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Abstract

Both transcriptional subtype and signaling network analyses have proved useful in cancer genomics research. However,
these two approaches are usually applied in isolation in existing studies. We reason that deciphering genomic alterations
based on cancer transcriptional subtypes may help reveal subtype-specific driver networks and provide insights for the
development of personalized therapeutic strategies. In this study, we defined transcriptional subtypes for colorectal cancer
(CRC) and identified driver networks/pathways for each subtype. Applying consensus clustering to a patient cohort with
1173 samples identified three transcriptional subtypes, which were validated in an independent cohort with 485 samples.
The three subtypes were characterized by different transcriptional programs related to normal adult colon, early colon
embryonic development, and epithelial mesenchymal transition, respectively. They also showed statistically different clinical
outcomes. For each subtype, we mapped somatic mutation and copy number variation data onto an integrated signaling
network and identified subtype-specific driver networks using a random walk-based strategy. We found that genomic
alterations in the Wnt signaling pathway were common among all three subtypes; however, unique combinations of
pathway alterations including Wnt, VEGF and Notch drove distinct molecular and clinical phenotypes in different CRC
subtypes. Our results provide a coherent and integrated picture of human CRC that links genomic alterations to molecular
and clinical consequences, and which provides insights for the development of personalized therapeutic strategies for
different CRC subtypes.

Citation: Zhu J, Wang J, Shi Z, Franklin JL, Deane NG, et al. (2013) Deciphering Genomic Alterations in Colorectal Cancer through Transcriptional Subtype-Based
Network Analysis. PLoS ONE 8(11): e79282. doi:10.1371/journal.pone.0079282

Editor: Amanda Ewart Toland, Ohio State University Medical Center, United States of America

Received August 19, 2013; Accepted September 20, 2013; Published November 15, 2013

Copyright: � 2013 Zhu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding from United States Public Health Service grants GM088822, CA126479, CA159988, CA095103, CA069457, DK052334, and CA068485. The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: bing.zhang@vanderbilt.edu

Introduction

Colorectal cancer (CRC) is a major cause of global cancer

morbidity [1]. Over the past three decades, molecular genetic

studies have revealed some critical mutations underlying the

pathogenesis of CRC [2]. Recently, with the development of high-

throughput sequencing technologies, thousands of genetic alter-

ations have been identified in CRC. In addition to a limited

number of well-known frequently-mutated oncogenes or tumor-

suppressor genes such as APC, KRAS, PIK3CA and TP53, a

much larger number of genes are mutated at a low frequency [3].

It has been suggested that somatic mutations found in cancers are

either ‘‘drivers’’ or ‘‘passengers’’ [3]. How to distinguish drivers

from passengers among thousands of low-frequency mutations has

become a major challenge in cancer research.

Because signaling pathways and networks rather than individual

genes govern the course of tumorigenesis and progression [4],

several studies have used expert-curated pathways to help interpret

high throughput genomic alterations [3,5,6]. Although helpful,

these methods are limited by the coverage and completeness of

curated pathways [7]. Consequently, network-based approaches

such as HotNet [8] and NetWalker [9] have been developed, with

successful application to the identification of subnetworks that are

enriched with genomic variations [6,10].

Network-based methods have started to provide a systems level

understanding of complex genomic variations. However, because

existing studies usually consider all tumor samples together in

contrast to normal controls, they tend to identify signaling

networks common to all tumor samples and may fail to address

the heterogeneity among cancer genomes.

Transcriptional subtype analysis has provided great insights into

disease biology, prognosis and personalized therapeutics for

different cancer types [11,12]. Interestingly, although both

transcriptional subtype and signaling network analyses have

proved useful in cancer genomics research, these two approaches
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are usually applied in isolation in existing studies. We reason that

deciphering genomic alterations based on cancer transcriptional

subtypes may help reveal subtype-specific driver networks and

provide insights for the development of personalized therapeutic

strategies.

For CRC, the TCGA (The Cancer Genome Atlas) network

recently reported a classification of three transcriptional subtypes,

which were named as ‘‘MSI/CIMP’’, ‘‘Invasive’’, and ‘‘CIN’’,

respectively [13]. However, the analysis is limited by several

factors. First, the subtypes were identified from a relatively small

patient cohort with only 220 samples and no independent

validation was performed, leaving the generality of the subtype

classification unproven. Next, due to the lack of survival data with

enough follow up time for the TCGA cohort, clinical relevance of

the subtypes remains to be established. It is not clear by which

criteria the ‘‘invasive’’ subtype was labeled and whether it is

supported by biological and clinical data. Moreover, although it is

very interesting to link global genomic features such as Microsat-

ellite Instability (MSI), CpG island methylation phenotype

(CIMP), and chromosomal instability (CIN) with transcriptional

subtypes, it remains a big challenge to translate these associations

into targeted therapeutics for different CRC subtypes.

In this study, we hypothesize that highly heterogeneous genomic

alterations observed in CRC may converge to a limited number of

distinct mechanisms that drive unique gene expression patterns in

different transcriptional subtypes. First, we extended the TCGA

findings by performing subtype discovery based on gene expres-

sion data from 1173 CRC tumor samples accumulated during the

past decade, validated identified subtypes in an independent

cohort with 485 samples, and associated each subtype with unique

biology and clinical outcome. Next, we mapped somatic mutation

and copy number variation (CNV) data onto an integrated

signaling network and identified a driver network for each subtype.

The inferred networks and associated pathways correlated

perfectly with downstream transcriptional programs characteristic

for each subtype, providing strong circumstantial evidence for the

effectiveness of our approach and the validity of our inference.

Based on the unique combinations of pathway alterations and

clinical outcomes, we have proposed specific therapeutic strategies

for different CRC subtypes.

