identical in the 1,040 bp

preceding the transcription start point (Figure S2), apart from a

347 bp insertion in Nbs2-Rdg2a, 145 bp upstream of the

transcription start site. These findings suggest that the Rdg2a locus

arose by gene duplication. A BLASTn search of the Triticeae

Repeat Sequence (TREP) database (http://wheat.pw.usda.gov/

ITMI/Repeats/) revealed 88% sequence identity between the

insertion in the predicted promoter region of Nbs2-Rdg2a and

members of the Stowaway class of miniature inverted transposable

elements (MITEs). In contrast, Nbs1-Rdg2a showed only weak

identity (51%) to the other two genes in the 700 bp preceding the

transcription start (Figure S2). The three genes showed no

significant similarity in the 39-untranscribed regions.

To provide a comparison with a susceptible (rdg2a) genotype, we

used gene-specific primers designed on the Thibaut Nbs1-Rdg2a

and Nbs2-Rdg2a genes to obtain genomic sequences from cv. Mirco

(GenBank accession numbers HM124453 and HM124454,

respectively). Primers based on Nbs1-Rdg2a and Nbs2-Rdg2a genes

yielded Mirco sequences with affiliation to the corresponding

genes in Thibaut (Figure S2), suggesting that the amplified genes

represented true alleles of the Thibaut genes. PCR markers based

on insertion/deletions identified in the putative regulatory regions

of the two genotypes (see below; Table S2), co-segregated with the

Rdg2a locus in the high resolution mapping population (Figure S3,

Methods S1), confirming that these two Mirco genes derive from

the rdg2a locus.

Neither Mirco gene appears to be transcribed (see below), and

this inactivity may be due to structural differences in the 59

sequences (Figure 2B). Mirco Nbs1-rdg2a has a 436 bp insertion

next to a putative TATA-box element, and a 854 bp insertion in

the 59 UTR with terminal inverted direct repeats of 138 bp.

Neither insertion showed similarity to a known transposable

element. Mirco Nbs2-rdg2a contained a 41 bp direct repeat just

upstream of the transcription start site and lacked the MITE

element present in the Thibaut gene (Figure 2B). Mirco Nbs1-rdg2a

also contains frame shift mutations, resulting in a severely

truncated ORF, whereas Mirco Nbs2-rdg2a contains an intact

CC-NB-LRR ORF (Figure S4).

Nbs2-Rdg2a expression, but not Nbs1-Rdg2a, is pathogen
responsive

Semi-quantitative RT-PCR was performed using primer

combinations specific for the Nbs1-Rdg2a and Nbs2-Rdg2a genes

in either cv. Mirco or NIL3876-Rdg2a (Figure 2C; Table S3). In

the susceptible cv. Mirco, neither gene showed detectable

expression in embryos or leaves, even after increasing the number

of PCR cycles and trying other primer combinations. In NIL3876-

Rdg2a, expression of both genes was observed in uninoculated

control embryos and in leaves of pathogen free plants. Some

increase in transcript levels by 7 days after inoculation was evident

for Nbs2-Rdg2a but not for Nbs1-Rdg2a (Figure 2C). Therefore, we

performed quantitative RT-PCR in embryos of NIL3876-Rdg2a at

five time points (7, 14, 18, 22 and 28 dai) (Fig. 2D). Nbs2-Rdg2a

expression was significantly increased by inoculation at 7, 14, 18

dai (P,0.05, Methods S1) and was unresponsive by 22 dai, while

Nbs1-Rdg2a expression was not appreciably altered by leaf stripe

inoculation (Figure 2D).

Identification of Rdg2a
Genomic clones of the two Rdg2a candidates containing their

native 59 and 39 regulatory sequences were used to transform the

leaf stripe susceptible barley cv. Golden Promise. Ten randomly

chosen T0 lines for each transgene were allowed to self-pollinate

and the resulting T1 plants tested for resistance to isolates Dg2 and

Dg5. This revealed that lines bearing the Nbs1-Rdg2a transgene

were resistant to leaf stripe isolate Dg2 (Table 1). The overall

escape rate of 5% among the null segregants was similar to the

value observed in the susceptible control varieties (data not

shown). Within T1 families, resistance to the same isolate co-

segregated with the Nbs1-Rdg2a transgene and its expression

(Figure 3A). These lines were susceptible to leaf stripe isolate Dg5,

which is not recognised by Rdg2a (Table 1). T1 lines containing the

Nbs2-Rdg2a transgene were fully susceptible to both the leaf stripe

isolates (Table 1), although RT-PCR confirmed the transgene was

expressed (data not shown).

Rdg2a resistance terminates fungal growth in the embryo [5]. In

the line 16/S1-T6 containing the Nbs1-Rdg2a transgene, plants

challenged with the P. graminea isolate Dg2 showed no leaf stripe

symptoms and there was no fungal mycelium in the leaves,

indicated by undetectable transcripts of two fungal genes coding

for Ubiquitin and GTPase activator (Figure 3B). In contrast, leaf stripe

symptoms and fungal transcripts were observed in leaves of 16/S1-

T6-rdg2a plants infected with Dg2 or Dg5 and 16/S1-T6-Rdg2a

plants infected with Dg5 (Figure 3B).

