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ARTICLE INFO ABSTRACT

Keywords: Purpose: Dental restorations fabricated using CAD/CAM require modification/adjustment before
Bacterial adhesion cementation. Streptococcus mutans (S.mutans) and Porphyromonas gingivalis (P.gingivalis) are
S.Mutans

prevalent bacterial species that may adhere to these materials and can cause caries, gingivitis/
periodontitis. The purpose of this in vitro study was to evaluate the bacterial adherence of S.
mutans and P.gingivalis to five different kinds of modern CAD/CAM restorative materials with
different compositions following chairside finishing/polishing and glazing.

Materials and methods: Specimens (N = 75) from five test materials (n = 15 each) “Tetric-CAD®;
IPS-e.max-CAD®; IPS-e.max-ZirCAD®; CELTRA-Duo® and Vita-Enamic®” were prepared in disc
shape (10 x 3 mm) using CAD/CAM. The specimens underwent glazing and finishing/polishing
using established procedures. The surface roughness was measured in micrometers (pm) using a
profilometer. Bacterial adherence to test materials’ glazed and finished/polished surfaces was
tested using bacterial culture growth over the test materials. Data obtained was tabulated and
statistical analysis performed using Kruskal Wallis test, post-hoc Conover test, Mann-Whitney U
test and Tukey post hoc test.

Results: With the exception of IPS-e.max-ZirCAD®, which showed the contrary, the adherence of
S.mutans & P.gingivalis was less on glazed surfaces compared to finished/polished surfaces for four
test materials: “Tetric-CAD®, IPS-e.max-CAD®, CELTRA-Duo®, and Vita-Enamic®”. On the
glazed surfaces, the adhesiveness of S.mutans and P.gingivalis was not significant (p = 0.099; p =
0.660); however, on the finished/polished surfaces, it was significant (p = 0.002; p = 0.004).
With the exception of ‘IPS-e.max-ZirCAD®’, which showed the reverse behavior, the adhesion of
S.mutans & P.gingivalis to finished/polished surfaces was greater for each of the four ceramics
under investigation “Tetric-CAD®, IPS-e.max-CAD®, CELTRA-Duo®, and Vita-Enamic®”.
Conclusion: Glazed surfaces for majority of test materials demonstrated decreased adhesion from
S.mutans & P.gingivalis, hence prior to final placement of restoration, it is advised to adhere to the
minimal glazing criteria. Regardless of the chemical composition of the materials, the surface
texture of the tested materials significantly influenced bacterial adhesion.
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1. Introduction

The oral environment, containing numerous enzymes and proteins, is complex and heterogeneous. Changes in pH, dietary habits,
hygiene, teeth number, and health status can affect dental tissues and restorative materials, leading to biofilm formation and
compromising oral health [1]. Disturbances can lead to dental caries, gingivitis, and periodontitis [2]. Bacteria in the oral cavity play
varying roles in initiation and progression of these diseases [3]. Streptococcus mutans (S.mutans), a gram-positive facultative
anaerobe, is the main culprit for caries initiation [4]. Other bacterial species involved in periodontal diseases include Actinobacillus
actinomycetemcomitans, Porphyromonas gingivalis (P.gingivalis), Prevotella intermedia, Forsythus, Campylobacter rectus, Eubacte-
rium nodatum, Peptostreptococcus micros, and Streptococcus intermedius [5-9]. P.gingivalis is a gram-negative anaerobic bacterium,
which affects the periodontium either directly or indirectly by regulating the host’s response to inflammation and considered as a
major factor contributing to the formation of chronic periodontitis [10-12].

Dental restorative materials have significantly advanced in recent years, focusing on repairing naturally impaired teeth to restore
function and appearance [13]. Materials used include metals, ceramics, synthetic polymers, and combinations of these [14]. However,
challenges like shrinkage, durability, and biological toxicity can be addressed through advanced technology and innovative break-
throughs [15]. Developments are needed to enhance mechanical strength, antibacterial properties, mineralization capacity, self-repair
capabilities, and regenerative attributes [16]. Clinical barriers include dimensional accuracy, wear resistance, aesthetic appearance,
and biocompatibility, requiring immediate investigation [13-16].