Materials and Methods

Data Acquisition and Processing
As shown in Table S1 in File S1, gene expression data for 1173

human CRC samples were downloaded from the Gene Expression

Omnibus (GEO) database to build a discovery cohort. Gene

expression data for an additional 485 human CRC samples were

downloaded from the GEO database, the ArrayExpress Archive

and The Cancer Genome Atlas (TCGA) to create a validation

cohort. For each Affymetrix gene expression dataset, the Robust

MultiChip Analysis (RMA) algorithm [14] was used for data

processing, including quantile normalization and log2-transfor-

mation. To make the expression level comparable across datasets,

we further normalized the expression level of each probe set in

each sample relative to its average expression in all the samples in

the same dataset, by subtracting its average in that dataset from

each of its expression measurements [15]. As shown in Figure S1

in File S2, expression level across datasets is comparable after this

normalization. Then, probe set identifiers were mapped to gene

symbols based on the mapping file provided by corresponding

databases. Probe sets mapped to multiple genes were eliminated.

When multiple probe sets were mapped to the same gene, the

median was used to represent the gene expression level. For

TCGA gene expression data based on Agilent 244 K Gene

Expression Microarray, Level 3 gene expression data (log2 lowess

normalized (cy5/cy3) collapsed by gene symbol) were downloaded

and the expression values for each gene were also mean centered.

10481 gene symbols common in all datasets were selected for the

subsequent analyses.

To investigate gene expression changes in CRC samples relative

to normal mucosa samples, gene expression data for these 182

samples were normalized together by the RMA algorithm [14].

Then, we normalized the expression level of gene g in each sample

relative to its average expression in the five normal mucosa

samples, by subtracting its average in the normal samples from

each of its expression measurements.

To characterize the embryonic development of colon, we

conducted a time course microarray study using the inbred

C57BL/6 (Jackson Laboratories, Bar Harbor, ME) mice (Gene

Expression Omnibus, GSE38831). This study was carried out in

strict accordance with animal care and use guidelines and

approval of the Vanderbilt Institutional Animal Care and Use

Committee (IACUC). Mice were monitored throughout the

experiment for signs of distress during their normal life cycle,

although no experimental manipulations of these mice were

carried out besides breeding. If signs of distress were seen during

weekly monitoring, mice were euthanized by CO2 asphyxiation

followed by cervical dislocation to reduce animal suffering. Seven

samples corresponding to the mouse colonic development from

E13.5 to E18.5 and adult (eight week post-natal) were collected.

Embryonic colon collection and RNA preparation were per-

formed as previously described [16]. RNA samples were submitted

to the Vanderbilt Functional Genomics Shared Resource (FSGR,

http://array.mc.vanderbilt.edu), where RNA was purified with

the use of the RNeasy kit (QIAGEN, alencia, CA) and hybridized

to the Affymetrix Mouse Genome 430 2.0 GeneChip Expression

Arrays (Santa Clara, CA) according to manufacturer’s instructions.

The RMA algorithm was used for data normalization. Mouse gene

symbols were mapped to human gene symbols by the Human and

Mouse Orthology list available from the Mouse Genome

Informatics (http://www.informatics.jax.org/).

CNV data and somatic mutation data for TCGA samples with

matched gene expression data were downloaded from the TCGA

website.

Signaling pathways curated by NCI-Nature, Cancer Cell Map,

and REACTOME were downloaded from the Pathway Commons

database (latest version in Jun, 2011). BioCarta signaling pathways

were downloaded from the NCI Pathway Interaction Database

(Jun, 2011). Integrating pathways from all the above sources

resulted in a signaling network containing 3152 genes and 47,833

edges. Its largest component contained 3078 genes and 47,772

edges, which was used for the inference of the upstream driver

subnetworks.

Co-expression Network and Module Analysis
Based on the gene expression matrix with 10,481 genes and

1173 samples for the discovery cohort, we calculated the Pearson’s

correlation coefficients for all the 54,920,440 gene pairs. The

construction of a co-expression network requires an appropriate

selection of a threshold for the pair-wise correlation coefficients.

To ensure the biological relevance of the constructed network, we

used a knowledge-guided method for threshold selection [17].

Specifically, we evaluated functional similarity between each pair

of genes based on the Gene Ontology (GO) biological process

annotation using the Resnik’s semantic similarity [18]. The

average functional similarities of gene pairs at various correlation

ranges were calculated and plotted (Figure S2 in File S2). Based on

Transcriptional Subtype-Specific Driver Networks
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the plot, the absolute Pearson’s correlation coefficient of 0.45 was

selected for thresholding because a sharp increase in functional

similarity occurs above this threshold for both positive and

negative correlations. Based on the threshold above, a gene co-

expression network with 8546 genes and 508,071 edges was

constructed. We used our previously published Iterative Clique

Enumeration (ICE) algorithm [17] to identify relatively indepen-

dent co-expression modules from the gene co-expression network

(Figure 1A and Table S2 in File S1). To focus on major

transcriptional programs, we required each module to have at least

20 unique genes.

Transcriptional Subtype Identification
For subtype discovery, we performed the consensus average

linkage hierarchical clustering [19], based on genes in the above

identified modules and all discovery samples (Figure 1A and Table

S2 in File S1). The clustering was performed with GenePattern

[20], using the same parameters as [12]. For the identified

subgroups of CRC, SigClust was performed to evaluate the

significance of all the pair-wise combinations [21] (Figure 1A and

Table S2 in File S1). To identify samples that can’t represent its

subgroup well, we evaluated how well each sample lies within its

subgroup. Specifically, for sample i, we computed a(i) as the

average distance between i and all other samples from the

subgroup where i belongs. Then, the average distance between i

and all samples from each of the other subgroups was computed

respectively, and the smallest average distance, b(i), was identified.

