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ABSTRACT: STAT3 has emerged as a validated target in cancer, being functionally associated with breast
cancer (BC) development, growth, resistance to chemotherapy, metastasis, and evasion of immune
surveillance. Previously, a series of compounds consisting of imidazo[1,2-a]pyridine tethered 2-pyrazolines
(referred to as ITPs) were developed that inhibit STAT3 phosphorylation in estrogen receptor-positive (ER+)
BC cells. Herein, a new library of derivatives consisting of imidazo[1,2-a]pyridine clubbed 2-pyrazolines 2(a−
o) and its amide derivatives 3(a−af) have been synthesized. Among these derivatives, 3n and 3p displayed
efficacy to reduce ER+ BC cell viability, with IC50 values of 55 and 15 nM, respectively. Molecular docking
simulations predicted that compound 3p bound to STAT3 protein, with a binding energy of −9.56 kcal/mol.
Using Western blot analysis, it was demonstrated that treatment of ER+ BC cells with compound 3p decreased
the levels of phosphorylated STAT3 at the Tyr705 residue. In conclusion, this investigation presents the
synthesis of imidazopyridine clubbed 2-pyrazolines that exhibit significant efficacy in reducing viability of ER+
BC cells. In silico docking and Western blot analyses together support compound 3p as a promising novel
inhibitor of STAT3 phosphorylation, suggesting its potential as a valuable candidate for further therapeutic
development.

■ INTRODUCTION
Breast cancer (BC) ranks as the second leading cause of
cancer-related death.1 Treatment options for BC include
surgical removal, chemotherapy, radiotherapy, and/or hor-
mone therapy.2−4 Reports have indicated that targeted
therapeutics may effect dose reduction of traditional chemo-
therapy to reduce potential side effects.5,6 STAT (signal
transducer and activation of transcription) pathways exert
potent roles in cellular functions and disease progression, and
hence STATs may be designated as validated targets in
oncology.7 The STAT family comprises seven transcription
factors�STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b,
and STAT6.8 STAT proteins contain specific functional
domains including a terminal-NH2 domain, a linker domain,
a coiled-coil domain (CCD) that interacts with other proteins,
an Src (short for sarcoma) homology 2 (SH2) domain
(phosphorylation and dimerization), a DNA binding domain
(DBD), and a C-terminal transactivation domain (TAD).9,10

STAT3 has garnered significant attention due to its positive
association with development, growth, metastasis, chemo-
resistance, and immune evasion of cancer.11−13 Indeed,
numerous studies have documented the role of STAT3 in
breast cancer, pertaining to disease progression and resistance
to treatment.14,15 Activation of the STAT3 pathway occurs in
response to extracellular signals provided by cytokines (e.g.,
interleukins), growth factors (e.g., EGF, FGF), and hormones
(e.g., growth hormone, leptin).16 Upon binding to their

respective receptors, these ligands initiate the activation of
Janus (JAK) or other kinases, which, in turn, phosphorylate
specific tyrosine residues on the receptor cytoplasmic domain,
exposing docking site(s) for STAT3.17 The phosphorylation of
tyrosine 705 in STAT3 is required for activation of STAT3-
mediated transcription. Once phosphorylated, STAT3 disso-
ciates from the receptor/kinase complex, forming homodimers
or heterodimers.18,19 STAT3 dimers subsequently translocate
from the cytoplasm to the nucleus. Within the nucleus, STAT3
initiates the transcription of genes associated with cell
proliferation, survival, and motility.20

Heterocyclic molecules have gained interest due to their
various pharmacological characteristics.21−23 Pyrazolines, for
example, hold promise as versatile molecules in drug
development due to their pharmacological properties and
possible therapeutic use.24−27 Crizotinib (anticancer),28

muzolimine (antihypertensive),29 propyphenazone, ramifena-
zone (analgesic, antipyretic),30 and phenylbutazone (analge-
sic)31,32 are some of the pyrazole derivatives used clinically.
Similarly, imidazopyridines such as zolpidem,33 olprinone,34
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and zolimidine35 have been demonstrated to possess
anticancer activity (Figure 1).36−38 It has been reported that
imidazo[4,5-b]pyridine derivatives (1) reduce STAT3 activity
by targeting SHP-1.39 A novel and potent STAT3 inhibitor has
been identified as disubstituted imidazo[4,5-b]pyridine (2)
derivatives with R and S isomers. Additionally, the combina-
tion of 2 and gefitinib enhanced STAT3 inhibition.40 A well-
known pyrazole-containing drug (celecoxib) also suppresses
STAT3 phosphorylation with resultant cell-cycle arrest and
apoptosis of cancer cells.41 Pyrazole derivatives (3) were
reported to reduce STAT3 signaling in HGC cells in a dose-
dependent manner and promote apoptosis.42 Furthermore,
1,2,4-triazolo-[3,4-b]thiadiazine-clubbed pyrazoles (4) de-
crease phosphorylated STAT3 in cancer cells.43 Benzofuran
clubbed pyrazoles (5) also have been demonstrated to inhibit
proliferation of MDA-MB-468 cells. Western blot analysis
showed that compound 5 inhibited STAT3 (Tyr705)
phosohorylation whereas it did not affect phosphorylation of
STAT1 (Tyr701). Additionally, 5 induced significant G2/M
cycle-arrest and early apoptosis in MDA-MB-468 cells in a
concentration-dependent manner.44