Dental restorative materials face challenges due to the presence of oral biofilm, a complex microbial community primarily orig-
inating from bacteria and saliva [17]. This biofilm can lead to undesirable side effects such as secondary caries, periodontal disease,
peri-implantitis, stomatitis, and restoration failure [18]. The surface properties of these materials, including roughness, chemical
makeup, and form, significantly influence the microbial flora. The particle sizes also influence the properties of restorative materials
[19]. Assessing the level of bacterial colonization on restorative materials is crucial to determine the negative effects of bacterial
biofilms at the tooth-restoration interface [20]. Surface alterations and enhancements, such as chairside polishing and glazing, can
further enhance the evaluation of harmful infections [21,22].

Studies for bacterial adhesion to computer aided design/computer aided manufacturing (CAD/CAM) fabricated modern day
restorative materials are scarce. Numerous chairside finishing and polishing kits on the market include wheels, fine diamond-burs,
paste, rubber-cups and sandpaper discs [23]. In the literature, varying outcomes have been reported concerning consistent and
advised chairside finishing and polishing systems, attributed to differences in materials utilized, evaluation methods, and diverse
measurement parameters [24]. In order to compare and assess the bacterial adhesion of two different species of bacteria (S.mutans & P.
gingivalis) to glazed and chairside finished/polished surfaces of five popular modern indirect CAD/CAM restorative materials
“Tetric-CAD®, IPS-e.max-CAD®, IPS-e.max-ZirCAD®, CELTRA-Duo® and Vita-Enamic®” using bacterial culture growth, this in vitro
study was conducted.

2. Materials and methods
2.1. Setting and ethical approval
This laboratory study was conducted at the College of Dentistry Research Center (CDRC) and Molecular and Cell Biology Labo-

ratory (MCBL), Dental College, King Saud University, Riyadh, KSA. The CDRC (No. PR 0143) and Institutional Review Board (IRB)
ethical committee (No. E—22-7201) at King Saud University Medical City, Riyadh, Saudi Arabia, granted ethical approval.

2.2. Test materials

Five types of CAD/CAM materials were selected: Composite, Lithium Disilicate Glass-ceramic, Zirconium Oxide ceramic, Zirconium

Table 1
Test materials and bacterial details.
Test Material Abbreviation ~ Brand Manufacturer
Composite TC Tetric® CAD Ivoclar Vivadent, Schaan, Lichtenstein
Lithium-Disilicate-Glass- LS, IPS e.max® CAD
ceramics
Zirconium Oxide ceramics ZrO, IPS e.max® ZirCAD
Zr-Reinforced, Lithium Silicate ZLS CELTRA® Duo Dentsply-Sirona, Bensheim, Germany
Hybrid-Ceramic HC Vita Enamic® VITA, Zahnfabrik, Germany
Bacterial Name Abbreviation ~ Type *ATCC  Company
Streptococcus Mutans S. Mutans Gram- Positive (Facultatively 25175 Streptococcus Mutans Clarke, ATCC® 25175™
Anaerobic)
Porphyromonas Gingivalis P. Gingivalis Gram-Negative (Obligately 33277 Microbiologics, Kwik-Stok, 0912, Saint Cloud, MN, United
Anaerobic) States

*American Type Culture Collection.
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Reinforced Lithium Silicate and Hybrid Ceramic. Under brands names of “Tetric-CAD®, IPS-e.max-CAD®, IPS-e.max-ZirCAD®,
CELTRA-Duo® and Vita-Enamic®”, respectively. Furthermore, two types of oral bacteria were selected: S.mutans & P.gingivalis. Table 1

provides information about the test materials and bacteria utilized.

The G*Power software, version 3.1.9.3 program (Heinrich-Heine-Universitat Dusseldorf, Germany) was used for power analysis. A
power of 0.85 (85 %), an alpha threshold of 0.05, and a medium effect size of 0.5 were chosen. After computation, a total sample size of

75 (N = 75) was found, with 15 specimens in each group (n = 15).

2.3. Specimen preparation

Specimens in disc shape with a diameter of 10 mm and thickness of 3 mm were designed using ExoCad software and milled using
the milling machine (Ceramill Motion 2). Glazing was performed on one surface following the manufacturer’s instructions. Using
diamond-impregnated systems, the other surface underwent chair-side finishing/polishing procedures. (DIASYNT®Plus, EVE, Ger-
many) and (DIAPOL® Set HP 310, EVE, Germany).