Next, we calculated the silhouette width s(i) as defined by: s(i) = (b(i)

2 a(i) )/max(a(i), b(i) ) [22]. Samples with a positive silhouette value

were retained as ‘‘core’’ samples for the corresponding subtype

(Figure 1A and Table S2 in File S1). This analysis was performed

using the silhouette package in R.

Construction of Subtype Classifier and Assigning
Signature Genes for Each Subtype
We used a nearest shrunken centroid classification method,

Prediction Analysis of Microarrays (PAM) [23] to build classifiers

for the above defined subtypes. We ran 10-fold cross-validation

100 times to evaluate the performance of classifiers with different

numbers of genes. For the selected classifier, we used the following

rule to assign each gene in the classifier to a subtype. First, genes

significantly up regulated (one-tail Student’s t-Test, p,0.05) in one

subtype compared to all other subtypes were defined as up-

regulated genes for this subtype. Next, remaining genes that were

significantly down regulated in one subtype compared to all other

subtypes were defined as down-regulated genes for this subtype.

For each subtype, both the up-regulated genes and the down-

regulated genes were considered as signature genes.

Driver Subnetwork Identification
We employed the Netwalker algorithm [9] for driver subnet-

work identification (Figure 1A and Table S2 in File S1). Given the

integrated signaling network and start probabilities for each node

assigned based on the genomic variation status, the algorithm used

Figure 1. Schematic overview of methods used. (A) Study design. A detailed description of methods and data used in the study can be found in
Table S2 in File S1; (B) Overview of the method used for inferring upstream driver subnetworks for individual subtypes.
doi:10.1371/journal.pone.0079282.g001
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the random walk with restart technique [24] to calculate a final

priority score for each node based on the steady state probabilities.

We set up the start probabilities for all 3078 genes based on their

somatic mutation and CNV information for each subtype

separately. As shown in Figure 1B, we computed two binary

matrices based on the somatic mutation data (1 for non-silent

mutation, 0 for others) and the CNV data (1 for genes within gains

or losses regions with ratio $1.2 or #0.8, 0 for others) for each

subtype separately.

To assign higher weight to genomic alterations observed in

samples with fewer total number of alterations and alterations

observed in multiple samples, we performed column-wise

normalization followed by row-wise summarization for each

binary matrix, and thus transformed each matrix into a vector.

For a subtype, let’s denote n as the total number of genes and m as

the total number of samples. The somatic mutation status of gene i

is defined as:

Mutationi ~
Pm

j~1
xijPn

i~1
xij
, where xij is the value for gene i in

sample j in the somatic mutation matrix. Similarly, the CNV status

of gene i is defined as: CNVi ~
Pm

j~1
yijPn

i~1
yij
, where yij is the

value for gene i in sample j in the CNV matrix. Next, Mutationi
and CNVi for each gene were combined together with equal

weight. Start probability for gene i (p0i ) is thus defined as:

p0i ~
Mutationi

2 �
Pn

i~1 Mutationi
z

CNVi

2 �
Pn

i~1 CNVi

:

For the NetWalker algorithm, the restart probability was set to

0.5 and convergence was determined by
Pn

i~1 Dp
tz1
i {pti Dƒ10{6,

where pti is the probability for gene i at the tth iteration.

To assess the statistical significance of the scores for each gene,

we constructed 1000 sets of randomly permuted start probabilities

and generated 1000 sets of random scores. For each gene in the

network, a local p value was estimated by comparing the real score

to random scores from the same gene, and a global p value was

estimated by comparing the real score to random scores from all

genes [9]. A significant global p value indicates the overall

significance of the node with regard to the input start probabilities,

while a significant local p value ensures that the significance is not

simply due to network topology. For each subtype, the largest

connected component formed by the significant genes (local

p,0.05 and global p,0.05) was reported as the driver subnetwork.

Survival Analysis
Standard Kaplan–Meier survival curves were generated for

CRC subgroups, and the survival difference between groups was

statistically evaluated using the log-rank test. The univariate and

multivariate Cox proportional hazard regression analyses were

used to evaluate potential independent prognostic factors associ-

ated with survival. All these analyses were performed using the

survival package in R.

GO and KEGG Pathways Enrichment Analysis
GO and KEGG pathway enrichment analyses were performed

using WebGestalt, in which the hypergeometric test was used for

enrichment analysis and the Benjamini-Hochberg procedure was

used to control the False Discovery Rate (FDR) [25].

Network Visualization
Networks were visualized using Cytoscape [26].

Results

Identification of Three Transcriptional Subtypes in CRC
We used a well-established method, Consensus Clustering [19],

for the reliable identification of transcriptional subtypes [12,27].

Usually, genes with high expression variance across a sample

cohort are selected to cluster the samples [28]. This gene selection

method is not able to distinguish biological variance from technical

variance. Because the dysregulation of a key signaling pathway

usually leads to coordinated expression changes for the down-

stream genes, groups of genes co-expressed across a sample cohort

(i.e. co-expression modules) may better reflect underlying biolog-

ical variance. Therefore, we first constructed a gene co-expression

network and identified 33 co-expression modules with a total of

1472 unique genes from a discovery cohort with 1173 CRC

samples (Table S1 in File S1). Then, we performed consensus

clustering using genes from these modules, evaluated cluster

significance and identified core samples for each cluster as

previously described [12].

According to the consensus matrices and the empirical

cumulative distribution function (CDF) plots in Figures S3A and

S3B in File S2, the clustering stability increased considerably from

2 clusters to 3 clusters whereas no obvious increase was found for

more than 3 clusters, suggesting that the 1173 CRC samples could

be robustly divided into three clusters. We further evaluated

cluster significance using SigClust [21] and confirmed statistical

significance for all three clusters (Figure S3C in File S2). Following

Verhaak et al. [12], we defined the ‘‘core samples’’ for each

subtype as those with higher similarity to their own class than to

any other classes and identified 985 core samples based on their

positive silhouette width [22] (Figure S3D in File S2).