In a previous report, we developed novel imidazo[1,2-
a]pyridine tethered pyrazolines (ITPs) (6) and demonstrated
their functional efficacy using human BC cells. Further
characterization showed that the lead compound 6 inhibited
STAT3 phosphorylation in estrogen receptor-positive (ER+)
BC cells, namely MCF-7 and T47D. Compound 6 could also
inhibit the nuclear translocation of STAT3 in MCF-7 and
T47D.45 We have previously synthesized pyrazoline-substi-
tuted piperazines and thiourea derivatives of pyrazolines.
Herein, to explore the structural diversity of ITPs, newer
pyrazolines and their amide derivatives 2(a−o) and 3(a−af)
have been synthesized and their efficacy examined using
determination of cell viability in MCF-7 cells. Among the
series, 3n and 3p with IC50 values of 55 and 15 nM,
respectively, exhibited more potent activity than other
derivatives. The lead compound 3p was predicted to bind to
STAT3 protein with a binding energy of −9.56 kcal/mol using
in silico analyses. Additionally, compound 3p inhibited the
phosphorylation of STAT3 (pSTAT3) in ER+ BC cells. This
study indicates that compound 3p and other derivatives exert
potent activity against ER+ BC cells.

Figure 1. Structural overview of molecules containing imidazo[1,2-a]pyridine (red), imidazo[4,5-b]pyridine (pink), pyrazole/pyrazoline (blue),
and aryl (purple) motifs as reported STAT3 inhibitors.
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■ RESULTS
Synthesis of Pyrazoline Derivatives. The synthesis and

pharmacological activities of imidazo[1,2-a]pyridin-2-ones as
inhibitors of phospholipase A2 has been previously reported.46

Furthermore, a new pyrazoline added imidazo[1,2-a]pyridine
structure was reported as an inhibitor of STAT3 phosphor-
ylation.45 In this report, as detailed in materials and methods,
pyrazolines and their amide derivatives have been synthesized
(Scheme 1) and evaluated for loss of cell viability in MCF-7
cells, and the results are tabulated in Tables 1 and 2.

Efficacy of Pyrazoline Derivatives in Breast Cancer
Cells. The newly synthesized pyrazolines were examined for
their effect on cell viability in MCF-7 cells (Tables 1 and 2).
Tamoxifen and doxorubicin were used as internal standards
and produced loss of viability of MCF-7 cells with IC50 values
of 1.75 and 0.73 μM, respectively (Figure 2). Among the series
of compounds, 3n and 3p produced loss of cell viability of
human breast cancer cells with IC50 values of 55 and 15 nM,
respectively. Hence, it was observed that the dimethoxy and
dichloro phenyl substituted compounds 3n and 3p are more
potent than other structures. The IC50 values of the other
derivatives lies between 3.65 and >100 μM (Supporting
Information). The lead compound 3p was also examined for
effects on cell viability in MCF10A cells (immortalized
mammary epithelial cells). In this cell line, compound 3p

Scheme 1. Synthesis of Imidazopyridine Tethered
Pyrazoline Derivativesa

aR1 = R2 = aryl, heteroaryl. Reaction conditions: (i) hydrazine hydrate
(1.5 mmol), EtOH, reflux, 8 h; (ii) substituted benzoyl chlorides (1.0
mmol), DCM, Et3N, 0−5 °C, 30 min.

Table 1. List of Newly Synthesized Pyrazoline Derivatives
2(a−o) and Their Effect on Cell Viability in MCF-7 Cells

entry R1 IC50 (μM)

2a 4-nitrophenyl 23.63
2b 2,3,4-trimethoxyphenyl 28.47
2c 4-chlorophenyl 32.77
2d 4-bromophenyl 28.86
2e 4-fluorophenyl >100
2f 3,4-dimethoxyphenyl 25.37
2g thiophene 12.02
2h 3-fluorophenyl 11.65
2i 4-methoxyphenyl >100
2j 4-methylphenyl 24.72
2k 3-hydroxy-4-methoxyphenyl 18.77
2l 2,4-dichlorophenyl 13.37
2m 3-hydroxyphenyl 13.49
2n 3-methoxyphenyl 20.98
2o phenyl >100
tamoxifen 1.75
doxorubicin 0.73

Table 2. List of Newly Synthesized Pyrazoline Amide
Derivatives 3(a−af) and Their Effect on Cell Viability in
MCF-7 Cells

entry R1 R2 IC50 (μM)

3a 2,3,4-trimethoxyphenyl 3-fluorophenyl >100
3b 4-chlorophenyl 3-fluorophenyl 39.46
3c 4-bromophenyl 3-fluorophenyl 4.44
3d 4-fluorophenyl 3-fluorophenyl 11.86
3e 4-fluorophenyl phenyl 89.41
3f 4-fluorophenyl 3-methoxyphenyl 95.30
3g 4-fluorophenyl 4-methoxyphenyl >100
3h 4-fluorophenyl 3,5-dinitrophenyl 57.76
3i 4-fluorophenyl 2-fluorophenyl >100
3j 3,4-dimethoxyphenyl 3-fluorophenyl 16.31
3k 3,4-dimethoxyphenyl phenyl 42.87
3l 3,4-dimethoxyphenyl 3,5-dinitrophenyl 47.06
3m 3,4-dimethoxyphenyl 3-methoxyphenyl >100
3n 3,4-dimethoxyphenyl 4-methoxyphenyl 0.055
3o 2,4-dichlorophenyl 3-fluorophenyl 5.72
3p 2,4-dichlorophenyl phenyl 0.015
3q 2,4-dichlorophenyl 3,5-dinitrophenyl >100
3r 2,4-dichlorophenyl 3-methoxyphenyl >100
3s 2,4-dichlorophenyl 2-fluorophenyl 7.48
3t 2,4-dichlorophenyl 4-methoxyphenyl >100
3u 4-nitrophenyl 3-fluorophenyl 76.93
3v 4-nitrophenyl phenyl 16.56
3w 4-nitrophenyl 2-fluorophenyl >100
3x 4-nitrophenyl 2,6-difluorophenyl >100
3y thiophene 3-fluorophenyl 43.94
3z 3-fluorophenyl 3-fluorophenyl 17.64
3aa 4-methoxyphenyl 3-fluorophenyl 17.67
3ab 4-methylphenyl 3-fluorophenyl 3.65
3ac 3-hydroxy-4-methoxyphenyl 3-fluorophenyl 24.18
3ad 3-hydroxyphenyl 3-fluorophenyl 47.14
3ae 3-methoxyphenyl 3-fluorophenyl 28.63
3af phenyl 3-fluorophenyl 11.71
tamoxifen 1.75
doxorubicin 0.73