2.4. Surface roughness measurements

A Profilometer (Contour-GT-X, 3D Optical Microscope, Bruker Nano Surfaces Division, San Jose, CA, USA) was used to evaluate the
surface roughness of both surfaces for the five materials in micrometers (pm/m).
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Fig. 1. Flow chart of the Bacterial Adhesion Process with detailed Illustration.
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2.5. Bacterial adhesion process

Prior to the initiation of bacterial adhesion process, specimens were soaked in artificial saliva (Biotene® Dry mouth Oral Rinse,
Biotene, Germany) and left for 1 h. Bacterial adhesion process was applied to each surface twice (one with S.mutans, the other with P.
gingivalis). The complete process is described in detail in Fig. 1.

2.5.1. Agar plates preparation
Two types of agar were used in this study, Brain Heart infusion (BHI) agar for S.mutans (Fig. 2a) and Brucella agar with Vitamin K
was used for P.gingivalis (Fig. 2b). Below are the details of the preparation.

A. BHI Agar Plates:

Agar plates were prepared by thoroughly mixing 37g of BHI (ThermoScientific CM1135B, Thermo Fisher Scientific, USA) with
1000 mL of distilled water until a homogeneous mixture was obtained. Following that, it was placed in an autoclave machine for 15
min at 15 psi and 121 °C (TR-24S, ALP), then poured in 90 mm x 14.2 mm plates (PD-900, Plasti Lab) and left to solidify overnight.

B. Brucella Agar with Vitamin K Plates:

Due to the difficulty and technique sensitivity of preparing this type of agar plates, it was purchased from an outside company
(Brucella agar with vitamin K, Second Advanced Medical Company, Riyadh, Saudi Arabia).

2.5.2. Broth preparation

Two types of broth were used. BHI broth for S.mutans and Tryptic soy broth for P.gingivalis. The preparation were carried out by
mixing the needed amount of water with the recommended amount of broth powder based on the manufacturer instructions, Auto-
claved for 15 min at 15 psi and 121 °C.

2.5.3. Microbial suspension

The microbial suspension of S.mutans bacteria (Streptococcus mutans Clarke, ATCC 25175) and P.gingivalis bacteria (Porphyromonas
gingivalis 2561, ATCC 33277) were prepared from the bacterial solutions obtained from “Molecular and Cell Biology Laboratory of the
Prince Naif bin Abdulaziz Health Research Center at College of Dentistry, King Saud University”.

100 pL of each bacterium was streaked on its corresponding agar plate, placed in an anaerobic jar system (anaerobic jar + anaerobic
gas pack) and incubated at a temperature of 37 °C in an incubator for 2 days (S.mutans) and for 1 week (P.gingivalis). Fig. 3a and b
shows the bacterial agar after incubation for S.mutans and P.gingivalis bacteria, respectively.

Following that, swap of bacteria was added to a conical tube containing 50 ml of broth and incubated in anaerobic jar system in an
incubator at temperature of 37 °C for 1 day (S.mutans) and for 3 days (P.gingivalis).

2.5.4. Bacterial application

The specimens underwent washing with chlorine and sterilization through ultraviolet (UV) germicidal irradiation (UVP PCR3
HEPA Cabinet & Workstation, 849-00002-2, analytikjena) for a total of 2 h, with 1 h allocated for each side. 50 pL of the infused
bacteria were dispensed onto the glazed and finished/polished surfaces of the test specimens using volume pipettes (10-100 pL,
409076A, Eppendorf Research). The specimens were then incubated in an anaerobic system within an incubator at 37 °C for 2 days (for
S.mutans) and for 1 week (for P.gingivalis). Afterward, the samples were rinsed with distilled water to eliminate any unattached
bacteria. Subsequently, the samples were transferred to a conical tube (Falcon Conical Tubes, 15 pL, 38009, STEMCELL Technologies)
containing 1000 pL of distilled water and agitated for 1 min using a vortex mixer (Classic Vortex Mixer, F202A0173, VelpScientifica) to

Fig. 2. Agar plates (a): BHI agar, (b): Brucella agar with vitamin K.
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Fig. 3. Bacterial agar after incubation. (a): S.mutans bacteria (b): P.gingivalis bacteria.
dislodge the bacteria from the sample surface.

