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Vascular dementia (VaD) is the second most common cause of dementia. At present,
precise molecular processes of VaD are unclear. We attempted to discover the VaD
relevant candidate genes, enrichment biological processes and pathways, key targets,
and the underlying mechanism by microarray bioinformatic analysis. We selected
GSE122063 related to the autopsy samples of VaD for analysis. We first took use of
Weighted Gene Co-expression Network Analysis (WGCNA) to achieve modules related to
VaD and hub genes. Second, we filtered out significant differentially expressed genes
(DEGs). Third, significant DEGs then went through Geno Ontology and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis. Fourth, Gene Set Enrichment
Analysis (GSEA) was performed. At last, we constructed the protein–protein interaction
(PPI) network. The results showed that the yellow module had the strongest correlation
with VaD, andwe finally identified 21 hub genes. Toll-like receptor 2 (TLR2) was the top hub
gene and was strongly correlated with other possible candidate genes. In total, 456
significant DEGs were filtered out and these genes were found to be enriched in the Toll
receptor signaling pathway and several other immune-related pathways. In addition, Gene
Set Enrichment Analysis results showed that similar pathways were significantly over-
represented in TLR2-high samples. In the PPI network, TLR2 was still an important node
with high weight and combined scores. We concluded that the TLR2 acts as a key target in
neuroinflammation which may participate in the pathophysiological process of VaD.
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INTRODUCTION

Vascular dementia (VaD), following Alzheimer’s disease (AD), is one of the most prevalent
causes of dementia (O’Brien and Thomas, 2015). A study in 6,481 Korean older adults showed
that in 2016 disability-adjusted life-years (DALYs) caused by VaD (316 per 100,000) comprised
20% of the total DALYs caused by mild cognitive impairment (MCI) and dementia. In 2065,
DALYs due to VaD (3654 per 100,000) would comprise 38% of the total DALYs as mentioned
before. In parallel, the years of life lived with disability (YLDs) attributed to VaD (85 per
100,000) accounted for 18% of the total YLDs caused by MCI and dementia in 2016, while in
2065 YLDs attributed to VaD (410 per 100,000) will account for 15% of total YLDs (Moon et al.,
2021). As the data shows, DALYs and YLDs of VaD are estimated to increase. However, there are
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fewer relative studies about VaD than those about AD, and
there are no licensed treatments for VaD.

As a multifactorial disease, various risk factors participate in
the development of VaD. Age and stroke are both major risk
factors for the pathogenesis of VaD. VaD is also associated with
vascular risk factors (O’Brien and Thomas, 2015; Iadecola et al.,
2019). In addition, genetic linkage analyses investigated penetrant
monogenic causes of VaD (Romay et al., 2019). Thus, a
comprehensive understanding of key risk factors and genetic
predispositions that lead to VaD needs to be clarified.

In nervous system, Toll-like receptors (TLRs) were reported to
regulate the numbers of neurons and the size of brain, modulating
structural plasticity in the adult brain (Li G et al., 2020). TLRs were
an ancient family of pattern recognition receptors (PRRs). The role
of TLRs in immunity control has been broadly discussed (Fitzgerald
and Kagan, 2020). In neurological diseases, TLRs were reported to
participate in AD (7), Parkinson’s disease (PD) (Kouli et al., 2019),
ischemic stroke (IS) (Wang et al., 2013; Tajalli-Nezhad et al., 2019),
and multiple sclerosis (MS) (Racke and Drew, 2009). However, the
role of TLRs in VaD remained unclear.

In the present study, we performed a bioinformatic analysis
based on GSE122063 (McKay et al., 2019). We first tried to figure
out hub genes and top hub gene. Then we conducted a basic
analysis on DEGs. Last, we performed relative analyses centered
on the top hub gene to further investigate the probable
mechanism of that gene in VaD.

MATERIALS AND METHODS

Microarray Data Processing
In the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.
gov/geo/) database, we chose GSE122063 which included the
autopsy samples of VaD for analysis. GSE122063 was based on
GPL16699 which used Agilent-039494 SurePrint G3 Human GE v2
8 × 60 K Microarray to detect the expression of genes. The
microarray data includes eight VaD patients, 12 AD patients, and
11 controls postmortem frontal and temporal cortex samples. Each
sample was run with at least two technical replicates. Data from AD
patients were excluded from analysis and VaD sample 1063 was
removed due to poor data quality according to the clustering result.
The raw expression matrix was directly downloaded from the
website, and the SOFT format file was downloaded and parsed
by the GEOquery package (Davis and Meltzer, 2007). Then we used
GPL1699 to transit ID into gene names and gene symbols using
merge function in R. In addition, we checked if the data need log
transformation or normalization. After pre-processing, a normalized
expression matrix was constructed. The group matrix was
constructed based on clinical information. All bioinformatic
analyses and visualization were processed based on R.