As the Nbs1-Rdg2a gene could confer the same resistance

specificity as Rdg2a in transgenic plants, we concluded that Nbs1-

Rdg2a is Rdg2a.

Embryo Immunity to Leaf Stripe
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RDG2A protein structure
The predicted Rdg2a product of 1232 amino acids has an estimated

molecular weight of 139.73 kDa. It contains all the conserved NB

domain motifs of NB-LRR proteins defined by [18,19], including the

P-loop, RNBS-A, Kinase 2, RNBS-C, GLPL, RNBS-D and MHD

domains, the latter of which is duplicated (Figure 4). A COILS

analysis indicated the presence of a potential coiled-coil (CC) domain

between amino acids 25 and 60, indicating that RDG2A belongs to

the CC subset of NB-LRR resistance proteins [18]. The LRR region

contains 22 imperfect repeats with a few repeats showing good

agreement with the consensus motif LxxLxLxx(C/N/

T)xxLxxLxxLP for cytoplasmic LRRs (Figure 4) [20].

Figure 5 illustrates similarities between RDG2A and the most

similar sequences in the National Center for Biotechnology

Information (NCBI) database. RDG2A was most similar (47–

52%) over its whole length to five rice disease resistance-like

Figure 2. Analysis of Rdg2a-candidate gene transcript structure and regulation. (A) Nbs1-Rdg2a, Nbs2-Rdg2a and Nbs3-Rdg2a transcript
structures (cv. Thibaut), indicating positions of primers used in transcript quantification. The two transcript types resulting from alternative splicing
pattern of Nbs3-Rdg2a are indicated. (B) Structural differences between Thibaut and Mirco alleles of Nbs1-rdg2a and Nbs2-rdg2a genes in 59 regions.
Positions of insertion/deletions relative to the start codon are shown. Filled sections indicate inverted repeats present in an insertion in the Mirco
Nbs1-rdg2a gene. The Nbs2-rdg2a allele comparison illustrates variation for a MITE insertion and a 41–bp direct repeat (open sections). Transcription
start sites (TSS) for Nbs1-Rdg2a and Nbs2-Rdg2a are indicated. (C) Semi-quantitative RT-PCR analysis of the Rdg2a-candidate gene expression using
gene specific primers. Transcripts were analysed in embryos of the cv. Mirco (rdg2a) and NIL3876 (Rdg2a) genotypes at two timepoints, after
inoculation with P. graminea Dg2 (I), or in uninoculated controls (C). Leaves of uninoculated plants were also analysed. Negative controls (neg.) in
which DNA was omitted are included. Primers for cv. Thibaut genes were those represented in (A), while primers for amplifying homologous
fragments from cv. Mirco were based on the cv. Mirco gene sequences and positioned within 30 bp of the corresponding Thibaut primers. RT-PCR of
the barley b-actin gene was used as an internal control. (D) Quantitative RT-PCR at 7, 14, 18, 22 and 28 days after pathogen inoculation (dai) for the
two Rdg2a-candidates in embryos of NIL3876-Rdg2a. Values are expressed as log2 fold changes of transcript levels in the inoculated samples with
respect to the transcript levels in un-inoculated barley embryos. Error bars represent SD across all RT-PCR replicates (four to six from each of two
independent inoculations).
doi:10.1371/journal.pone.0012599.g002

Table 1. Analysis of transgenic plants.

Isolate Dg2 Isolate Dg5

Constructs/barley cvs. Linesa No. plantsa No. res. plantsb No. plants No. res. plants

Nbs1-Rdg2a 1/S1-T6 19 19 15 0

4/S1-T6 21 21 13 0

7/S1-T6 24 24 11 0

8/S1-T6 23 22 5 0

16/S1-T6 19 19 12 0

17/S1-T6 15 14 8 0

19/S1-T6 7 7 9 0

25/S1-T6 19 19 12 0

31/S1-T6 13 13 5 0

32/S1-T6 19 18 14 0

Nbs2-Rdg2a 41/S1-T7 23 1 17 0

42/S1-T7 19 1 16 0

46/S1-T7 16 0 9 0

54/S1-T7 21 0 4 0

56/S1-T7 17 1 5 0

57/S1-T7 26 0 12 0

60/S1-T7 20 2 16 0

62/S1-T7 16 0 18 0

64/S1-T7 17 0 7 0

71/S1-T7 24 0 16 0

Thibaut (Rdg2a) 40c 38 6 0

NIL3876 (Rdg2a) 35 34 25 0

Mirco (rdg2a) 35 0 19 0

Golden Promise (rdg2a) 35 2 9 0

15/S1-T6 (empty vector) 36 1 15 0

aMade by transforming the susceptible barley cv. Golden Promise with the Rdg2a candidates Nbs1-Rdg2a or Nbs2-Rdg2a. Only those plants containing a transgene copy
are included; null segregants are excluded.

bNumber of transgenic T1 plants without leaf stripe symptoms. Data were pooled from three independent experiments each comprising 5 or more plants per line.
cTotal number of plants tested as controls.
doi:10.1371/journal.pone.0012599.t001
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proteins (accessions BAD08990, EEE69085, EEC83970,

BAD0894, and BAF24312; Figure 5) encoded by genes clustered

in a 2.97 Mbp region of rice chromosome 8 (nt. 25,872,241 to

28,845,527 of AP008214), which is not co-linear with the barley

Rdg2a interval [7]. Of the known resistance proteins from barley,

low levels (around 16%) of identity, restricted to the conserved

motifs of the NB domain, were observed with the MLA1, MLA6

and MLA12 powdery mildew resistance proteins (Figure 5).