2.5.5. Serial dilution

Each sample was assigned to one of four microcentrifuge tubes (Easy-lock microtube 1.5 mL conical, 23043, FL. Medical), which
were then filled with 900 pL of distilled water each. Next, the first tube was filled with 100 pL of distilled water that contained un-
attached bacteria, and the vortex agitator (Classic Vortex Mixer, F202A0173, VelpScientifica) was used to mix the mixture. Subse-
quently, 100 pL from the initial tube were moved to the subsequent tube and mixed again. Every one of the four microcentrifuge tubes
underwent the same procedure twice.

Fig. 4. CFUs of S.mutans glazed and finished/polished surfaces CFU. (a): glaze Tetric CAD, (b): finished/polished Tetric CAD, (c) glazed IPS e.max,
(d): finished/polished IPS e.max, (e): glazed IPS e.max ZirCAD, (f): finished/polished IPS e.max ZirCAD, (g): glazed Celtra Duo, (h): finished/
polished Celtra Duo, (i): glazed Vita Enamic and (j): finished/polished Vita Enamic.
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2.5.6. Bacterial colonization

The agar plates prepared were utilized for culturing the detached bacteria collected from each sample. Agar plates were divided
into two sections, each section assigned for different dilution, by doing this number of agars used was reduced. After that, with the use
of volume pipettes, 50 pL of solution contained in each conical tubes was collected and spread onto agar plates using a T-Spreader
(VWRI612-2653, VMR International).

2.5.7. Incubation and calculation of colony forming units (CFU)

The agar plates were placed in an anaerobic system and incubated at 37 °C for 2 days for S.mutans and 1 week for P.gingivalis to
provide sufficient time for colony formation. Subsequently, the plates were visually inspected for CFUs formation of the S.mutans
(Fig. 4a—j) and P.gingivalis (Fig. 5a—j) for the five test materials and manually counted. The mean CFU of each sample was multiplied by
the reciprocal of the dilution coefficient to get the number of live bacteria.

2.6. Data analysis

IBM SPSS Statistical software for Windows version 26.0 (IBM Corp., Armonk, N.Y., USA) was used to analyze the data. To describe
the log initial CFU numbers, descriptive statistics such as mean, standard deviation, median, and interquartile range were used. Non-
parametric statistical tests were used since the log starting CFU levels did not follow a normal distribution: (i) The mean rankings of log
initial CFU values between the five research materials—“Tetric-CAD®, IPS-e.max-CAD®, IPS-e.max-ZirCAD®, CELTRA-Duo®, and
Vita-Enamic®”—in each of the two treatments (Finished/Polished and Glazed) were compared using the Kruskal-Wallis test and the
post-hoc Conover test. In each of the five research materials “Tetric-CAD®, IPS-e.max-CAD®, IPS-e.max-ZirCAD®, CELTRA-Duo®, and

Fig. 5. CFUs of P.gingivalis glazed and finished/polished surfaces CFU. (a): glaze Tetric CAD, (b): finished/polished Tetric CAD, (c) glazed IPS e.max,
(d): finished/polished IPS e.max, (e): glazed IPS e.max ZirCAD, (f): finished/polished IPS e.max ZirCAD, (g): glazed Celtra Duo, (h): finished/
polished Celtra Duo, (i): glazed Vita Enamic and (j): finished/polished Vita Enamic.
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Vita-Enamic®”, the values of mean-rank of log initial CFU between the two types of treatments (Finished/Polished and Glazed) were
compared using the Mann-Whitney U test (ii). A significance level of <0.05 was utilized to indicate the statistical significance of the
data.

3. Results

Fig. 6 shows the surface roughness of the five test materials’ surfaces that were finished/polished and glazed prior to the start of the
bacterial adhesion process. There was a substantial statistical difference in the mean rankings of surface roughness between the two
types of surfaces (Finished/Polished and Glazed) in each of the five research materials. For the four research materials “Tetric-CAD®,
IPS-e.max-CAD®, CELTRA-Duo® and Vita-Enamic®”, the mean-rank values of surface roughness using the glazed surface were
significantly lower than the mean-rank values of surface roughness using the finished/polished surface (p < 0.0001). However, with
the IPS-e.max-ZirCAD®, the mean-rank values of surface roughness of the glazed surface were significantly greater (p < 0.0001) than
the mean-rank values of the finished/polished surface.