Weighted Gene Co-Expression Network
Analysis (WGCNA)
The WGCNA package (Langfelder and Horvath, 2008) was used
to create a gene co-expression network. By median absolute
deviation (MAD), the top 5,000 ranking genes were selected at

first. Then a soft-thresholding power β was calculated by using
the “pickSoftThreshold” function. A suitable power value was
defined as the first number reaching which the degree of
independence was at least 0.9. The gene expression matrix was
then converted into a topological overlap matrix (TOM), and the
genes were divided into several gene modules, each represented
by a distinct color. Next, a hierarchical clustering analysis was
performed by using the hclust function. Except for the WGCNA
package, the gplots package (Warnes et al., 2020) was used for
visualization. In addition, the top 100 networks sorted by weight
were exported to Cytoscape software for visualization.

In WGCNA, gene significance (GS) was used to describe the
relationship between gene and phenotype. Module membership
(MM) was calculated to evaluate the importance of a gene in the
module by using the cor function. In this study, genes with both
GS > 0.3 and MM > 0.9 was defined as hub genes among the
candidate gene modules (Jin et al., 2021). The correlation
relationship of hub genes was explored by using the gpairs
package (Emerson and Green, 2020).

Identification of DEGs
We first used lmFit and eBayes functions in the limma package
(Ritchie et al., 2015) to identify the DEGs between VaD and
control groups. The statistical method to calculate false
discovery rate (FDR) was the Benjamini–Hochberg method.
Then a threshold of adjust-p < 0.05 and the absolute value of
log2 fold change (log2FC) > 1 were set, and the significant
DEGs between the VaD and controls were filtered out. A
volcano plot was presented by using EnhancedVolcano
(Blighe et al., 2018). The distribution shape of TLR2 was
shown in the violin plot by using the ggpubr package
(Kassambara, 2020).

Geno Ontology and Kyoto Encyclopedia of
Genes and Genomes Enrichment Analysis
A GO enrichment analysis was run to annotate the functions of the
significant DEGs with GO terms. The GO enrichment analysis could
explain the features of changed genes from the following three
structural networks of terms: biological processes (BP), cellular
components (CC), and molecular functions (MF). The KEGG
pathway analysis was performed to investigate the pathway that
the significant DEGs might be involved in. The org. Hs.eg.db
package (Carlson, 2021) was used for transition from gene
symbols to Entrez ID. Then the clusterProfiler package (Yu et al.,
2012; Wu et al., 2021) was used for the enrichment analysis. At last,
the ggplot2 (Wickham, 2016) package was used for visualization.
The aforementioned analysis results enabled us to discover the
biological pathways of the altered genes in the VaD group.

Gene Set Enrichment Analysis (GSEA)
In the GSE122063 datasets, GSEA was used to explore distinct
GO terms and KEGG pathways that may be associated with
TLR2. All genes were included in the analysis. Gene sets were
directly downloaded from the website (http://www.gsea-msigdb.
org/gsea/downloads.jsp). Except for the VaD and control groups,
we set the median expression level of TLR2 as the cutoff value to
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divide patients into TLR2-high and TLR2-low expression groups.
The org. Hs.eg.db package (Carlson, 2021) was used for Entrez ID
transition, and the clusterProfiler package (Yu et al., 2012; Wu
et al., 2021) was used for the enrichment analysis. Furthermore,
the gseaplot2 function in the enrichplot package (Yu, 2021) was
used for visualization of enrichment results.

Construction of a Protein–Protein
Interaction Network
We used the STRING online database (https://string-db.org/) to
construct a PPI network. Significant DEGs were uploaded to the
STRING website. After being filtered by the “no more than 50
interactors” and “k-means clustering” options, the PPI network
was exported into a TSV file. At last, the analysis and visualization
of the interaction network were achieved by Cytoscape software.
The function of network analysis function in the Cytoscape
software calculated the degree which was utilized as the
continuous mapping of nodes both in size and fill color (from
blue to red). The combined score exported directly from the
string database was used for the continuous mapping of edges
both in width and stroke color (from blue to red). Larger size and
bluer nodes indicated the higher degree, while wider and bluer
lines indicated the higher combined scores.