Figure 2. IC50 curves for the active compounds 3n and 3p (green)
with tamoxifen and doxorubicin (red) as reference drugs against
MCF-7 cells.
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exhibited an IC50 of 125.1 μM, indicating that the compound is
potentially less effective in nononcogenically transformed cells.
In Silico Analysis of Compound 3p Targeting STAT3.

To determine the predicted binding affinity and the critical
interactions of compound 3p (R enantiomer) with the SH2
domain of STAT3 (PDB ID: 1BG1), in silico analysis was
performed using AutoDock4 tools. The binding energy of 3p
was calculated to be −9.56 kcal/mol compared with the
previously reported ITP compounds (Structure 6, Figure 1) of
−9.27 kcal/mol.45 The SH2 domain of STAT3 possesses three
pockets pY, pY+1, and pY−X. In silico docking analysis
revealed that compound 3p could potentially bind to the pY
binding pocket of the SH2 domain. The N of the
imidazopyridine ring formed two hydrogen bonds with Arg-
609 with a bond distance of 2.058 and 2.199 Å. Hydrophobic
interactions were observed with residue Lys-591, Arg-595, Ile-
634, Gln-635 (π-sigma), and Pro-639, which further enhanced
the stability of protein−ligand complex.(Figure 3)
Compound 3p Inhibited pStat3 Levels in MCF-7 and

T47D Cells. The activation of STAT3 requires phosphor-
ylation at sites in the SH2 domain and transactivation domain
at Tyr705.47 Compound 3p was therefore assessed for its
effects on pSTAT3-Tyr705 levels in MCF-7 and T47D cells
using Western blot analysis. It was observed that treatment of
these cells with compound 3p resulted in significantly
decreased levels of pSTAT3-Tyr705 compared to vehicle-
treated control cells (Figure 4). These findings are consistent
with the in silico prediction of compound 3p binding to
STAT3.
Live/Dead Cell Assay. The potential effect of compound

3p on cell survival was examined using a live/dead cell assay in
MCF-7 (Figure 5) and T47D cells (Figure 6). Upon treatment
with compound 3p, both MCF-7 and T47D cells exhibited a
dose-dependent increase in cell death. Furthermore, up to 80%
of MCF-7 cells were categorized as dead after treatment with
compound 3p at a 5 μM dose. Treatment of T47D cells with
compound 3p produced 60% cell death.

■ DISCUSSION
STAT3 is a validated target in oncology. Targeting the
STAT3-SH2 domain allows for the inhibition of phosphor-
ylation of Tyr705 of STAT3, which is required for STAT3-
related signaling in cancer cells.48 The SH2 domain of STAT3
contains three pockets, namely pY, pY+1, and pY−X.49 Tyr705
is located in the pY pocket of the SH2 domain.50,51 With this
consideration, the synthesis and efficacy of tetrahydropyridine-
pyrazoles as inhibitors of STAT3 phosphorylation was
previously reported.52 Furthermore, a novel azaspirane
structure was also previously reported as an inhibitor of the
JAK-STAT pathway in vivo.53 Later, imidazopyridine-tethered
pyrazolines (ITPs) that target pSTAT3 at Tyr706 and Ser727
in MCF-7 and T47D cells were developed.45 Pyrazole-based
hybrid structures were reported to be an inhibitor of STAT3
phosphorylation and these molecules were optimized via a
structure-based approach.54 Recently, pyrazole-based com-
pounds were also reported as anticancer agents that inhibited
STAT3-related pathways in BC cells.54−56 In the present work,
the aim was to synthesize novel pyrazolines that could
potentially target the SH2 domain of STAT3. The newly
synthesized 2-pyrazolines (3p and 3n) inhibited the viability of
MCF-7 cells in the nanomolar range. As predicted by in silico
analysis, compound 3p also inhibited the phosphorylation of
Tyr705 in MCF-7 and T47D cells. Compared to the previously

reported ITPs, compound 3p exhibited potent efficacy
associated with a higher binding energy toward STAT3 (in
silico data). Hence, the present study demonstrated that
compound 3p, identified in this report, provides a novel
chemical structure that may be further optimized to develop
STAT3 inhibitors for use in oncology.