Table 2 shows the descriptive statistics of log initial CFU values of S.mutans & P.gingivalis across the five study materials for each of
the 2 type of treatments. The comparison of mean ranks of log initial CFU values shows no statistically significant difference among the
five study materials by using glazed treatment (p = 0.099) (Table 3). But there was highly statistically significant difference in the
mean ranks of log initial CFU values among the five study materials by using finished/polished treatment (p = 0.002) (Table 3). The
post hoc analysis revealed that Vita-Enamic® material’s log initial CFU values were substantially greater than those of “Tetric-CAD®,
IPS-e.max-CAD®, and IPS-e.max-ZirCAD® (p < 0.001)”, but they were not different from CELTRA-Duo® values (p > 0.05).
Furthermore, there was a significant difference (p < 0.001) between the Celtra-Duo® and IPS-e.max-ZirCAD® values. Additionally,
Table 3 shows that the values of Tetric-CAD®, CELTRA-Duo®, and Vita-Enamic® were substantially higher than the values of IPS-e.
max-ZirCAD® material (p < 0.001).

The comparison of mean ranks of log initial CFU values showed no statistically significant difference among the five study materials
by using glazed treatment (p = 0.660) (Table 4). But the mean ranks of log initial CFU values were statistically significantly different
across the five study materials by using finished/polished treatment (p = 0.004). The log initial CFU values of Tetric-CAD® and IPS-e.
max-CAD® were substantially greater than those of the two materials, IPS-emax-ZirCAD® and CELTRA-Duo®, according to the post
hoc test (p < 0.001). Additionally, the values of Vita-Enamic®, Tetric-CAD®, and IPS-e.max-CAD® materials were substantially higher
than those of CELTRA-Duo® (p < 0.001) (Table 4).

The comparison of mean ranks of log initial CFU values between samples using glazed and finished/polished treatment of S.mutans
& P.gingivalis bacteria within each of the five test materials demonstrated significant difference for the IPS-emax-ZirCAD® material
where the values using glazed treatment were significantly greater than the values using finished treatment (p = 0.026). And there was
no statistically significant difference in the log initial CFU values between the two types of treatments for S.mutans bacteria of the other
four study materials (Table 5). The comparison of mean ranks of log initial CFU values between samples using glazed and finished/
polished treatment of P.gingivalis bacteria within each of the five test materials showed no statistically significant variance in the log
initial CFU values between the two types of treatments for P.gingivalis bacteria of all the five study materials (Table 5).

The comparison of mean ranks of log initial CFU values between samples of S.mutans & P.gingivalis within each of the five test
materials using glazed treatment revealed statistically significant difference of IPS.e.max CAD test material where the number of P.
gingivalis sample were significantly higher than the values of S.mutans (p = 0.041). And there was no statistically significant difference
in the log initial CFU values between the samples of S.mutans & P.gingivalis of the other four study materials (Table 6).

Comparison of mean rankings of log initial CFU values between samples of S.mutans & P.gingivalis in each of the five study materials
using finished/polished treatment showed statistically significant difference for the IPS-e.max-CAD® material where the values of P.
gingivalis sample were significantly greater than the values of S.mutans (p = 0.012). And there was no statistically significant difference
in the log initial CFU values between the samples of S.mutans & P.gingivalis of the other four study materials (Table 6).
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Fig. 6. The mean surface roughness in micrometers (ym) for two surfaces—finished/polished and glazed—for each of the five research materials.
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Descriptive statistics of Log (initial CFU/ml) values of S.Mutans & P.Gingivalis in each of the 5 study materials in relation to 2 types of treatments

(Finished and Glazed).