RESULTS

WGCNA and Module Related With VaD
Using the expression matrix, WGCNA was used to determine the
main module which was most linked with VaD. At first, we chose

the top 5,000 genes sorted by MAD in the GSE122063 microarray
assay for analysis. According to the calculation result, the soft-
thresholding power βwas 2 as the plot showed, with the scale-free
topology R2-value achieving 0.9 (Figure 1A). To visualize the
weighted network, a heat map was plotted. The gene co-
expression network was created, and the genes were clarified
into five modules represented by distinct colors including grey,
turquoise, blue, brown, and yellow. This is called a cluster
dendrogram, and it was presented along the axis. a network
heat map of all 5,000 genes was shown by using the TOMplot
function in Figure 1B. Each row and column in the heat map
represented the same gene, and thus the network heat map is a
symmetric plot. The genes with strong correlations were clustered
into modules, which were represented as dark sections
symmetrically distributed along the diagonal in the heat map,
corresponding to the cluster dendrogram. The biggest grey
module included 2,783 genes, and the smallest yellow module
included 400 genes. As shown in the module–trait relationships
plot, the yellow module was most positively associated with VaD
(correlation coefficient = 0.57, ***p < 0.001; Figure 1C) and was
chosen as the key module. The functional annotation of three
significantly related modules (blue, turquoise, and yellow) are
shown in Supplementary Figure S1. The yellow module was
most related to immunity and inflammation.

Identification of Hub Genes and Top Hub
Gene
Among the 400 genes in the yellow module, genes with MM > 0.9
and GS > 0.3 were sorted out as hub genes. The red dotted lines
represent the thresholds value of MM > 0.9 and GS > 0.3 set for

FIGURE 1 | Results and visualization of Weighted Gene Co-expression Network Analysis (WGCNA) analysis. (A) Determination of soft threshold β. Left: scale
independence; right: mean connectivity. (B) Heat map showing the TOM among all 5,000 genes involved in the WGCNA with cluster dendrogram showing on the axis.
Each color represents one specific co-expression module; the above branches represent genes. The genes with strong correlations are clustered into modules, which
are represented as dark sections symmetrically distributed along the diagonal in the heatmap, corresponding to the cluster dendrogram. (C) Module–trait
relationships among the five gene modules. The yellow module is the most correlated module (correlation coefficient = 0.57, ***p < 0.001).
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hub genes and separated an area in the upper right corner. The
correlation analysis between yellow module memberships and
gene significance showed statistical significance (correlation
coefficient = 0.65, ***p < 0.001). In total, 21 hub genes were
identified (TLR2, CD163, VSIG4, SLAMF8, C1QB, CD16a,
CD32, ALOX5AP, integrinβ2, EBI3, HCLS1, CD14, LAIR-1,
CD300a, IFI30, LCP1, C1orf162, γ-parvin, ALOX5, SLA, and
CMTM7). According to MM or the
chooseTopHubInEachModule function, TLR2 was the top hub
gene in the yellow module (Figure 2). Furthermore, we found
that TLR2 shows a strong positive correlation with other
candidate genes, which indicated that changes in TLR2
expression might cause changes in these genes
(Supplementary Figure S2).

Identification of DEGs in VaD
The gene expression levels of the samples were distributed at the
same baseline after normalization. Compared to the control
group, significant DEGs were identified in the VaD group by
setting the threshold value as adjust-p < 0.05 and |log2FC| > 1.
The expression of the genes was displayed as a volcano plot in
which the size of the dot reflects |log2FC| of the gene (Figure 3A).
There were 456 significant DEGs between the VaD and control
groups among the 23,320 genes detected in microarray, including
198 upregulated ones and 258 downregulated ones. TLR2 was one
of the significant DEGs and was marked out in the volcano plot.
Specifically, the expression level of TLR2 in the VaD and control
groups was shown in the violin plot (***p < 0.001, Figure 3B).
TLR2 was significantly differentially expressed between the two
groups.