■ MATERIALS AND METHODS
All chemicals and solvents for compound synthesis were
obtained from Sigma-Aldrich (Bangalore, India). The reactions
were monitored by precoated silica gel thin-layer chromatog-
raphy (TLC) plates. 1H and 13C NMR were recorded on an

Figure 3. (A) 3D surface view of docked compound 3p (pink) inside
the pY binding pocket of the SH2 domain of STAT3. (B) Cartoon
representation of 3p and hydrogen bonding interaction with Arg609.
(C) 3p showing detailed interactions with amino acids of the SH2
domain.
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Agilent NMR spectrophotometer (400 or 500 MHz). TMS
and DMSO or CDCl3 were used as an internal standard and
solvent, respectively, and chemical shifts were expressed as
ppm (Santa Clara, CA, USA). Bruker Daltonics equipment was
used to determine high-resolution mass spectra.
Synthesis of Compounds 3(a−af). As per our previous

report,45 four different chalcones 1(a−o) were synthesized.
Further, compounds 2(a−o) were synthesized by refluxing
chalcones and hydrazine hydrate in ethanol for 8 h. The
completion of the reaction was monitored by thin-layer
chromatography. Upon reaction completion, the solid reaction
mixture was filtered off, washed with water, dried, and used for
the next step without purification. To a stirred solution of
2(a−o) in DCM, triethylamine (2−3 drops) and various
substituted benzoyl chlorides were added and stirring was
further continued for 15 min at 0−5 °C. After the completion

of the reaction, the desired product from the reaction mixture
was obtained after solvent extraction (DCM:water), and
further purification was achieved by recrystallization using
ethyl acetate and hexane as solvent. The newly synthesized
molecules were characterized by melting point, NMR, and
mass spectrometry. The NMR and mass spectra are included in
the Supporting Information file.
Spectral Data. 2,6-Dimethyl-3-(5-(4-nitrophenyl)-4,5-di-

hydro-1H-pyrazol-3-yl)imidazo[1,2-a]pyridine (2a). Yellow
solid; MP: 152−154 °C; yield: 80%; 1H NMR (500 MHz,
CDCl3) δ 9.30 (s, 1H, Ar−H), 8.22 (d, J = 8.7 Hz, 2H, Ar−H),
7.61 (d, J = 8.7 Hz, 2H, Ar−H), 7.48 (d, J = 9.0 Hz, 1H, Ar−
H), 7.14 (dd, J = 9.0, 1.3 Hz, 1H, Ar−H), 6.06 (s, 1H, NH),
5.01 (t, J = 10.1 Hz, 1H, CH), 3.77 (dd, J = 15.9, 10.5 Hz, 1H,
CH2), 3.19 (dd, J = 15.9, 9.7 Hz, 1H, CH2), 2.57 (s, 3H, CH3),
2.38 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ 149.73,
147.67, 144.71, 129.22, 128.78, 128.58, 127.60, 127.35, 126.35,
124.27, 122.99, 115.60, 62.71 (CH), 44.52 (CH2), 18.58
(CH3), 16.14 (CH3); mass spectra: calculated for C18H17N5O2
= 335.3599; observed = 336.1850 [M + H]+.

2,6-Dimethyl-3-(5-(3,4,5-trimethoxyphenyl)-4,5-dihydro-
1H-pyrazol-3-yl)imidazo[1,2-a] pyridine (2b). White solid;
MP: 102−104 °C; yield: 82%; 1H NMR (400 MHz, CDCl3): δ
9.32 (s, 1H, Ar−H), 7.48 (d, J = 9.1 Hz, 1H, Ar−H), 7.13 (d, J
= 9.1 Hz, 1H, Ar−H), 6.67 (s, 2H, Ar−H), 5.98 (s, 1H, NH),
4.84 (t, J = 10.3 Hz, 1H, CH), 3.86 (s, 6H, (OCH3)2), 3.84 (s,
3H, OCH3), 3.70−3.64 (m, 1H, CH2), 3.20 (dd, J = 15.9, 10.4
Hz, 1H, CH2), 2.59 (s, 3H, CH3), 2.37 (s, 3H, CH3); 13C
NMR (100 MHz, CDCl3) δ 153.62, 145.23, 145.02, 144.90,
137.88, 137.54, 128.78, 126.31, 122.68, 115.61, 114.77, 103.44,
63.95 (CH), 60.96 (OCH3), 56.26 (OCH3), 44.67 (CH2),

Figure 4. Compound 3p inhibits STAT3 phosphorylation in MCF-7
and T47D cells in a concentration-dependent manner. MCF-7 and
T47D cells were treated for 24 h with the indicated concentrations of
3p at 0, 2.5, 5, and 10 μM. β-ACTIN was used as input control.

Figure 5. Live/dead cell assay in MCF-7 cancer cells. After treatment
with 3p (0, 1, 2.5, and 5 μM), the cells were stained with calcein AM
and EthD-1 for 30 min at 37 °C, and then the live/dead cells were
determined by fluorescence microscopy. Black region represents
percentage of live cells and gray region represents percentage of dead
cells.

Figure 6. Live/dead cell assay in T47D cells. After treatment with 3p
(0, 2.5, 5, and 10 μM), the cells were stained with calcein AM and
EthD-1 for 30 min at 37 °C, and then the live/dead cells were
determined by fluorescence microscopy. Black region represents
percentage of live cells and gray region represents percentage of dead
cells.
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18.59 (CH3), 16.24 (CH3); mass spectra: calculated for
C21H24N4O3 = 380.1848; observed = 381.1978 [M + H]+.