Figure 3. Analysis of T1 family 16/S1-T6 segregating for the Nbs1-Rdg2a transgene. (A) T1 seeds were inoculated with P. graminea isolate
Dg2 and plants analyzed for disease symptoms in leaves (upper panel), an STS marker for Rdg2a (middle panel; upper band represents the rdg2a
susceptibility allele from cv. Golden Promise while the lower band represents the Rdg2a transgene or endogenous gene), and Rdg2a transgene or
endogenous gene expression by RT-PCR (lower panel). Resistance (R) or susceptibility (S) status of the plants is indicated underneath. The resistant cv.
Thibaut and the susceptible cv. Golden Promise provide controls. (B) Leaves of six 16/S1-T6 T1 plants were analysed for expression of the fungal (Pg)
Ubiquitin and GTPase activator genes and the barley (Hv) Rdg2a gene by RT-PCR. Seeds had been inoculated with Dg2 or Dg5 leaf stripe isolates or
were non-inoculated (C). The barley b-actin gene was used as an internal control. Plant DNA was also tested for the presence of the transgene using
the Rdg2a STS marker described in (A).
doi:10.1371/journal.pone.0012599.g003
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The RDG2A and NB2-RDG2A proteins are 75.3% identical,

and differences include a deletion of three consecutive LRRs in

NB2-RDG2A (Figure S5). Similarity is higher in the CC region

than in the NB or LRR regions (Figure 4; 92.6 versus 73–74%),

and the proportion of non-conservative amino acid substitutions is

lower in the NB domain (75/104 = 72%) than in the LRR domain

(57/71 = 80%). Similarly, the ratio of non-synonymous (Ka) to

synonymous (Ks) nucleotide substitutions between Rdg2a, Nbs2-

Rdg2a and Nbs3-Rdg2a (longest ORF) is 0.99, 2.13 and 2.63 for the

CC, NB and LRR regions, respectively. Within the LRR domain,

non-conservative substitutions are about twice as frequent in the b-

strand/b-turn xxLxLxx motifs (solvent-exposed residues framed by

aliphatic residues [20]) (Boxed, Figure S5) than elsewhere (25/

133 = 18.8% versus 32/373 = 8.5%). These comparisons indicate

that Rdg2a and its paralogues have been subjected to the highest

level of diversifying selection in the LRR-coding region, consistent

with the LRR domain being an important determinant of

resistance specificity [21].

Localization of RDG2A and NB2-RDG2A proteins to the
nucleus and cytoplasm

RDG2A does not have any predicted transmembrane domain

or signal peptide sequence, suggesting a cytoplasmic location of the

protein. To determine the subcellular location of the RDG2A and

NB2-RDG2A proteins, we made 39 fusions with the Yellow

Fluorescent Protein (YFP) ORF and expressed the chimeric genes

behind the maize polyubiquitin promoter. When either construct

Figure 4. RDG2A protein sequence. The predicted coiled-coil (CC) domain is underlined. Motifs conserved in the NB region of NB-LRR proteins
are in blue, and are (in order): P-loop, RNBS-A, Kinase 2, RNBS-C, GLPL, RNBS-D and MHD. Amino acids conforming to the cytoplasmic LRR consensus
LxxLxLxx(C/N/T)xxLxxLxxLP are in red. CT denotes the RDG2A C-terminal region.
doi:10.1371/journal.pone.0012599.g004
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was transiently expressed in leaf epidermal cells of barley cv.

Golden Promise, YFP fluorescence was clearly observed through-

out the nucleus and also in the cytoplasmic strands (Figure 6). YFP

alone has no nuclear localization signal but is smaller than the 40–

60 kDa size exclusion limit of the nuclear pore complex [22].

Consistent with these characteristics, YFP expressed by itself was

abundant in the cytoplasm and was also present in the nucleus

(Figure 6).

Rdg2a resistance does not involve hypersensitive cell
death

Rdg2a-mediated resistance terminates fungal growth coincident

with the appearance of cell wall-associated host-cell autofluores-

cence in tissues containing hyphae, mainly at the junction of the

scutellum and scutellar node of the inoculated embryos [5].