Next, we used PAM to build a classifier for the above defined

subtypes. The shrinkage in PAM performs automatic gene

selection and can potentially make the classifier more accurate

by reducing the effect of noisy genes. The smallest average cross-

validation error of 0.5% was achieved using all the 1472 genes

based on 100 times of 10-fold cross validation, suggesting that

noisy genes might have already been removed in our co-expression

module-based gene selection procedure. With relaxed error rate

requirement, PAM was able to further reduce the number of genes

in the classifier. For example, when the error rate increased to 9%,

a classifier with 853 genes was reported. Classifiers with reduced

gene numbers are usually preferred in classification tasks; however,

because an important goal in this study was to understand the

biology underlying different subtypes, we selected the 1472-gene

classifier to facilitate downstream GO enrichment analysis.

Using the method described in Materials and Methods, we

found 449 signature genes for subtype 1 (red bar in Figure 2, with

402 genes up-regulated and 47 genes down-regulated), 505

signature genes for subtype 2 (green bar in Figure 2, with 500

genes up-regulated and 5 genes down-regulated) and 512 signature

genes for subtype 3 (blue bar in Figure 2, with 480 genes up-

regulated and 32 genes down-regulated, Table S3 in File S3).

Additionally, six genes that could not be defined as signature genes

based on our criteria were labeled by the black bar in Figure 2 (at

the top of the heat map).

To further test the biological relevance of the signature genes,

we computed the pair-wise functional similarity for all genes in a

signature based on the GO biological process annotation using the

Resnik’s semantic similarity [18]. For each signature, the average

pair-wise functional similarity of all signature genes was signifi-

cantly higher than that of the same number of genes randomly

selected from the 1472 genes (p,0.001 for subtype 1, p= 0.018 for

subtype 2, and p=0.001 for subtype 3, permutation test).

Transcriptional Subtype-Specific Driver Networks
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The small cross-validation error in the PAM analysis, distinctive

expression patterns for each subtype as shown in Figure 2, and

significant functional coherence of the signature genes for each

subtype indicates that our CRC subtype classification is both

accurate and well supported by distinct expression patterns of

functionally related signature genes.

To compare our co-expression module-based approach for gene

selection with the single gene-based method, we repeated the

above clustering analysis based on the same number of genes

(1472) with the largest median absolute deviation across the 1173

samples. Compared to our method, the single-gene based method

generated larger average cross-validation error in the PAM

analysis (2% vs 0.5%). Moreover, most of the subtype-specific

signatures produced by the single-gene based method showed no

significant functional coherence compared to random gene lists of

the same size.

Validation of the three CRC Subtypes in an Independent
Cohort
To validate the CRC subtypes discovered above, we compiled

an independent gene expression dataset with 485 CRC samples

from six additional resources (Table S1 in File S1). The subtype

labels of validation samples were predicted using the above

constructed PAM classifier with the probabilities for individual

samples provided in Table S4 in File S3. Using the same ordering

of the genes and the CRC subtypes as those used in Figure 2A,

gene expression for the 485 samples from the validation set was

visualized in Figure 2B. A visual comparison between Figures 2A

and 2B suggests that the three subtypes of CRC identified in the

discovery set can be robustly rediscovered in the validation dataset.

Direction of Gene Expression Changes
For subtype identification, we focused on the relative gene

expression changes across all tumor samples. To further clarify the

absolute direction of gene expression changes, we compared the

expression of signature genes in each CRC subtype to their

expression in normal colon mucosal samples. As shown in

Figure 3A and Table S5 in File S1, in general, signature genes

for subtype 1 were up-regulated in subtype 1 but down-regulated

in subtype 2 and 3 compared to normal. Signature genes for

subtype 2 were clearly down-regulated in subtypes 1 and 3

compared to normal, but the down-regulation was weaker in

subtype 2. Signature genes for subtype 3 were up-regulated in all

the CRC samples compared to normal, with the strongest up-

regulation observed for subtype 3 and only moderate up-

regulation observed for subtype 2. Similar trend was observed

when comparing TCGA samples from the validation cohort with

22 normal samples from TCGA.

Unique Cancer Biology for different CRC Subtypes
It has been suggested that CRC tumorigenesis and progression

recapitulates embryonic development and epithelial mesenchymal

transition (EMT) programs [29,30]. To gain insight into the

biological meaning of the three CRC subtypes, we investigated

gene expression of the three subtypes within the contexts of normal

colon development and EMT.

First, we generated a gene expression dataset (see Materials and

Methods) of normal mouse colon development (E13.5–E18.5 and

adult) and defined development-related genes as the top1000

genes with the largest median absolute deviation across different

time points among those with a high correlation to developmental

time points (absolute Spearman correlation coefficient .0.9).