3-(5-(4-Chlorophenyl)-4,5-dihydro-1H-pyrazol-3-yl)-2,6-
dimethylimidazo[1,2-a]pyridine (2c). White solid; MP: 164−
166 °C; yield: 97%; 1H NMR (400 MHz, CDCl3): δ 9.31 (s,
1H, Ar−H), 7.48 (d, J = 9.0 Hz, 1H, Ar−H), 7.33 (q, J = 8.5
Hz, 4H, Ar−H), 7.13 (d, J = 9.0 Hz, 1H, Ar−H), 5.96 (s, 1H,
NH), 4.87 (t, J = 9.7 Hz, 1H, CH), 3.68 (dd, J = 15.9, 10.4 Hz,
1H, CH2), 3.19 (dd, J = 15.8, 9.1 Hz, 1H, CH2), 2.58 (s, 3H,
CH3), 2.37 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ
145.03, 144.91, 140.96, 133.70, 129.12, 128.91, 127.94, 126.35,
122.72, 115.61, 114.69, 62.71 (CH), 44.37 (CH2), 18.57
(CH3), 16.22 (CH3).

3-(5-(4-Bromophenyl)-4,5-dihydro-1H-pyrazol-3-yl)-2,6-
dimethylimidazo[1,2-a]pyridine (2d). Yellow solid; MP:
148−150 °C; yield: 97%; 1H NMR (400 MHz, CDCl3): δ
9.30 (s, 1H, Ar−H), 7.47 (dd, J = 8.8, 2.4 Hz, 3H, Ar−H),
7.29 (d, J = 8.3 Hz, 2H, Ar−H), 7.13 (d, J = 8.9 Hz, 1H, Ar−
H), 5.95 (s, 1H, NH), 4.86 (t, J = 9.7 Hz, 1H, CH), 3.69 (dd, J
= 15.8, 10.4 Hz, 1H, CH2), 3.19 (dd, J = 15.9, 9.1 Hz, 1H,
CH2), 2.58 (s, 3H, CH3), 2.37 (s, 3H, CH3); 13C NMR (100
MHz, CDCl3) δ 145.03, 144.89, 141.48, 132.07, 128.93,
128.29, 126.35, 122.73, 121.77, 120.75, 115.60, 62.75 (CH),
44.33 (CH2), 18.56 (CH3), 16.20 (CH3); mass spectra:
calculated for C18H17BrN4 = 368.0637; observed = 369.0789
[M + H]+.

3-(5-(4-Fluorophenyl)-4,5-dihydro-1H-pyrazol-3-yl)-2,6-
dimethylimidazo[1,2-a]pyridine (2e). Yellow solid; MP: 150−
152 °C; yield = 95%; 1H NMR (400 MHz, CDCl3): δ 9.31 (s,
1H, Ar−H), 7.47 (d, J = 9.0 Hz, 1H, Ar−H), 7.38 (dd, J = 8.4,
5.5 Hz, 2H, Ar−H), 7.13 (d, J = 9.1 Hz, 1H, Ar−H), 7.04 (t, J
= 8.6 Hz, 2H, Ar−H), 4.88 (t, J = 9.7 Hz, 1H, NH), 3.68 (dd, J
= 15.9, 10.2 Hz, 1H, CH2), 3.23−3.17 (m, 1H, CH2), 2.58 (s,
3H, CH3), 2.37 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ
163.43, 161.47, 145.06, 144.98, 144.92, 138.23, 128.88, 128.18,
126.35, 122.66, 115.64, 114.74, 62.74, 62.66 (CH), 44.41
(CH2), 18.56 (CH3), 16.22 (CH3); mass spectra: calculated
for C18H17FN4 = 308.1437; observed = 309.1589 [M + H]+.

3-(5-(3,4-Dimethoxyphenyl)-4,5-dihydro-1H-pyrazol-3-
yl)-2,6-dimethylimidazo[1,2-a]pyridine (2f). Yellow solid;
MP: 150−152 °C; yield = 90%; 1H NMR (400 MHz,
CDCl3): δ 9.32 (s, 1H, Ar−H), 7.47 (d, J = 9.1 Hz, 1H, Ar−
H), 7.12 (d, J = 9.1 Hz, 1H, Ar−H), 6.99 (d, J = 1.1 Hz, 1H,
Ar−H), 6.93 (d, J = 8.3 Hz, 1H, Ar−H), 6.83 (d, J = 8.2 Hz,
1H, Ar−H), 4.85 (t, J = 9.9 Hz, 1H, NH), 3.87 (s, 6H,
((OCH3)2), 3.65 (dd, J = 15.9, 10.2 Hz, 1H, CH), 3.21 (dd, J
= 15.8, 9.7 Hz, 1H, CH), 2.59 (s, 3H, CH3), 2.36 (s, 3H,
CH3); 13C NMR (100 MHz, CDCl3) δ 149.37, 148.80, 145.19,
144.98, 144.87, 134.80, 128.77, 126.34, 122.61, 118.84, 115.60,
114.85, 111.29, 109.42, 63.36 (CH), 56.06 (CH3), 56.02
(CH3), 44.47 (CH2), 18.55 (CH3), 16.22 (CH3); mass
spectra: calculated for C20H22N4O2 = 350.1743; observed =
351.1892 [M + H]+.

3-(5-(3-Fluorophenyl)-4,5-dihydro-1H-pyrazol-3-yl)-2,6-
dimethylimidazo[1,2-a]pyridine (2h). Brown solid; MP: 106−
108 °C: 1H NMR (400 MHz, DMSO-d6) δ 9.26 (s, 1H, Ar−
H), 8.98 (s, 1H, Ar−H), 7.52−7.39 (m, 2H, Ar−H), 7.21 (d, J
= 9.0 Hz, 1H, Ar−H), 6.87 (s, 2H, Ar−H), 6.79 (d, J = 8.0 Hz,
1H, NH), 4.69 (t, J = 10.2 Hz, 1H, CH), 3.62 (dd, J = 15.6,
10.5 Hz, 1H, CH2), 3.02 (dd, J = 15.5, 10.7 Hz, 1H, CH2),
2.50 (s, 3H, CH3), 2.34 (s, 3H, CH3); 13C NMR (100 MHz,
DMSO-d6) δ 147.39, 147.00, 144.32, 144.03, 143.07, 135.84,

128.41, 125.65, 122.38, 117.85, 115.83, 115.13, 114.33, 112.62,
62.76 (CH), 56.18 (CH2), 18.49 (CH3), 16.17 (CH3).