Whole-cell autofluorescence is regarded as an indicator of HR in

race-specific resistance of barley leaf epidermal cells to powdery

Figure 5. Neighbor-joining phylogenetic tree including RDG2A and similar resistance proteins and resistance gene analog
products. Numbers on the branches indicate bootstrap percentages. Prefixes indicate species origin. The A. thaliana RPM1 protein (Q39214) was
used as an outgroup. Shown are the rice (Oryza sativa) disease resistance-like proteins BAF24312, BAD08984, BAD08990, EEC83970 and EEE69085, the
PM3 wheat powdery mildew resistance protein, products of the S. bulbocastaneum blight resistance gene Rpi-blb1 and its paralogues Rga3-blb, and
Rpi-blb1, predicted products of RGA_B149.blb, RGA_T118-tar (S. tarijense), RGA_SH10-tub (S. tuberosum) and Rpi-pta1 (S. papita), the I2 and I2C-1
proteins encoded by the tomato (Lycopersicon esculentum) I2 resistance locus to Fusarium wilt, the soybean (Glycine max) Phytophthora root rot
resistance protein RPS-L-K-1, and the barley (H. vulgare) powdery mildew resistance proteins MLA1, MLA6 and MLA12.
doi:10.1371/journal.pone.0012599.g005

Figure 6. Sub-cellular localization of RDG2A and NB2-RDG2A proteins. Barley cv. Golden Promise epidermal cells were transiently
transformed with constructs expressing RDG2A:YFP and NB2-RDG2A:YFP fusion proteins (A and D respectively), driven by the maize polyubiquitin
gene promoter. A construct expressing YFP alone with the same promoter was used as control (G). Fluorescence signals were visualized using
confocal laser scanning microscopy (A, D and G). Bright field images (B, E and H) and merged images (C, F and I) are shown. Scale bar represent
50 mm.
doi:10.1371/journal.pone.0012599.g006
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mildew [23,24] but was only occasionally (one or two cells per

embryo section) observed in barley embryos expressing Rdg2a

resistance. Nuclear DNA fragmentation is another PCD marker in

plants [25]. However, while electrophoretic analysis of embryo

DNA failed to detect it in association with Rdg2a resistance (data

not shown), it is possible that DNA laddering went undetected due

to the small proportion of pathogen-challenged cells that would

have been present in the sample (cf. Figure 7). Therefore, we

further tested for the presence of individual cells undergoing

programmed death in the Rdg2a resistance response in situ, by

using terminal deoxynucleotidyl transferase-mediated dUTP nick

end labelling (TUNEL). This method enables detection of free 39-

OH groups created by DNA strand breaks that occur with

programmed cell death. TUNEL was performed on serial sections

of NIL3876-Rdg2a barley embryos (Figure 7). In non-inoculated

embryos, no autofluorescence was observed under UV light

(Figure 7A to C). In inoculated embryos, UV-autofluorescent

tissues were observed at the scutellar node and provascular tissue

at 14, 22 and 26 dai (Figure 7G, H and I respectively). Calcofluor

staining and bright field observations revealed the presence of

fungal mycelium in the tissues immediately adjacent to the

autofluorescent regions (Figure 7S and T, respectively), indicating

that autofluorescence was a genuine defence-associated response

against leaf stripe. TUNEL revealed some nuclear DNA

fragmentation (bright green fluorescent nuclei) in the coleoptile

and in a few cells at the scutellar node of both non-inoculated

(Figure 7D to F) and inoculated embryos (Figure 7J to L and M to

O), however inoculation had no detectable effect on the frequency

of these TUNEL signals. In the scutellar node and basal region of

provascular tissue of the inoculated sample we observed, on

average, 500 cells per section and time point of inoculation that

were in contact with the fungus (on the basis of the calcofluor

staining and bright field observations) and only one to two nuclei

were positive to TUNEL staining. The same frequency of TUNEL

positive nuclei was detected in the same regions of non inoculated

embryos. Staining of the same sections with 49,6-Diamidino-2-

phenylindole (DAPI) dihydrochloride, verified the presence of

intact nuclei in the autofluorescent regions (Figure S6). Following

treatment of sections of control or inoculated embryos with

DNaseI, TUNEL analysis stained all nuclei (Figure 7P to R), and

Figure 7. Histological analyses of NIL3876-Rdg2a barley embryos. (A) to (C) Sections of embryos grown under control conditions observed
under UV excitation. (D) to (F) Sections in (A) to (C) subjected to TUNEL analysis. (G) to (I) Sections of embryos inoculated with leaf stripe isolate Dg2
and observed under UV excitation. (J) to (L) Sections in (G) to (I) subjected to TUNEL analysis; the bright green fluorescence at the level of scutellar
node and provascular tissue is due to cell wall autofluorescence. (M) to (O) Magnified views of the boxed regions in (J) to (L) and (G) to (I). (S) and (T)
Magnified views of the smaller box in (I) stained with calcofluor (S) or observed under bright field (T); arrows indicate the intercellularly growing P.
graminea mycelium. (U) and (V) Magnified views of the small box in (C) stained with calcofluor (U) or observed under bright field (V). (P) and (Q)
Respectively, sections of control and inoculated embryos at 26 dai, treated with DNase I and subjected to TUNEL analysis. (R) A magnified view of the
region boxed in (Q). White arrows in Figure 7E, K and R indicate TUNEL positive nuclei. Scale bars represent 200 mM (A) to (L), 50 mM (M) to (O) and
25 mM (S) to (T). co = coleoptile, pt = provascular tissue, sa = shoot apex, sn = scutellar node.
doi:10.1371/journal.pone.0012599.g007
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no positive signals were observed in sections not treated with the

deoxynucleotidyltransferase enzyme (data not shown), indicating

that the TUNEL assay was working effectively.