Based on the development-related genes, we evaluated the

correlation between the expression patterns of different CRC

Figure 2. Identification and validation of three CRC subtypes based on gene expression data. (A) Using the 1472 selected genes, 985
core samples in the discovery cohort were clustered into three subtypes. For each subtype, samples and signature genes were labeled with same
color (red bar for subtype 1, green bar for subtype 2 and blue bar for subtype 3). Biological processes enriched with signature genes for each subtype
are shown beside the color bars; (B) Using the same ordering of signature genes and CRC subtypes as (A), the gene expression pattern for the
485 CRC samples from the validation cohort was shown.
doi:10.1371/journal.pone.0079282.g002

Transcriptional Subtype-Specific Driver Networks
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subtypes and different developmental time points. Specifically, for

each pair of CRC subtype and developmental time point, we

calculated the Pearson’s correlation coefficient between the

subtype centroids of the development-related genes and the

expression levels of the same genes at the time point. As shown in

Figure 3B, gene expression patterns of subtype 3 (blue line) were

more similar to that of the early stage of mouse colon development

whereas gene expression pattern of subtype 2 (green line) was more

similar to that of the adult colon. Consistently, GO enrichment

analysis showed that the subtype 3 signature was significantly

enriched with genes in proliferation-related processes such as cell

cycle (FDR=9.95610224), DNA metabolic process

(FDR=9.18610212) and mRNA metabolic process

(FDR=2.6361027) (Figure 2). It is well known that early

embryonic development is characterized by rapid cell prolifera-

tion. On the other hand, the subtype 2 signature was significantly

enriched with genes involved in differentiated functions required

for a more mature stage of development, such as smooth muscle

contraction (FDR=7.0061024) and neurological system process

(FDR=1.56610214). These genes are repressed in undifferenti-

ated embryonic cells [31], which was in agreement with their

markedly reduced expression in 3 but not subtype 2 (Figure 3A).

Taken together, these results suggest that subtype 3 tumors

reactivated the early colon developmental gene expression

programs, whereas the subtype 2 tumors better maintained gene

expression programs in normal adult colon.

Next, we examined the expression pattern of a previously

published EMT signature [30] in these three subtypes. The

signature was derived from a microarray dataset [30] comparing

cell lines exhibiting a mesenchymal-like gene expression pattern

(high levels of VIM and low levels of CDH1) vs. cell lines with

an epithelial-like gene expression pattern (low levels of VIM and

high levels of CDH1). 149 genes up-regulated in mesenchymal-

like cell lines with a p-value ,0.01 in t-test were used in our

analysis. These genes had a much higher level of expression in

subtype 1 tumors compared with the other two subtypes

(Figure 3C). GO enrichment analysis showed that the subtype 1

signature was enriched with genes in cell migration

(FDR=2.061024) and blood vessel morphogenesis

(FDR=7.4961025), biological processes closely related to

EMT [32,33]. Thus, the EMT program is characteristic of

subtype 1. A complete list of GO terms enriched for the

subtype signatures can be found in Table S6 in File S3.

Distinct Clinical Outcomes for different CRC Subtypes
Using overall survival information available for samples from

the Moffitt Cancer Center (GSE17536), the Vanderbilt Medical

Center (GSE17537) and the Max Planck Institute (GSE12945), we

performed a survival analysis to compare clinical outcomes for

different CRC subtypes. Combining all the three datasets created

a cohort with a total of 251 samples. This cohort included 161

samples from CRC stage II and III, where molecular stratification

of these intermediate stage tumors could greatly facilitate

treatment decision making [34].

As depicted in Figure 4, the three subtypes showed significantly

different outcomes (p=0.001 for all the patients and p=0.002 for

stage II and III patients only, log-rank tests with H0: hazard_sub-

type1 = hazard_subtype2 = hazard_subtype3). Subtype 1 with a

highly activated EMT program had the poorest overall survival

among the three subtypes (5 yr survival rate = 50%), which was in

agreement with previous reports on the association between EMT

and CRC patient survival [30]. On the other hand, subtype 2,

which more closely maintained the normal adult colon gene

expression programs, had the best overall survival (5 yr survival

rate = 77%). Interestingly, overall survival for subtype 3, with

highly activated early colon developmental gene expression

Figure 3. Unique cancer biology in three CRC subtypes. (A) Expression of signature genes in three CRC subtypes compared to expression in
normal samples. The heat map was based on 1472 selected genes, and the gene expression dataset GSE17536 with 177 human CRC samples and five
normal mucosal samples. (B) The correlation between the gene expression pattern of three CRC subtypes and the expression pattern of different
stages of mouse colon development based on time related genes. The time series are indicated on the horizontal axis, while Pearson correlation
coefficients are indicated on the vertical axis (Points represent Pearson correlation coefficients, bars represent 95% confidence intervals). (C) The
expression of EMT signature genes in three CRC subtypes.
doi:10.1371/journal.pone.0079282.g003

Transcriptional Subtype-Specific Driver Networks
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programs, was very similar to subtype 2 before year 4, but the

survival rate dropped after year 4 (5 yr survival rate = 63%).

To evaluate the prognostic value of the subtype classification in

combination with clinical variables including patient age at

diagnosis, gender and AJCC stage, we performed univariate and

multivariate Cox proportional hazards regression analyses based

on the cohort of 251 samples (Table S7 in File S1). In the

univariate analysis, both AJCC stage and the subtype classification

were significantly associated with survival (p,0.05). In the

multivariate analysis, the subtype classification still maintained

the significance (p=0.0041 for subtype 2 vs 1 and p=0.036 for

subtype 3 vs 1). Thus, the prognostic value of the subtype

classification is independent of the AJCC stage.

Comparison with the TCGA Subtype Classification
We compared our subtype classification with the TCGA

classification [13] based on the 154 samples that were included

in both studies. As shown in Table 1, we found a moderate but

statistically significant overlap between two TCGA subtypes and

our subtypes. Specifically, our subtype 1 and 2 showed enriched

overlap with the TCGA subtypes ‘‘MSI/CIMP’’ and ‘‘Invasive’’,

respectively. We also compared our subtypes with the genomic

information provided in the TCGA paper. As shown in Table 2,

our subtype 1 was significantly enriched with CIMP-high and

MSI-high tumors. Since MSI-high status has been linked to better

overall survival, it is counterintuitive that our subtype 1 with poor

overall survival was enriched with MSI-high tumors. However, we

found that among the 19 MSI-high tumors in subtype 1, 12

tumors also have BRAF mutations. BRAF mutations have been

were associated with worse overall survival [35,36]. It was reported

that among the MSI/BRAF-wild-type, MSI/BRAF-mutant,

MSS/BRAF-wild-type and MSS/BRAF-mutant groups, MSI/

BRAF-wild-type group had a significantly improved overall

survival compared with all others. The remaining three groups

had very similar survival outcomes [37]. After removing tumors

with BRAF mutations, subtype 1 was not enriched with MSI-high

tumors.