Type of Bacteria Test Type of treatment
Materials Glazed Finished
Mean (Sd.) Median (IQR) Mean (Sd.) Median (IQR)
S.Mutans Tetric CAD 7.08 (0.48) 6.86 (1.05) 7.32 (0.59) 7.23 (1.04)
IPS e.max CAD 7.07 (0.65) 6.80 (0.61) 7.14 (0.39) 7.15 (0.88)
IPS e.maxZir CAD 7.47 (0.69) 7.13 (1.49) 6.95 (0.50) 6.89 (0.33)
CELTRA Duo 7.05 (0.46) 6.85 (0.60) 7.40 (0.61) 7.38 (1.43)
Vita Enamic 7.46 (0.58) 7.38 (1.17) 7.70 (0.46) 7.50 (1.03)
P.Gingivalis Tetric CAD 6.29 (1.30) 6.36 (2.53) 7.51 (0.17) 7.49 (0.33)
IPS e.max CAD 7.34 (0.15) 7.32(0.13) 7.48 (0.27) 7.50 (0.52)
IPS e. maxZir CAD 7.24 (0.09) 7.25 (0.10) 6.83 (0.74) 7.13 (1.19)
CELTRA Duo 6.41 (1.13) 6.35 (2.15) 7.24 (0.18) 7.29 (0.27)
Vita Enamic 7.00 (0.90) 7.47 (0.91) 7.56 (0.07) 7.57 (0.14)
Table 3
Comparison of mean ranks of Log (initial CFU/ml) values of S. Mutans among the 5 study materials for the Glazed and Finished surfaces.
Surface Treatment Type of material Mean ranks (Glazed) p-value
Glazed Tetric CAD 33.73 0.099
IPS e.max CAD 30.67
IPS e. maxZir CAD 45.50
CELTRA Duo 32.63
Vita Enamic 47.47
Finished Tetric CAD 39.40" 0.002
IPS e.max CAD 32.40°
IPS e. maxZir CAD 22.67¢
CELTRA Duo 41.73¢
Vita Enamic 53.80°

By post-hoc Conover test:.
@ Significantly higher than IPS e.max Zir CAD & Lower than Vita Enamic.

b Significantly lower than Vita Enamic.
¢ Significantly lower than Tetric CAD, CELTRA Duo & Vita Enamic.
d Significantly higher than IPS e.max Zir CAD.

¢ Significantly higher than Tetric CAD, IPS e.max CAD and IPS e.max Zir CAD, but not different from CELTRA Duo.

Table 4
Comparison of mean ranks of Log (initial CFU/ml) values of P. Gingivalis among the 5 study materials for the Glazed and Finished surfaces.
Surface Treatment Type of material Mean ranks (Glazed) p-value
Glazed Tetric CAD 22.30 0.660
IPS e.max CAD 28.65
IPS e. maxZir CAD 22.70
CELTRA Duo 23.85
Vita Enamic 30.00
Finished Tetric CAD 31.95% 0.004
IPS e.max CAD 29.80"
IPS e. maxZir CAD 15.60"
CELTRA Duo 16.00"
Vita Enamic 34.15"

By post-hoc Conover test.

@ Significantly higher than IPSe.maxZir CAD & CELTRA Duo.
b Significantly lower than Tetric CAD, IPS e.max CAD & Vita Enamic.

4. Discussion

The current study’s findings indicate that there were variations in S.mutans & P.gingivalis adherence to the five test materials. These
variations only mattered, though, for the material specimens that underwent finishing. Observations revealed non-significant S.mutans
& P.gingivalis adherence to the surfaces of specimens subjected to glazing. For the test group with glazed surfaces, the null hypothesis of
identical S.mutans & P.gingivalis colonization/adhesion to the five test materials investigated in the study was accepted; however, for
the test group with surfaces exposed to finishing, it was rejected. This indicated that if the glazing was completed appropriately and in
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Table 5
Comparison of mean ranks of Log (initial CFU/ml) values between samples of Glazed and Finished treatment of S. Mutans & P. Gingivalis bacteria in
each of 5 study materials.

Type of Bacteria Type of Material Type of sample treatment “p-value
Glazed Finished

S. Mutans Tetric CAD 13.53 17.47 0.233
IPS e.max CAD 14.00 17.00 0.367
IPS e. maxZir CAD 19.07 11.93 0.026
CELTRA Duo 14.17 16.83 0.412
Vita Enamic 13.77 17.23 0.285

P. Gingivalis Tetric CAD 8.00 13.00 0.063
IPS e.max CAD 9.40 11.60 0.436
IPS e. maxZir CAD 11.20 9.80 0.631
CELTRA Duo 10.00 11.00 0.739
Vita Enamic 8.35 12.65 0.105

@ P-value was significant at P < 0.05.

Table 6
Comparison of mean ranks of Log (initial CFU/ml) values between samples of S. Mutans and P. Gingivalis using Glazed and Finished surface treatment
in each of 5 study materials.