Discussion

Evolution of the Rdg2a resistance locus
Rdg2a resides in a gene cluster, as does many other resistance

genes. This organization can promote unequal recombination,

which results in sequence exchange between paralogs and

generation of recombinant genes with new resistance gene

specificities, as well as expansion/contraction of gene copy

number [26]. At the Rdg2a locus, paralogs appear to be the result

of relatively recent gene duplication as indicated by the strong

DNA sequence identity between the three NB-LRR genes that, in

the case of Nbs2-Rdg2a and Nbs3-Rdg2a, extends into the 59

untranscribed region (Figure S2). The unusual structure of Nbs3-

Rdg2a, in which sequences encoding part of the NB and the LRR

regions are duplicated, together with the deletion of the region

containing three complete LRR units in NB2-RDG2A relative to

RDG2A, provide further examples of variation at Rdg2 locus

generated by recombination.

Diversifying selection also contributes to sequence diversity at R

gene loci [27]. However, this may only be the case for R genes that

encode receptors that directly interact with pathogen effectors. R

genes encoding proteins that act via an indirect guard mechanism,

like RPM1 in Arabidopsis, are under conservative rather than

divergent selection [28–30]. The functional alleles of these R genes

would be conserved through evolution because they detect the

presence of avirulence gene products that may not be able to

mutate without a fitness penalty to the pathogen [31,32].

Conversely, genes subjected to strong diversifying selection, like

wheat Pm3 or barley Mla alleles for race-specific powdery mildew

resistance [33,34], and Arabidopsis RPP13 alleles for downy

mildew resistance [35] in which sequence diversity is accompanied

by functional diversity in pathogen recognition, are speculated to

act through a model of direct interaction between R gene and Avr

gene products [31,36]. Our finding that Rdg2a was subjected to

diversifying selection is consistent with a model in which the R

gene co-evolves with a pathogen effector(s) gene, due to direct

interaction of the two gene products. In this model, small

conformational changes in the RDG2A protein restore the

interaction with variant versions of the avirulence gene product,

during an arms race between plant and pathogen. In such a

model, genes for the leaf stripe avirulence products detected by

RDG2A would also be under diversifying selection, similar to

avirulence genes characterized in flax rust [37] and Arabidopsis

downy mildew [38]. This view is also supported from the

observation that in the only two leaf stripe susceptible barley

genotypes analyzed to date, Mirco and Morex, sequences highly

homologous to Rdg2a are present in syntenic position. In the barley

cv. Morex, sequences sharing more than 93% of identity to Rdg2a

were identified both in coding and non-coding regions and

deletion(s) of intergenic regions and of members of the gene family

(data not shown) are responsible of the rearrangements suggested

by the Southern analysis (Figure S1).

Despite the fact that Nbs2-Rdg2a contains a complete open

reading frame and is expressed in embryos, transgenic expression

of Nbs2-Rdg2a failed to confer resistance to leaf stripe isolate Dg2.

Analysis of near-isogenic lines indicated that the Rdg2a locus

controls partial to strong resistance to at least 4 other isolates of the

leaf stripe pathogen (Table S1). Whether the Nbs2-Rdg2a gene

contributes any of these other resistance specificities is under

investigation using the transgenic lines. The NB2-RDG2A and

RDG2A proteins had multiple substitution differences in the NB

and CC regions. However, there was only one (conservative)

amino acid difference in the CC motif, and there were no

differences in any of the motifs recognised as being conserved

across the CC-NB-LRR class of resistance proteins (not shown).

The LRR domains also showed a number of differences, including

the deletion of three LRR units in NB2-RDG2A relative to

RDG2A (Figure S5). Variation between R gene alleles or

paralogues reported to abolish resistance function include both

single amino acid substitutions [39,40] and the absence or

substitution of a section of the LRR domain encompassing one

to several repeat units [41,42]. Therefore, the substitutions or

deletion within the LRR domain of NB2-RDG2A seem like

plausible reasons for the absence of a resistance function for this

protein. Transcript of Nbs2-Rdg2a was found to be 2 to 16 times

less abundant than that of Rdg2a, depending on the time point and

inoculation treatment (P,0.05, data not shown). Considering that

transcript abundance correlates with resistance activity for the

potato NB-LRR late blight resistance gene RB [43] and the rice

receptor kinase-like bacterial blight resistance gene Xa3 [44], lower

expression of Nbs2-Rdg2a may contribute to its inactivity. This

possibility will be explored by testing transgenic plants over-

expressing Nbs2-Rdg2a. Complementation was not attempted using

Nbs3-Rdg2a, which produces severely truncated proteins, and while

a role of this gene in resistance would seem unlikely, we cannot yet

rule it out. Insights into the functional consequences of this gene

structure may be revealed by a current re-sequencing study, which

aims to survey the Rdg2a locus haplotype variability and gene

structure in other barley genotypes known to carry Rdg2a

resistance specificities.