During our manuscript preparation, two alternative CRC

subtype classification schemes have been proposed and applied

to the TCGA samples [38,39]. As shown in Table S8 and Table

S9 in File S1, our subtype 1 overlapped with the subtypes with

poor prognosis in these classification schemes (i.e. the stem-like

subtype and the CCS3 subtype), whereas our subtype 2

overlapped with the subtypes with good prognosis (i.e. the

Goblet-like subtype and the CCS1 subtype). Therefore, an overall

consistency was found for the three classification schemes.

A contradictory observation was that the TCGA invasive

subtype showed the highest overlap with our subtype 2, which was

found to have the best clinical outcome among the three subtypes

(Figure 4). We further investigated the TCGA subtypes within the

context of EMT and embryonic development. Although the

pattern was not as clear as in our study (Figure S4 left in File S2),

the EMT signature genes were relatively up-regulated in the MSI/

CIMP subtype whereas down-regulated in the invasive subtype

(Figure S4 right in File S2), linking the invasive subtype to

potentially better clinical outcome based on previously established

association between EMT and patient survival [30]. Moreover, the

gene expression pattern of the invasive subtype showed the highest

similarity to that of the adult colon (Figure S5, right in File S2),

suggesting that the TCGA naming of this subtype is misleading.

Inferring Upstream Driver Subnetworks for different CRC
Subtypes
Based on the hypothesis that highly heterogeneous genomic

alterations of CRC may converge to a limited number of distinct

mechanisms that drive unique gene expression patterns in different

CRC subtypes, we attempted to elucidate these distinct mecha-

nisms by inferring upstream driver subnetworks for the unique

gene expression patterns and their associated tumor physiologies

in different CRC subtypes.

This analysis was based on a subset of The Cancer Genome

Atlas (TCGA) samples from the validation dataset that had

matched somatic mutation and CNV data (see Materials and

Methods). After filtering for samples with both somatic mutation

and CNV information, we identified 30 subtype 1 samples, 15

subtype 2 samples, and 22 subtype 3 samples.

To infer upstream driver subnetworks that are enriched with

CNVs and/or somatic mutations, we used the Netwalker

algorithm [9] as described in Materials and Methods. To set the

start probability for the 3078 nodes in the signaling network for

each subtype (Figure 1B), we first computed two binary matrices

based on the somatic mutation data (1 for non-silent mutation, 0

for others) and the CNV data (1 for genes within gains or losses

regions with ratio $1.2 or #0.8 [40], 0 for others), respectively.

To assign higher weight to alterations observed in samples with

fewer total number of alterations and alterations observed in

multiple samples, we performed column-wise normalization

followed by row-wise summarization for each binary matrix, and

thus transformed each matrix into a vector (see Materials and

Methods). Finally, the two vectors indicating the somatic mutation

and CNV status of each gene were combined together with equal

weight.

Using the genomic variation status for each gene as the start

probability, we performed the Netwalker analysis and identified

Figure 4. Kaplan-Meier plots of overall survival of patients
from three CRC subtypes. Combining data from Moffit Cancer
center, Vanderbilt Medical center and Max Planck Institute as a single
cohort, we got 251 samples totally (left panel) and 161 samples from
CRC stage II and III (right panel).
doi:10.1371/journal.pone.0079282.g004

Table 1. Overlap between our subtypes and TCGA subtypes.

MSI/CIMP 58
(38%)

Invasive 37
(25%) CIN 56 (37%)

Total
151

Subtype 1 40 (59%,1.55x)** 10 (15%) 18 (26%) 68

Subtype 2 5 (16%) 14 (44%,1.76x)* 13 (41%) 32

Subtype 3 13 (25%) 13 (25%) 25 (49%) 51

Note: p values are computed by hypergeometric test and FDR (BH) was used for
multiple test correction *: 0.01#FDR,0.05; **: FDR,0.01.
doi:10.1371/journal.pone.0079282.t001
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three driver subnetworks constituted of genes with significant

priority scores (local p,0.05 and global p,0.05, see methods) for

subtypes 1, 2 and 3, respectively (Figure S6 in File S2). The driver

subnetwork for subtype 1 had 121 nodes and 373 edges; the one

for subtype 2 had 107 nodes and 307 edges; and the one for

subtype 3 had 101 nodes and 196 edges. As shown in Figure S7 in

File S2, the driver subnetworks had limited number of overlapping

nodes, indicating possibly distinct underlying mechanisms.

Pathways Associated with Subtype-specific Networks
To associate these driver subnetworks with known pathways, we

performed functional enrichment analysis based on the signaling

pathways curated in the KEGG database (Table S10 in File S3).

Consistent with our current understanding of CRC, the Wnt

signaling pathway genes were enriched in all three driver

subnetworks, although at different levels of significance

(FDR=1.5661026, 0.013, and 2.061024 for subtypes 1, 2 and

3, respectively). In addition, the driver subnetwork for subtype 1

was enriched with genes in the VEGF signaling pathway

(FDR=1.061024), and that for subtype 2 was enriched with

genes in the Notch signaling pathway (FDR=1.761023). We

further performed the Fisher’s exact test to examine the subtype-

specificity of the VEGF and NOTCH pathways. The results

showed that genes from the VEGF pathway were significantly

over-represented in the driver subnetwork specific to subtype 1

compared to the other two subtypes (p = 0.028, Fisher’s exact test)

and genes from the NOTCH pathway were significantly over-

represented in the driver subnetwork specific to subtype 2

(p = 0.019, Fisher’s exact test).