3-(5-(4-Methoxyphenyl)-4,5-dihydro-1H-pyrazol-3-yl)-2,6-
dimethylimidazo[1,2-a]pyridine (2i). Brown solid; MP: 108−
110 °C; yield: 75%; 1H NMR (400 MHz, DMSO-d6) δ 9.27 (s,
1H, Ar−H), 7.48 (d, J = 7.6 Hz, 2H, Ar−H), 7.36 (d, J = 6.4
Hz, 2H, Ar−H), 7.21 (d, J = 7.9 Hz, 1H, Ar−H), 6.92 (d, J =
6.4 Hz, 2H, Ar−H, NH), 4.77 (s, 1H, CH), 3.74 (s, 3H,
OCH3), 3.70−3.60 (m, 1H, CH2), 3.11−3.00 (m, 1H, CH2),
2.50 (s, 3H, CH3), 2.34 (s, 3H, CH3); 13C NMR (100 MHz,
DMSO-d6) δ 158.97, 144.36, 144.05, 143.26, 134.93, 128.46,
128.39, 125.66, 122.41, 115.82, 115.10, 114.25, 62.72 (CH),
55.55 (OCH3), 18.47 (CH3), 16.15 (CH3); mass spectra:
calculated for C19H20N4O = 321.1637; observed = 322.1646
[M + H]+.

3-(5-(4-Methoxyphenyl)-4,5-dihydro-1H-pyrazol-3-yl)-2,6-
dimethylimidazo[1,2-a]pyridine (2j). White solid; MP: 122−
124 °C; 1H NMR (400 MHz, DMSO-d6) δ 9.27 (s, 1H, Ar−
H), 7.48 (d, J = 9.1 Hz, 1H, Ar−H), 7.32 (d, J = 7.7 Hz, 2H,
Ar−H), 7.18 (dd, J = 18.7, 8.4 Hz, 3H, Ar−H), 4.78 (t, J =
10.6 Hz, 1H, CH), 3.67 (dd, J = 15.8, 10.4 Hz, 1H, CH2), 3.05
(dd, J = 15.7, 11.0 Hz, 1H, CH2), 2.50 (s, 3H, OCH3), 2.34 (s,
3H, CH3), 2.29 (s, 3H, CH3); 13C NMR (100 MHz, DMSO-
d6) δ 144.39, 144.06, 143.20, 140.10, 136.73, 129.40, 128.42,
127.16, 125.66, 122.39, 115.85, 115.08, 62.94 (CH), 43.67
(CH2), 21.16 (CH3), 18.48 (CH3), 16.18 (CH3).

5-(3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-4,5-dihy-
dro-1H-pyrazol-5-yl)-2-methoxyphenol (2k). Brown solid;
MP: 112−114 °C; yield: 97%; 1H NMR (400 MHz, DMSO-
d6) δ 9.26 (s, 1H, Ar−H), 9.00 (s, 1H, Ar−H), 7.49 (d, J = 9.0
Hz, 1H, Ar−H), 7.21 (d, J = 9.0 Hz, 1H, Ar−H), 6.87 (d, J =
6.9 Hz, 2H, Ar−H), 6.79 (d, J = 8.1 Hz, 1H, NH), 4.69 (t, J =
10.2 Hz, 1H, CH), 3.24 (s, 3H, OCH3), 3.62 (dd, J = 15.6,
10.5 Hz, 1H, CH2), 3.02 (dd, J = 15.5, 10.7 Hz, 1H, CH2),
2.50 (s, 3H, CH3), 2.34 (s, 3H, CH3); 13C NMR (100 MHz,
DMSO-d6) δ 147.38, 146.98, 144.32, 144.02, 143.08, 135.81,
128.44, 125.65, 122.40, 117.85, 115.82, 115.12, 114.31, 112.58,
62.76 (CH), 56.16 (OCH3), 43.74 (CH2), 18.49 (CH3), 16.16
(CH3).

3-(5-(2,4-Dichlorophenyl)-4,5-dihydro-1H-pyrazol-3-yl)-
2,6-dimethylimidazo[1,2-a]pyridine (2l). Yellow solid; MP:
136−138 °C; 1H NMR (400 MHz, DMSO-d6) δ 9.25 (s, 1H,
Ar−H), 7.64 (dd, J = 18.3, 6.4 Hz, 3H, Ar−H), 7.46 (dd, J =
13.2, 8.8 Hz, 2H, Ar−H), 7.21 (d, J = 9.0 Hz, 1H, NH), 5.08
(td, J = 10.3, 3.3 Hz, 1H, CH), 3.81 (dd, J = 16.0, 10.8 Hz, 1H,
CH2), 3.00 (dd, J = 16.0, 10.0 Hz, 1H, CH2), 2.48 (s, 3H,
CH3), 2.34 (s, 3H, CH3); 13C NMR (100 MHz, DMSO-d6) δ
144.68, 144.15, 143.00, 139.91, 133.34, 132.85, 129.83, 129.17,
128.60, 128.06, 125.67, 122.52, 115.83, 114.79, 59.28 (CH),
42.40 (CH2), 18.48 (CH3), 16.14 (CH3); mass spectra:
calculated for C18H16Cl2N4 = 358.0752; observed = 359.0888
[M + H]+.