Strikingly, neither Nbs1-rdg2a nor Nbs2-rdg2a are transcribed in

the susceptible cv. Mirco. Given the fitness cost of expressing some

R genes [45], unnecessary R genes may become rapidly inactivated

[46]. Rearrangements in the promoter region caused by insertion/

deletion of transposable elements (Figure 2B) may explain the lack

of expression of the Mirco genes. The alleles of Nbs2-Rdg2a are

quite similar (93.1% identical), apart from the MITE insertion in

the Thibaut allele. The PromH program for the prediction of

plant promoters (http://www.softberry.ru/berry.phtml?group =

programs&subgroup = promoter&topic = tssp, [47]) identified po-

tential transcription factor binding sites, a TATA box, and a likely

promoter within the MITE sequence (data not shown). It is

therefore possible that sequences present in the MITE element

contributed to the functionalization of this paralog, similar to the

transcriptional activation of the rice blast resistance gene Pit by

insertion of a Renovator retrotransposon into its 59 region [48].

Although expression of NB-LRR R genes has only seldom found to

be responsive to pathogen infection [49,50], transcription of Nbs2-

Rdg2 was enhanced up to three fold by 14 days after inoculation by

P. graminea-Dg2 (Figure 2D), a time point when several defence-

related genes are transcriptionally up-regulated in the Rdg2a-

genotype [5]. It would be of interest to identify the regulatory

sequences of Nbs2-Rdg2a involved in this pathogen responsiveness

and determine whether these are located in the MITE insertion.

While the Rdg2a resistance allele from cv. Thibaut is used in

breeding and still provides useful field resistance against leaf stripe

disease, it is not effective against all isolates (Table S1) [51].

Therefore, identification of further alleles with different resistance

specificity should have value, by broadening the range of

resistance genes available to breeders and thus delaying the

spread of virulent isolates. The cloning of Rdg2a should facilitate

this task, by enabling sequencing and expression analysis of

homologues from both wild and cultivated barley. Such an

approach has led to the identification of functional Pm3 alleles
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from both wild tetraploid and landraces of bread wheat [52,53],

allowing a significant expansion of the resistance gene repertoire

available against powdery mildew in wheat.

RDG2A localizes in the nucleus and cytoplasm, and
confers resistance in the absence of programmed cell
death

Fluorescence from transiently expressed RDG2A-YFP fusion

protein was abundant in the nucleus and was also present in the

cytoplasm, suggesting that resistance functions of RDG2A might

relate to one or both of these locations. A nuclear activity of a NB-

LRR protein mediated by a WRKY transcription factor was

previously demonstrated for the powdery mildew resistance protein

MLA10 in barley [54]. MLA10 interacts with WRKY1 in the

nucleus in the presence of the Blumeria graminis effector AVRA10,

leading to a de-repression of basal defence mechanisms and effective

immunity [54]. We previously observed that a WRKY1 allele

(designated WRKY38 in [55]), is up-regulated upon P. graminea-Dg2

infection [5]. Therefore, it may be worth testing if RDG2A interacts

with WRKY38 and whether this interaction is required for the

resistance response. It should however be noted that we determined

subcellular localization in leaves of uninfected plants, and that the

location of the resistance protein might differ in barley embryos

inoculated with P. graminea. Irrespective of this, the intracellular

localization of RDG2A would imply that the recognition of

avirulence gene products occurs inside the host cell and that the

leaf stripe Avr gene products are transported across the plasma

membrane during the infection. This is notable given that the leaf

stripe fungus only grows between cells [3,5], suggesting that there

must be a mechanism for delivery of the avirulence protein into the

host cell. In contrast, several characterized Avr gene products of

Cladosporium fulvum, a pathogenic fungus of tomato that shares with

P. graminea an intercellular mode of pathogenesis, are in each case

recognized by membrane-anchored resistance proteins containing

extracellular LRRs [56].

While HR is a common component of resistance gene-mediated

defence and often used as surrogate for resistance protein activity,

there are a few known cases of NB-LRR genes conferring

resistance without HR, at least based on the failure to observe

macroscopically visible host cell death. For example, the barley

Mla1 powdery mildew resistance gene can trigger an immune

response without macroscopically visible HR [57] although the

Mla12 allele exhibits clearly a necrotic reaction [58]. It has been

proposed that the absence of HR associated with resistance to

potato virus x governed by the Rx gene in potato is because the

resistance mechanism is so rapid, preventing accumulation of the

avirulence factor to levels that would otherwise trigger a more

extensive host response [59]. Similarly, naturally occurring alleles

of Arabidopsis RPS4 or RPS6 confer bacterial resistance without

development of an HR [60]. In the current study, TUNEL

positive nuclei were observed in the scutellum and in the coleoptile

both in control and inoculated embryos. However, inoculation did

not increase the frequency or distribution of these signals.