Results of GO and KEGG Analysis
Significantly upregulated and downregulated DEGs were
enriched in BP, CC, and MF terms and the KEGG pathway,
respectively. The horizontal axis represents −log10 (p-value),
while the color indicated the change direction. In detail, BP,
Toll-like receptor signaling pathway was enriched, which was
consistent with our previous result. Other BPs such as negative
regulation of immune system process, antigen processing, and
presentation and regulation of B, T, and NK cells were examples
of significantly enriched upregulated GO terms (*p < 0.05,
Figure 4A), while CCs, including azurophil granule, endocytic
vesicle, and secretory granule membrane are shown (*p < 0.05,
Figure 4B). Upregulated MFs, such as scavenger receptor activity
and RAGE receptor activity, were significantly enriched.
Neuropeptide hormone activity, neuropeptide receptor
binding, and signaling receptor activation activity were
downregulated (*p < 0.05, Figure 4C). Most enriched KEGG
pathways did not reach statistical significance in which we

FIGURE 2 | Selection of hub genes. Module membership (MM) vs. gene
significance (GS) in the yellow module (correlation coefficient = 0.65, ***p <
0.001). The red dotted lines represented the thresholds of MM > 0.9 and GS >
0.3 set for hub genes and separated an area in the upper right corner.
Toll-like receptor 2 (TLR2) is selected as the top hub gene.

FIGURE3 |Differentially expressed genes (DEGs) present in vascular dementia (VaD) and control groups inmicroarray fromGSE122063 and the expression level of
Toll-like receptor-2 (TLR2). (A) Volcano plot showed the distribution of the DEGs between two groups. The red dots correspond to the significantly regulated genes. (B)
Violin plot of TLR2. TLR2 is upregulated in the VaD group (***p < 0.001).
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observed a trend in Toll-like receptor signaling pathway and
neuroactive ligand–receptor interaction was significantly
downregulated (Supplementary Figure S3).

GSEA Enrichment Results
GSEA was analyzed in the disease group versus control as well as
groups divided by the expression level of TLR2. When comparing
the VaD group with the control group, the Toll-like receptor
pathway was enriched, which was the same as the results from
DEGs. Other immunity and inflammation-related processes were
also enriched which indicated the representativeness of the data
and complemented evidence for the role of TLR2 in
neuroinflammation. The results are shown in Supplementary

Figure S4. When comparing the TLR2-high group with the low
group, the results showed that BPs, such as cytokine-mediated
signaling pathway and defense response to other organism, were
significantly enriched in the TLR2-high samples (*p < 0.05,
Figure 5A). CCs, such as synapse, vacuole, and cell surface
granule, and MFs, such as immune receptor activity and
molecular transducer activity, were significantly enriched in
the TLR2-high samples, shown in Figures 5B, C, respectively
(*p < 0.05, Figures 5B,C). When it comes to the KEGG
enrichment analysis, pathways such as antigen processing and
presentation, ribosome, and cytokine–cytokine receptor reaction
were significantly over-represented in TLR2-high samples (*p <
0.05, Figure 5D). The similar enrichment results in VaD and

FIGURE 4 | Results of the Geno Ontology (GO) terms enrichment analysis of significant DEGs. (*p < 0.05). Blue bars showed the results of upregulated genes while
red bars showed the results of downregulated genes.
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control groups, as well as in the TLR2-high and low groups
further demonstrated the important role of TLR2 in VaD.
Moreover, high expression level of TLR2 was related to many
genes, including myeloid differentiation factor 88 (MyD88),
nuclear factor kappa B (NF-κB), protein kinase B (AKT), glial
fibrillary acidic protein (GFAP), ionized calcium-binding adapter
molecule 1 (Iba1), and many cytokines according to the
expression matrix and the KEGG pathway.

PPI Network Construction
With the combined use of STRING and Cytoscape, the PPI network
of the significant DEGs was created. The size and color reflected the

degree of nodes in which the more edges connected to this node, the
greater its degree. The larger size and bluer node indicated the higher
degree. The width and color reflected the combined score of edges in
which the combined scores were positively related to the interaction
relationships between the two proteins. The wider and bluer line
indicated higher combined scores. The overall network of DEG-
correlated proteins is shown in Figure 6A. TLR2 got a relatively high
degree in this overall network which suggested that TLR2 played a
crucial role in the network. Considering the complication of the
network, a new network centered on TLR2 was further constructed
and amplified. TLR2 was most associated with Complement C5a
Receptor 1 (C5AR1), Heat Shock Protein Family A Member 1 A

FIGURE 5 |Gene Set Enrichment Analysis (GSEA) results grouped by the expression level of TLR2. (A) BP enriched in TLR2-high group. (B)CC enriched in TLR2-
high group. (C) MF enriched in TLR2-high group. (D) KEGG pathways enriched in TLR2-high group.
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(HSPA1A), cluster of differentiation (CD14), and cytochrome B-245
Beta Chain (CYBB) (Figure 6B).