Type of Surface Treatment Type of Material Type of Bacteria “p-value
S. Mutans P. Gingivalis

Glazed Tetric CAD 14.33 11.00 0.285
IPS e.max CAD 10.53 16.70 0.041
IPS e. maxZir CAD 12.87 13.20 0.935
CELTRA Duo 14.07 11.40 0.397
Vita Enamic 13.47 12.30 0.723

Finished Tetric CAD 11.33 15.50 0.177
IPS e.max CAD 10.00 17.50 0.012
IPS e. maxZir CAD 12.93 13.10 0.978
CELTRA Duo 13.73 11.90 0.567
Vita Enamic 13.27 12.60 0.849

& P-value was significant at P < 0.05.

accordance with the manufacturer’s instructions, S.mutans & P.gingivalis should generate similar intraoral biofilms on the glazed
surfaces of the dental restorations under examination.

Colonization of S.mutans and P. gingivalis was assessed on chair side finished/polished and glazed surfaces for five modern CAD/
CAM restorative materials with different compositions, namely “Tetric-CAD®, IPS-e.max-CAD®, IPS-e.max-ZirCAD®, CELTRA-Duo®
and Vita-Enamic®”, in the current in-vitro research study. The onset of dental caries and periodontitis has been linked to the repre-
sentative bacterial strains of S.mutans & P.gingivalis [24] that were employed in the present investigation. The bacterial suspensions
used in the investigation were made in accordance with earlier studies [19-21]; the bacteria were cultivated in the same culture
medium and under the same circumstances to reduce the impact of environmental variations.

The bacterial adherence of S.mutans & P.gingivalis to five different dental restorative materials, each possessing unique composi-
tions, physical variances, and aesthetic characteristics; “composite (Tetric-CAD®), Lithium Disilicate Glass-ceramics (IPS-e.max-
CAD®), Zirconium Oxide Ceramics (IPS e.max-ZirCAD®), Zr Reinforced Lithium Silicate (CELTRA-Duo®), and Hybrid Ceramic (Vita-
Enamic®)” were investigated in the present study. The compositions of the five materials that were tested, varied and this variation
may have an impact on the bacterial adherence to their surfaces. An important metric that is used to evaluate the integrity of the outer
surface of dental restorative materials and has the potential to influence bacterial adhesion is surface roughness [20,25]. The surface
topography has a direct effect on plaque and bacterial adhesion to the restorative materials [26]. Most of these materials go through
the glazing process, which is the final step before cementation and is done to give the restoration a glossy finish. The smooth surface is
preferred for hygienic as well as aesthetic reasons. Plaque buildup can be avoided with the aid of glazing. Furthermore, there is reduced
chance of bacterial adhesion to smooth restorations [20,27,28].

Defects and textures in the dental materials are the primary sources of greater surface roughness, and these factors can affect the
longevity and performance of these materials [29]. Glazing these restorations before luting is the easiest way to have a smooth surface.
Nevertheless, during delivery consultations, chairside clinical changes to these restorations can be necessary [21]. Indirect restorations
usually require adjustments to be made on their occlusal surfaces in order to remove working or nonworking interferences. Indirect
restorations that are over-contoured proximally or when proximal contacts are excessively tight can also be adjusted proximally to help
with seating [30]. Lastly, indirect restorations may be modified to correct shapes for functional or cosmetic purposes. Usually, this
procedure entails using a finishing bur, which unavoidably causes the ceramic surface to become rough, and then followed by pol-
ishing to restore the smoothness of the surface [30,31].

The five test materials’ surfaces were glazed and finished/polished before the bacterial adhesion procedure began at present
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investigation. CAD/CAM blocks offer an advantage in their industrial production, ensuring uniformity and eliminating the potential
for processing errors [32]. The ideal surface roughness for all of these materials would have been similar [33], however, the results
revealed that the specimens under study had different surface roughness levels and displayed different behaviours on their fini-
shed/polished and glazed surfaces. The studied materials’ surface roughness values demonstrated that, with the exception of Zirconia
ceramics (IPS e.max-ZirCAD®), which revealed opposite roughness values, the glazed surfaces were less rough than the fini-
shed/polished surfaces. The tested bacterial adhesion mechanism was impacted by these differences as well. With the exception of
zirconia ceramics (IPS e.max-ZirCAD®), where bacterial colonization was greater on glazed surfaces than on finished/polished sur-
faces, all tested bacterial colonization on ceramic materials demonstrated higher colonization on finished/polished surfaces relative to
glazed surfaces. This outlier can be explained by the fact that zirconia’s glazed surface is rougher than its finished/polished surface.
Zirconia has a high surface roughness that makes sense given its crystalline structure and material hardness; this has been documented
in earlier research [34,35]. The materials used in this test group may have had a rougher surface due to the porosity and grain
boundary fractures created during sintering, which weaken zirconia and impair its structural endurance.