Because our approach cannot distinguish activating mutations

from deactivating mutations, we checked the expression change of

some critical genes in the identified signaling pathways using the

gene expression dataset GSE17536 with 177 CRC samples and

five normal samples. We found that CTNNB1, DKK2, LEF1,

LRP5, MYC and RUVBL1 were all up-regulated in all three

subtypes compared to normal samples (one sided student’s t tests,

p,0.02), suggesting an active status of the WNT signaling in all

three subtypes. PIK3CA was only up-regulated in subtype 1 (one

sided student’s t tests, p=0.037), suggesting an active status of the

VEGF signaling in subtype 1. NOTCH1 was up-regulated in all

three subtypes compared to normal samples (one sided student’s t

tests, p=2.161024, 4.261025 and 2.061025), suggesting an

active status of Notch signaling in all three subtypes. However,

RBPJ was only up-regulated in subtypes 1 and 3 (one sided

student’s t test, p=9.461026 and 9.661024), suggesting a

relatively less-active status of Notch signaling in subtype 2

compared to the other two subtypes.

Evaluation of Inferred Signaling Pathways
A well-recognized challenge in computational network and

pathway inference is the lack of gold standard for an objective

evaluation. In this study, because subtype-specific gene expression

signatures and driver networks and pathways were independently

identified from gene expression data and genomic data respec-

tively, we assessed our pathway inference by checking the

consistency between the inferred pathways and observed gene

expression changes for each subtype. Correlating upstream

genomic alterations to downstream transcriptional changes also

allowed us to further assess whether the genomic alterations had

resulted in pathway activation or inhibition. The c-Myc (MYC)

transcription factor is a well-known downstream effector of the

Wnt signaling pathway [41], whose activation induces the

expression of cell proliferation genes [42]. The Wnt signaling

pathway was inferred for all three subtypes. Consistently, genes

involved in cell proliferation were up-regulated in all three

subtypes compared to normal colon (Figure 3A), suggesting an

activation of the Wnt signaling pathway in all three subtypes. As a

more direct evidence, the signature genes for subtype 3 were

significantly enriched with direct targets of c-Myc (p=0.006,

hypergeometric test), where the c-Myc target list were downloaded

from the MsigDB (version 2.5). The VEGF signaling pathway was

inferred specifically for subtype 1. It has been reported that

alterations in the VEGF signaling pathway among Wnt-activated

cells may activate the expression of genes involved in cell

migration, angiogenesis, and the EMT program [32,43,44,45],

which was consistent with the specific up-regulation of these genes

in subtype 1 (Figure 3A) and suggested an activation of the VEGF

pathway in this subtype. Genes suppressed by Notch signaling, as

exemplified by the transcription factor ATOH1 that promotes

intestinal stem cell differentiation toward secretory lineages [46]

and those involved in neurological system process (such as

HTR1B, HTR6 and NLGN3), were highly repressed in subtypes

1 and 3 as compared to normal colon (Figure 3A), suggesting an

active status of the Notch signaling in these subtypes. Inhibition of

the Notch signaling pathway among Wnt-activated cells may lead

to cell cycle exit and cell differentiation [42]. Based on the

relatively higher-level expression of genes involved in differentiat-

ed functions in subtype 2 (Figure 2, Figure 3A), genomic

alterations in the Notch signaling pathway may have resulted in

reduced pathway activity in this subtype. These results are

consistent with the above described expression changes for critical

genes in the signaling pathways, and they suggested that inferred

pathways correlated well with the downstream gene expression

patterns for each subtype, thus providing strong evidence to

support the validity of our inference.

Table 2. Overlap between our subtypes and TCGA CIMP_H, MSI and Hypermuated annotations.

Methylation
Available CIMP_H MSI Available MSI_H Mutation Available Hyper_Mutated

Subtype 1 68 (44%) 19 (66%)* 68 (44%) 19 (68%)* 62 (44%) 18 (62%)

Subtype 2 33 (22%) 4 (14%) 33 (21%) 3 (11%) 30 (21%) 3 (10%)

Subtype 3 52 (34%) 6 (21%) 53 (34%) 6 (21%) 50 (35%) 8 (28%)

Total 153 29 154 28 142 29

Note: p values are computed by hypergeometric test and FDR (BH) was used for multiple test correction *: 0.01#FDR,0.05.
doi:10.1371/journal.pone.0079282.t002
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Pathway Landscape of Genomic Alterations in CRC
Figure 5 depicts a pathway landscape for genomic alterations in

CRC, with alterations observed in different subtypes indicated by

different colors (red for subtype 1, green for subtype 2 and blue for

subtype 3). For genes in the landscape, the normalized values

indicating their somatic mutation and CNV status in individual

samples were visualized in the heat maps in Figure S8 in File S2.

From these figures, it is obvious that only a few genes (e.g. APC,

TP53, KRAS) were mutated in multiple samples, whereas most of

the genes were mutated in only one sample. Moreover, although

alterations in the Wnt signaling pathway were observed in samples

from all subtypes, other pathway alterations were clearly subtype-

specific. Thus, our transcriptional subtype-based network analysis

approach provides an effective means for deciphering complex

genomic alterations that cannot be easily interpreted at individual

gene level or without subtype stratification.

Discussion

Rapid advancement in high-throughput sequencing technolo-

gies has shifted our focus from data acquisition to data

interpretation. For cancer genomic studies, pinpointing the

genomic alterations underlying tumor initiation and progression

and determining their downstream functional effects are among

the most critical and challenging questions. In this study, we have

developed a novel transcriptional subtype-based network inference

strategy for deciphering genomic alterations. Many existing studies

performed pathway and/or network analysis in tumor cohorts

without considering transcriptional subtype classification [6,13].