DISCUSSION

Cognitive impairment related to aging has become one of the
major public health burdens for us. Although Alzheimer’s disease
is the most prevalent cause of clinically diagnosed dementia in
western nations, vascular etiology is the second most common
cause. Also, vascular etiology is the most common cause in East
Asia (Iadecola et al., 2019). Thus, it is worthwhile to investigate
the underlying mechanism of VaD development. Much progress
has been made during the past years; however, several
controversies remain to be interpreted.

In the present study, we first took use of WGCNA to achieve
modules related to VaD and hub genes. According to the
correlation coefficient, a yellow module was chosen which was
closely related to immunity and we finally identified 21 hub genes.
TLR2 was the top hub gene which was strongly correlated with
other possible candidate genes. Second, we filtered out 456
significant DEGs by adjust-p < 0.05 and |log2FC| > 1. TLR2
was one of the DEGs and was significantly upregulated in the
VaD group. Third, significantly upregulated and downregulated
DEGs were gone through GO and KEGG analyses and the Toll-like
receptor pathway, and other inflammation related processes were
found to be upregulated in the VaD group. Fourth, GSEA results
showed that cytokine-mediated signaling pathway, cell surface,
immune receptor activity, and cytokine–cytokine receptor reaction

FIGURE 6 | Construction of the protein–protein interaction (PPI) network consisting of DEGs. (A) PPI of DEGs. (B) Partial network centered on TLR2. The size and
color of the nodes reflect the degree and the width and color of the edges reflect the combined scores (color: from blue to red). Larger size and bluer nodes indicated the
higher degree while wider and bluer lines indicated the higher combined scores.
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were significantly over-represented in TLR2-high samples. The
results were similar to enrichment results achieved by samples
being divided by disease status. Finally, in the PPI analysis, TLR2
was an important node with a higher degree and combined scores
edges which indicated that TLR2 remained a key target at the
protein level. In summary, with five approaches complementing
each other, TLR2 might participate in the pathophysiological
process of VaD via the neuroinflammation pathway.

TLRs were proved to be involved in the control of immunity and
neurological diseases (Racke and Drew, 2009; Kouli et al., 2019; Lin
et al., 2019; Tajalli-Nezhad et al., 2019; Fitzgerald and Kagan, 2020).
TLR2, as a member of TLRs, also played a vital role in nervous
system. Based on the KEGGToll-like receptor signaling pathway, we
summarized a mechanism chart. After comparing the pathway with
our analysis results, we found that a high expression level of TLR2
was related to many genes, including MYD88, AKT, NF-κB, Iba1,
GFAP, and many cytokines, suggesting that TLR2 might participate
in the development of VaD via the neuroinflammation pathway.
The genes that were upregulated in this microarray were marked in
red. High expression of TLR2 induced activation of astrocytes and
microglia, which further lead to the secretion of cytokines (Figure 7).
Previous studies were consistent with our results and provided a
foundation for this prediction. Knockdown ofMyD88 attenuated the
mRNA expression of TNF-α and inducible nitric oxide synthase
(iNOS) (Jana et al., 2008) in AD, while reduced inflammatory
response was observed in MYD88 knockdown mice with
traumatic brain injury (TBI) (Krieg et al., 2017). These results
revealed the role of MYD88 in neuroinflammation. Meanwhile,
AKT and NF-κB were involved in the neuroinflammation pathway
in experimental models of AD (Yang et al., 2020). In addition, GFAP
is an activation marker of astrocytes, while Iba1 and CD68 are the
activation markers of microglia. The anti-TLR2 antibody group had
lower GFAP and CD68 immunoreactivity than the control group
(McDonald et al., 2016). At last, the expression levels of

inflammatory cytokines increased (Brea et al., 2011; Dzamko
et al., 2017; Sun et al., 2017). At the protein level, TLR2 was
proven to be strongly correlated with proteins such as C5AR1
(Mödinger et al., 2018), HSPA1A (Yang et al., 2013), and CD14
(Aguilar-Briseño et al., 2020), according to the previous study which
was coincident with our results. These molecules, as well as CYBB,
were all related to neuroinflammation which further proved our
results (Tarassishin et al., 2014; Qu et al., 2017; Michailidou et al.,
2018; Keller et al., 2021). All the results proved that TLR2 could be an
efficient target to regulate the unwanted inflammatory responses in
neurological conditions (Hayward and Lee, 2014). Thus, we
suggested that TLR2 might participate in the development of
VaD via the neuroinflammation pathway.