3-(3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-4,5-dihy-
dro-1H-pyrazol-5-yl)phenol (2m). Yellow solid; MP: 156−
158 °C; 1H NMR (400 MHz, DMSO-d6): δ 9.41 (s, 1H, Ar−
OH), 9.27 (s, 1H, Ar−H), 7.48 (d, J = 9.3 Hz, 2H, Ar−H),
7.24−7.10 (m, 2H, Ar−H), 6.85 (d, J = 8.6 Hz, 1H, Ar−H),
6.67 (d, J = 7.3 Hz, 1H, NH), 4.74 (t, J = 10.1 Hz, 1H, CH),
3.67 (dd, J = 15.2, 10.9 Hz, 1H, CH2), 3.05 (dd, J = 15.0, 11.1
Hz, 1H, CH2), 2.50 (s, 3H, CH3), 2.34 (s, 3H, CH3); 13C
NMR (100 MHz, DMSO-d6) δ 157.94, 144.78, 144.38, 144.05,
143.08, 129.84, 128.43, 125.66, 122.39, 117.84, 115.83, 115.08,
114.62, 113.89, 63.06 (CH), 43.71 (CH2), 18.48 (CH3), 16.16
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(CH3); mass spectra: calculated for C18H18N4O = 306.1481;
observed = 307.1638 [M + H]+.

3-(5-(3-Methoxyphenyl)-4,5-dihydro-1H-pyrazol-3-yl)-2,6-
dimethylimidazo[1,2-a]pyridine (2n). White solid; MP: 106−
108 °C; yield: 77%; 1H NMR (500 MHz, CDCl3): δ 9.32 (s,
1H, Ar−H), 7.47 (d, J = 9.0 Hz, 1H, Ar−H), 7.28 (d, J = 8.0
Hz, 1H, Ar−H), 7.12 (dd, J = 9.1, 1.0 Hz, 1H, Ar−H), 6.98 (d,
J = 7.4 Hz, 2H, Ar−H), 6.84 (dd, J = 7.5, 1.9 Hz, 1H, Ar−H),
5.96 (s, 1H, NH), 4.87 (t, J = 9.6 Hz, 1H, CH), 3.80 (s, 3H,
OCH3), 3.68 (dd, J = 15.9, 10.5 Hz, 1H, CH2), 3.24 (dd, J =
15.8, 8.8 Hz, 1H, CH2), 2.58 (s, 3H, CH3), 2.37 (s, 3H, CH3);
13C NMR (100 MHz, CDCl3) δ 160.09, 145.05, 145.01,
144.91, 144.23, 130.07, 128.75, 126.38, 122.58, 118.76, 115.61,
114.83, 113.24, 112.07, 63.26 (CH), 55.37 (OCH3), 44.34
(CH2), 18.56 (CH3), 16.24 (CH3); mass spectra: calculated
for C19H20N4O = 320.1637; observed = 321.1789 [M + H]+.

(3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3,4,5-tri-
methoxyphenyl ) -4 ,5-d ihydro-1H-pyrazol -1-y l ) (3 -
fluorophenyl)methanone (3a). Brown solid; MP: 176−178
°C; yield: 92%; 1H NMR (400 MHz, CDCl3) δ 9.09 (s, 1H,
Ar−H), 7.77 (t, J = 9.0 Hz, 2H, Ar−H), 7.63 (d, J = 8.8 Hz,
1H, Ar−H), 7.47 (dt, J = 22.0, 6.9 Hz, 2H, Ar−H), 7.24 (s,
1H, Ar−H), 6.58 (s, 2H, Ar−H), 5.72 (dd, J = 11.6, 5.0 Hz,
1H, CH), 4.02 (dd, J = 17.2, 11.7 Hz, 1H, CH2), 3.86 (s, 6H,
OCH3), 3.84 (s, 3H, OCH3), 3.47 (dd, J = 17.2, 5.1 Hz, 1H,
CH2), 2.66 (s, 3H, CH3), 2.31 (s, 3H, CH3); 13C NMR (100
MHz, CDCl3) δ 165.13, 163.08, 161.13, 160.20, 147.94,
147.64, 145.30, 143.02, 137.24, 137.18, 130.38, 130.33, 129.58,
129.52, 126.77, 125.32, 117.88, 117.70, 116.71 (CH), 116.71,
116.52, 115.69, 113.57. 112.99, 111.90, 59.48, 59.48 (CH),
55.36 (OCH3), 44.32 (OCH3), 18.28 (CH3), 16.23 (CH3);
mass spectra: calculated for C28H27FN4O4 = 502.2016;
observed = 503.2769 [M + H]+.

(5-(4-Chlorophenyl)-3-(2,6-dimethylimidazo[1,2-a]-
pyridin-3-yl)-4,5-dihydro-1H-pyrazol-1-yl)(3-fluorophenyl)-
methanone (3b). White solid; MP: 115−120 °C; yield: 91%;
1H NMR (400 MHz, CDCl3): δ 9.12 (s, 1H, Ar−H), 7.92 (d, J
= 7.2 Hz, 1H, Ar−H), 7.86−7.69 (m, 4H, Ar−H), 7.47 (s, 2H,
Ar−H), 7.35 (d, J = 6.7 Hz, 3H, Ar−H), 5.78 (d, J = 7.6 Hz,
1H, CH), 4.10−3.97 (m, 1H, CH2), 3.43 (d, J = 14.3 Hz, 1H,
CH2), 2.68 (s, 3H, CH3), 2.32 (s, 3H, CH3); 13C NMR (100
MHz, CDCl3) δ 165.70, 145.87, 143.57, 135.78, 133.65,
133.22, 131.76, 130.06, 129.65, 129.07, 128.39, 127.19, 126.84,
126.74, 126.52, 125.79, 123.20, 114.30, 112.46, 56.03, 44.78,
17.32, 14.74; mass spectra: calculated for C25H20ClFN4O =
446.1300; observed = 447.1939 [M + H]+.