They tend to identify signaling pathways or networks common to

all tumor samples and may fail to address the heterogeneity among

cancer subtypes. Some studies have associated known cancer genes

or cancer related pathways with subtypes [12,47]; however, they

are limited by the coverage and completeness of known cancer

genes and pathways. We inferred upstream driver signaling

subnetworks for different CRC subtypes. In addition to identifying

genes annotated in known cancer related pathways, these networks

provide novel subtype-specific candidates for future investigation.

Both the TCGA and our studies have identified three CRC

subtypes, and a moderate but statistically significant overlap

between two TCGA subtypes and our subtypes was observed

(Table 1). A careful comparison between the two classifications has

revealed some important information that could inform future

tumor subtype studies. (i) Subtype analysis can benefit from

increased sample size and improved gene selection methods. In the

TCGA classification, tumors in the same subtype demonstrated

somewhat inconsistent expression patterns even for the discovery

cohort (Supplementary Figure 2 in [13]). In contrast, consistent

expression patterns were found for tumors in the same subtype for

both the discovery and validation cohorts in our study (Figure 2),

which may be attributed to the large sample size (1173 samples in

our discovery cohort vs 220 samples in the TCGA study) and our

module-based gene selection method. (ii) Subtype characterization

requires associating the subtypes with clinical outcome and known

cancer biology. The TCGA study was limited by the lack of

survival data with enough follow up time for establishing clinical

relevance of the subtypes and according to our analysis, the

naming of the invasive subtype in the TCGA classification is

misleading. (iii) Subtype analysis can be strengthened by associ-

ating the subtypes with genomic data. The TCGA study linked

genomic features such as MSI/CIMP, hypermutation, and CIN

with the transcriptional subtypes, and we also found statistically

significant enrichment of CIMP-high tumors in our subtype 1.

These are interesting findings, however, it remains unclear how

these global genomic features drive downstream distinct expres-

sion patterns in different transcriptional subtypes. Our transcrip-

tional subtype-based signaling network analysis provides a more

direct means to link genomic alterations to subtype-specific gene

expression changes. The TCGA paper also identified frequently

altered signaling pathways in CRC, however, these alterations

were not associated with transcriptional subtypes.

Figure 5. Signaling pathways enriched with upstream driver subnetworks for three CRC subtypes. Wnt, VEFG and Notch signaling
pathways from KEGG were simplified. Genes with genomic alterations in subtype 1, 2 and 3 were colored with red, green and blue, separately. Genes
with genomic alterations in more than one subtype were given multiple colors.
doi:10.1371/journal.pone.0079282.g005
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Table 3 summarizes our findings of driver pathways, transcrip-

tional programs, biological processes and clinical outcomes

associated with each of the three subtypes. Taken together, they

provide a coherent and integrated picture of human CRC that

links genomic alterations to molecular and clinical consequences.

Not surprisingly, genomic alterations in the Wnt signaling pathway

were common among all three subtypes, consistent with its critical

role in CRC initiation. However, it is the combination of pathway

alterations that drove distinct molecular and clinical phenotypes in

different CRC subtypes. Activation of both Wnt and Notch in

subtypes 1 and 3 may lead to increased proliferation without

differentiation [42], which explains the similarity between the two

subtypes in the context of proliferation and differentiation

(Figure 3A, the top two blocks of genes) and the activation of

early colon embryonic development programs in these subtypes

(Figure 3B). For subtype 2, genomic alterations in the Notch

signaling pathway may keep the pathway in a less active status and

lead to cell cycle exit and cell differentiation [42]. Therefore,

alterations in the Notch signaling pathway may help subtype 2

maintain a transcriptional program similar to that of normal adult

colon (Figure 3B), and thus a favorable clinical outcome. On the

other hand, subtype 1 distinguishes itself from the other two

subtypes by the activation of the cell migration (Figure 3A, the

bottom block of genes) and EMT (Figure 3C) programs, which

may contribute directly to the poor clinical outcome of this

subtype and can be associated with genomic alterations in the

VEGF signaling pathway [32,43,44,45].

In addition to a more comprehensive understanding of human

CRC, our findings also provide guidance on possible personalized

therapeutic strategies for different subtypes. The poor outcome for

subtype 1 patients calls for an emphasis on the development of

efficient therapeutic strategies for this subtype, and targeting the

VEGF pathway or simultaneously targeting the VEGF and Notch

pathways seem like rational choices. Interestingly, clinical trials on

the anti-VEGF therapy for colorectal cancer patients have reached

inconsistent conclusions [48,49,50,51]. Our results strongly argue

for the integration of patient stratification into future trials. For

instance, subtype 1 patients may be more sensitive to the anti-

VEGF therapy because of the highly activated VEGF signaling,

whereas other patients might not benefit from this therapy. For

subtype 3 patients, Notch inhibitors might prove to be helpful.

Based on the higher observed 5-year survival rate for subtype 2,

these patients may not benefit as much from adjuvant chemo-

therapy after surgery in comparison to other subtypes. Genes in

the annotated pathways shown in Figure 5 may serve as candidates

for targeted treatment. In addition, genes in the networks shown in

Figure S6 in File S2 but not included in the annotated pathways,

may serve as novel candidates for targeting.

To test the possible targeted therapeutic strategies, we also tried

to identify cell line models for the subtype by applying our

classifier to CRC cell lines with publicly available gene expression

data. However, representative cell line models were not identified

for subtype 1 with the poor overall survial, possibly due to the lack

of highly expressed cell migration and blood vessel morphogenesis

signatures related to EMT program in CRC cell lines. We are

working on the development and use of xenograft models for this

subtype.
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