Therefore, these observations most likely reflect cell death that

normally occurs with development, as previously observed in

barley germinating seeds and in the corresponding cells of the

scutellum and coleoptile of maize embryos [61,62]. In HR of

barley epidermal cells against the biotrophic powdery mildew

fungal pathogen governed by the Mla12 resistance gene,

autofluorescence and accumulation of phenolic compounds is

observed throughout the whole host cell [23,24]. Autofluorescence

at the junction of the scutellum and scutellar node regions was

observed in the resistance response to leaf stripe, but was

essentially confined to the cell walls and only occasionally observed

throughout a whole cell (this study, [5]). No necrotic tissues or cell

collapse was observed under bright views of the embryo regions

showing autofluorescence (data not shown), further indicating that

hypersensitive cell death did not occur. One could speculate that

an HR-associated resistance response would be too damaging to

the embryo, and therefore unviable in an evolutionary sense. HR

deprives obligate biotrophic pathogens of living host cells required

for successful colonization, but may be favourable to the

hemibiotrophic leaf stripe pathogen, which obtains nutrients at

latter stages of colonization by means of hydrolytic degradation of

host cell walls. Rdg2a resistance terminates P. graminea mycelium

growth at the scutellar node and basal regions of provascular tissue

of the barley embryos, and is associated with the accumulation of

phenolic compounds in the cell walls of the invaded host tissues.

These phenolic compounds are the likely source of the cell wall

localized autofluorescence. Also pathogen-induced up-regulation

of several genes related to cell wall modification was observed in

the resistant NIL but not in the susceptible one [5]. We therefore

propose that inducible secretory immune responses, leading to

physical and chemical barriers to infection in the cell walls and

intercellular spaces of the barley embryo tissues, represent

mechanisms by which the CC-NB-LRR-encoding Rdg2a gene

mediates resistance to leaf stripe.

Materials and Methods

Plant and fungal materials
Genetic mapping was performed using 93 F2 recombinants for

the 3.47-cM Rdg2a marker interval ABG704-ScOPQ9, previously

selected from an F2 population of 1,400 plants made from a cross

between barley cvs. Thibaut (resistant, Rdg2a) and Mirco

(susceptible, rdg2a) [7]. NIL3876- Rdg2a contains the Rdg2a gene

from Thibaut backcrossed into the genetic background of Mirco

[10]. Barley cv. Morex was used for Southern-blot experiments

while the susceptible variety Golden Promise was used for

transformation tests. The leaf stripe (P. graminea) isolates Dg2

(incompatible on Rdg2a) and Dg5 (compatible on Rdg2a) were used

in our study. The Dg2 isolate is the most virulent isolate in a

previously described collection of monoconidial isolates [51]. The

P. graminea isolates were grown on PDA (Liofilchem, Italy), in Petri

dishes at 20uC for 10 days in the dark. Seeds were surface-

sterilized in 70% ethanol for 30 s and then in 5% sodium

hypochlorite for 15 min prior to inoculation using the ‘sandwich’

technique [63].

Generation of transgenic barley lines
Genomic DNA fragments of about 6 kb were used in

transformation experiments, and for Nbs1-Rdg2a and Nbs2-Rdg2a,

included 1196 or 985 bp of 59 untranscribed sequence, and 556 or

658 bp of 39 untranscribed sequence, respectively. These were PCR

amplified using primer sequences provided in Table S4 and Phusion

HF Taq DNA polymerase (New England Biolabs), from cosmid 95-

9-3 (Nbs1-Rdg2a) and cosmid 17-1-1 (Nbs2-Rdg2a), subcloned in

pDONR201 (Invitrogen) and then transferred to the Gateway

(Invitrogen) compatible version of the Agrobacterium binary vector

pWBVec8 [64]. Inserts were confirmed as having the same

sequence as the cosmid clones. Transgenic barley plants were

generated by co-cultivation of Agrobacterium tumefaciens with imma-

ture barley embryos of cv. Golden Promise, as described by [57].

Transgenes were detected by PCR with the gene-specific primer

pair Nbs1_25 and Nbs1_26 (Table S3) that amplified a 387 bp

fragment in Thibaut and a 500 bp fragment in Golden Promise.

Transgene copy number for Nbs1-Rdg2a was evaluated by Southern

hybridization analysis of genomic DNAs digested with EcoRI and
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KpnI, which respectively have one and two restriction sites in the

Rdg2a genomic sequence used for transformation. This identified

one single copy integration for all the lines but one multiple copy

integration for line 8/S1 (data not shown).

Subcellular localization of RDG2A and NB2-RDG2A
To generate the YFP fusion constructs, the coding sequences of

Nbs1-Rdg2a and Nbs2-Rdg2a were firstly amplified from the

aforementioned pDONR201 entry clones using 15 ng of plasmid

DNA with Phusion HF Taq DNA polymerase (New England

Biolabs) according to manufacturer’s instructions, and the

products transferred into a Gateway destination vector (pUbi-

Gateway-eYFP) previously used in barley transient expression

studies [65]. The constructs contain the Nbs1-Rdg2a and Nbs2-

Rdg2a ORFs 39-fused with the YFP ORF, behind the maize

ubiquitin promoter. Transient gene expression in barley epidermal

cells was performed by particle bombardment as previously

described by [66]. Fluorescence imaging was performed using a

TCS SP2 AOBS confocal laser-scanning microscope (Leica), with

the 514-nm Ar/Kr- ion laser line used to excite YFP, and 525–

580 nm used for image collection. Images were collected and

processed using the software LCS (Leica). Reference emission

spectra of YFP was used to discriminate genuine YFP emission

fluorescence from nonspecific background fluorescence.