In parallel, there was other evidence that also supported the role
of TLR2 in the development of VaD. First, TLR2 regulated the risk
factors of vascular diseases which further affect VaD development,
such as atherosclerosis (Li B et al., 2020) and diabetes. TLR2 was
found to promote vascular smooth muscle cell chondrogenic
differentiation and consequent calcification in atherosclerosis by
activating p38 and extracellular regulated protein kinases (ERK) 1/2
signaling (Lee et al., 2019). Activation of TLR2 stimulated the pro-
inflammatory cytokines and chemokines secretion, which would
cause vascular injuries. Diabetes-induced changes in cerebral blood
flow and cognitive deficits were prevented when TLR2 was knocked
out (Hardigan et al., 2017).

Second, TLR2 participated in the pathophysiological process
of stroke and other neurodegeneration diseases. In IS, TLR2 was
associated with the outcome (Brea et al., 2011), and TLR2
inhibition improved neuronal survival (Ziegler et al., 2011),
which indicated a future therapy. Repeated exposure to TLR2
agonists may exacerbate neurodegeneration in AD by their
microglial-mediated toxicity (Lax et al., 2020) and inhibition
of TLR2 in microglia (Liu et al., 2012) or mouse model could
be beneficial in AD pathogenesis. Similarly, TLR2 was reported to
exert a prominent role in the microglial-mediated responses
which is vital for PD progression (Doorn et al., 2014).

Third, TLR2 exerted functions in biological processes or other
neurological diseases via the neuroinflammation pathway.
Neuraminidase-induced inflammatory reaction in vivo was partly
dependent on TLR2 (Fernández-Arjona et al., 2019), while
interferon-γ (IFN-γ) enhanced α-syn stimulation and
inflammatory responses via TLR2, TLR3, and TNF-α in vitro
(Wang et al., 2019). TLR2 and TLR4 could serve as important
mediators of repeated social defeat stress (R-SDS)–induced
microglial activation in the medial prefrontal cortex (mPFC),
which caused neuronal and behavioral alternations via
inflammatory-related cytokines (Nie et al., 2018). In addition,
TLR2 and TLR4 were shown to potentially advance secondary
brain injury after experimentally controlled cortical impact (CCI)
via neuroinflammation (Krieg et al., 2017) while activation of
microglia, via a TLR2-sphingosine kinase 1 (Sphk1)-pro-
inflammatory cytokines (IL-1β, TNF-α, IL-17, and IL-23)
pathway, may be involved in ischemia/reperfusion (I/R) injury
(Sun et al., 2017). In IS, TLR2 activation was associated with a
higher interleukin (IL)-1β, tumor necrosis factor-α (TNF-α) and IL-6
expression level (Brea et al., 2011). The expression of TLR2 was
increased in affected regions, further inducing TNF-α expression and

FIGURE 7 | Potential mechanism for high expression of TLR2 to
promote VaD. The network is summarized according to GSE122063
database and public KEGG pathway. Red indicates the upregulated genes.
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increased phosphorylation of NF-κB p105 subunit in PD (32). In AD,
TLR2 was proved to be a natural receptor for Aβ to trigger
neuroinflammatory activation (Richard et al., 2008; Liu et al.,
2012). TLR2 deficits in microglia shifted related inflammatory
activation in vivo, while TLR2 insufficiency reduced Aβ42-
triggered inflammatory activation and increased Aβ phagocytosis
in vitro, whichwere both related to improved neuronal function (Jana
et al., 2008; Liu et al., 2012; McDonald et al., 2016). TLR2 could
enhance macrophage receptor with collagenous structure
(Marco)–induced neuroinflammation by acting on the scavenger
receptors cysteine-reach (SRCR) domain of Marco, which also
suggested that TLR2 could serve as a novel target for reducing
neuroinflammation in neurodegenerative diseases (Wang et al.,
2021). Therefore, it is reasonable to speculate that TLR2
participates in the pathophysiological process of VaD through the
neuroinflammation pathway and could serve as a key target.

Our research showed that using bioinformatics to investigate
the molecular processes underlying VaD could provide valuable
information. Bioinformatic techniques, however, were used to
identify probable critical pathways and genes. Thus, molecular
experiments based on clinical samples or animal models should be
performed to further validate the results. It remained to be clarified
whether TLR2 is involved in the pathophysiological process of VaD
and inhibition of TLR2 would contribute to VaD treatment.

In conclusion, we identified TLR2 as a neuroinflammatory
leading change during VaD.
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