The aforementioned result is consistent with several investigations that assessed bacterial adherence on various restorative ma-
terials and found no appreciable differences in biofilm formation [17-20]. Regardless of the kind of restorative material employed, a
qualitative examination of the biofilm attached to the various materials revealed that they had comparable architectural traits. The
numerous ions emitted from material surfaces have not been linked to the formation of biofilm, according to the authors, who also
suggested that surface roughness is a component that influences biofilm and bacterial retention [19-21]. Comparing surface glazing to
mechanical finishing/polishing, some research has revealed that surface glazing increases the likelihood of biofilm development and
bacterial colonization [36,37].

Previous studies examining the level of bacterial adherence among various ceramic prosthetic materials have discovered that rough
prosthetic surfaces and clinical adjustment heighten the degree of bacterial adhesion [38]. Habib SR et al., reported significantly
higher S.mutans colonization on the rougher surfaces of the different dental ceramic materials [20]. Study by Contreras L et al.,
assessing the adherence of several bacterial species have revealed that S.mutans adheres to surfaces better than Candida albicans [39].
According to Poole et al. (2020), there was an increased adhesion of Prevotella intermedia to various ceramic surfaces [40]. Abdalla
et al. found that polished zirconia-reinforced lithium disilicate exhibited the lowest bacterial adherence compared to other ceramic
materials when comparing the degree of bacterial attachment to several types of ceramic prosthetic materials [38]. As far as the re-
searchers are aware, very few have looked into how much P.gingivalis adheres to various composite materials, and none have looked
into how much adhesion it has to ceramic materials. Park et al. came to the conclusion that variations in the surface roughness of
various composite materials have no appreciable impact on P.gingivalis and other periodontal bacteria [41]. Nonetheless, further
research is required to determine how finishing and polishing affect the ceramic materials’ surface roughness.

The ceramic test materials used in this study varied in composition, came from different manufacturers, and were manufactured
according to their instructions, all of which may have had an impact on the test materials’ surface characteristics. Literature has shown
us that a dental restoration’s long-term performance is influenced by its fabrication technique as well as its various physical, chemical,
and biological characteristics [42]. It’s possible that variations in the surface characteristics of identical materials from other brands
also affected the adhesion of germs. Crucially, it would have been beneficial for our study to compare the tested materials with the
tested bacterial adherence to cementum, dentine, or enamel. Additionally, the present in-vitro study was conducted under specific
conditions, at a pH of neutrality, and did not contain the necessary proteins, enzymes, or other salivary contents. Nevertheless, an
attempt was made to expose the tested ceramics to artificial saliva prior to the bacterial adhesion process beginning. On the other hand,
the investigation gave us insight into and evaluation of the intrinsic and extrinsic textural features of the materials under test, with
respect to their propensity to cling S.mutans & P.gingivalis under ideal bacterial growth circumstances.

5. Conclusion

The assessed ceramic test materials’ glazed and finished surfaces demonstrated a comparable vulnerability to S.mutans & P.gin-
givalis adherence. For each of four studied ceramics “Tetric-CAD®, IPS-e.max-CAD®, CELTRA-Duo® and Vita-Enamic®”, adherence of
S.mutans & P.gingivalis to finished surfaces was greater than glazed surfaces. Adhesion of S.mutans & P.gingivalis to glazed surfaces of
Zirconia ceramics “IPS-e.max-ZirCAD®” was higher compared to its finished surface. Overall, glazed surfaces for majority of test
materials demonstrated decreased adhesion of S.mutans & P.gingivalis. Surface texture of the tested materials significantly affected
bacterial adhesion, regardless of their chemical composition.
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