Histology
Sections of inoculated (14, 22 and 26 dai) and control embryos

were fixed in freshly prepared 4% p-formaldehyde in phosphate-

buffered saline (PBS) pH = 7 (130 mM NaCl, 7 mM Na2HPO4,

3 mM NaH2PO4) for 12 hours and then stored in 70% ethanol at

4uC until use. The terminal deoxynucleotidil transferase-mediated

dUTP nick end labelling (TUNEL) assay was performed according to

the manufacturer’s instructions (Roche Diagnostics, Mannheim,

Germany), and nuclei were stained by incubating in 1 mM 49,6-

Diamidino-2-phenylindole (DAPI) for 20 min. For TUNEL analysis,

three independent replicate experiments were performed. Per

experiment, six embryos (five sections for each embryo) were

observed per time point and inoculation status. For TUNEL assay,

a negative control was provided by omitting terminal deoxynucleo-

tidyl transferase enzyme, and a positive control was provided by

treating samples with DNase1. For calcofluor staining, sections were

incubated in 0.01% calcofluor in PBS pH 7 for 30 min. Samples

were observed with an Olympus BX51 microscope with the settings

(a) excitation at 451–490 nm and emission at 491–540 for fluorescein,

or (b) excitation at 335–380 nm and emission at .420 nm for

autofluorescence, DAPI and calcofluor staining. Images were

recorded using an Olympus DP50 microscope digital camera system.

Supporting Information

Table S1 Rdg2a resistance spectrum.

Found at: doi:10.1371/journal.pone.0012599.s001 (0.03 MB

DOC)

Table S2 Details of genetic markers.

Found at: doi:10.1371/journal.pone.0012599.s002 (0.04 MB

DOC)

Table S3 Sequences of PCR primer sets and annealing

temperatures used in the expression analyses.

Found at: doi:10.1371/journal.pone.0012599.s003 (0.04 MB

DOC)

Table S4 PCR primers used to generate constructs for barley

transformation.

Found at: doi:10.1371/journal.pone.0012599.s004 (0.04 MB

DOC)

Figure S1 Southern blot analysis of Rdg2a candidates. BamHI-

digested barley genomic DNA was hybridised with probes derived

from the LRR region of the NB-LRR genes.

Found at: doi:10.1371/journal.pone.0012599.s005 (8.07 MB TIF)

Figure S2 DNA sequence homologies between paralogs and

alleles at the Rdg2a leaf stripe resistance locus. Diagrams above

define the domains compared. Percent identities were determined

once major insertions/deletion differences had been removed.

Found at: doi:10.1371/journal.pone.0012599.s006 (9.88 MB TIF)

Figure S3 Demonstration that the sequenced Mirco Nbs1-rdg2a

and Nbs2-rdg2a genes represent alleles of the respective Thibaut

genes. Markers Nbs1-14-19 and Nbs2-6-29 developed using

insertion/deletion polymorphisms in the putative regulatory

regions (A) co-segregated with the Rdg2a locus in 12 rare

recombinants for the Rdg2a region that had been identified in

the high resolution mapping population (B). Recombination points

are illustrated below (C).

Found at: doi:10.1371/journal.pone.0012599.s007 (9.85 MB TIF)

Figure S4 Predicted ORF and putative protein domains

encoded from the Mirco genes Nbs1-rdg2a and Nbs2-rdg2a.

Found at: doi:10.1371/journal.pone.0012599.s008 (9.84 MB TIF)

Figure S5 Alignment of the deduced LRR domain sequences of

RDG2A and NB2-RDG2A. Substitution differences are boxed;

those in grey and green represent conservative and non-

conservative substitutions (as defined by ClustalW), respectively.

The regions of the LRRs that correspond to the b-strand/b-turn

motif xxLxLxx are framed and the leucine (or other aliphatic)

residues that form the structural backbone of the LRR units in

RDG2A are in red.

Found at: doi:10.1371/journal.pone.0012599.s009 (9.58 MB TIF)

Figure S6 DAPI staining of embryo sections analyzed for

autofluorescence and by TUNEL in Figure 7. DAPI staining of

nuclei was performed for embryo sections of Figure 7 A and D (A),

B and E (B), C and F (C), G and J (D), H and K (E), I and L (F).

Scale bars represent 200 mM.

Found at: doi:10.1371/journal.pone.0012599.s010 (9.88 MB TIF)

Methods S1 Supplementary text for Materials and Methods.

Found at: doi:10.1371/journal.pone.0012599.s011 (0.06 MB

DOC)
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