(5-(4-Bromophenyl)-3-(2,6-dimethylimidazo[1,2-a]-
pyridin-3-yl)-4,5-dihydro-1H-pyrazol-1-yl)(3-fluorophenyl)-
methanone (3c). White solid; MP: 146−148 °C; yield: 94%;
1H NMR (400 MHz, CDCl3) δ 9.09 (s, 1H, Ar−H), 7.91 (s,
1H, Ar−H), 7.84−7.66 (m, 4H, Ar−H), 7.52 (d, J = 8.0 Hz,
2H, Ar−H), 7.26 (s, 3H, Ar−H), 5.76 (d, J = 7.1 Hz, 1H, CH),
4.03 (d, J = 5.1 Hz, 1H, CH2), 3.43 (dd, J = 17.1, 4.2 Hz, 1H,
CH2), 2.67 (s, 3H, CH3), 2.31 (s, 3H, CH3); 13C NMR (100
MHz, CDCl3) δ 163.23, 161.32, 160.78, 147.34, 140.24,
136.82, 132.25, 130.65, 129.78, 129.53, 129.45, 127.56, 126.58,
125.19, 124.32, 121.96, 119.83, 119.63, 117.95, 117.74, 116.62,
116.39, 115.54, 59.06, 43.96, 18.16, 15.74; mass spectra:
calculated for C25H20BrFN4O = 491.3500; observed =
493.1526 [M + H]+.

(3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-(4-fluoro-
phenyl)-4,5-dihydro-1H-pyrazol-1-yl)(3-fluorophenyl)-

methanone (3d). Brown solid; MP: 116−118 °C; yield: 97%;
1H NMR (400 MHz, CDCl3): δ 9.09 (s, 1H, Ar−H), 7.91 (s,
1H, Ar−H), 7.75 (s, 4H, Ar−H), 7.44 (d, J = 15.6 Hz, 2H,
Ar−H), 7.37 (s, 3H, Ar−H), 5.79 (d, J = 5.6 Hz, 1H, CH),
4.07−4.00 (m, 1H, CH2), 3.44 (d, J = 14.8 Hz, 1H, CH2), 2.68
(s, 3H, CH3), 2.30 (s, 3H, CH3); 13C NMR (100 MHz,
CDCl3) δ 163.76, 163.57, 163.22, 161.31, 161.12, 147.37,
137.02, 136.85, 130.70, 129.85, 129.77, 129.52, 129.44, 127.62,
127.54, 126.58, 125.65, 125.16, 124.36, 119.85, 119.63, 117.90,
117.69, 116.60, 116.37, 116.12, 115.90, 115.47, 77.31, 76.99,
76.67, 58.91, 44.10, 18.15, 15.60; mass spectra: calculated for
C25H20F2N4O = 430.1605; observed = 431.2112 [M + H]+.

(3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-(4-fluoro-
phenyl)-4,5-dihydro-1H-pyrazol-1-yl)(phenyl)methanone
(3e). White solid; MP: 132−134 °C; yield = 90%; 1H NMR
(400 MHz, DMSO-d6): δ 8.95 (s, 1H, Ar−H), 7.88 (d, J = 7.0
Hz, 2H, Ar−H), 7.61−7.51 (m, 4H, Ar−H), 7.49−7.43 (m,
2H, Ar−H), 7.28 (d, J = 8.9 Hz, 1H, Ar−H), 7.20 (t, J = 8.7
Hz, 2H, Ar−H), 5.74 (dd, J = 11.6, 4.9 Hz, 1H, CH), 4.16 (dd,
J = 17.4, 11.8 Hz, 1H, CH2), 3.39−3.34 (m, 1H, CH2), 2.51 (s,
3H, CH3), 2.20 (s, 3H, CH3); 13C NMR (100 MHz, DMSO-
d6) δ 166.07, 163.09, 160.68, 148.69, 147.96, 145.07, 138.86,
135.82, 131.07, 129.88, 129.31, 128.32, 126.27, 123.38, 115.84,
113.41, 58.67, 44.16, 18.30, 16.34; mass spectra: calculated for
C25H21FN4O = 412.1669; observed = 413.1519 [M + H]+.

(3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-(4-fluoro-
phenyl)-4,5-dihydro-1H-pyrazol-1-yl)(3-methoxyphenyl)-
methanone (3f). Yellow solid; MP: 126−128 °C; yield = 96%;
1H NMR (400 MHz, DMSO-d6): δ 8.99 (s, 1H, Ar−H), 7.61−
7.17 (m, 9H, Ar−H), 5.74 (s, 1H, CH), 4.16 (s, 1H, CH2),
3.82 (s, 3H, OCH3), 3.39 (s, 1H, CH2), 2.53 (s, 3H, CH3),
2.21 (s, 3H, CH3); 13C NMR (100 MHz, DMSO-d6) δ 166.74,
163.10, 160.69, 148.24, 147.92, 144.83, 138.80, 137.80, 130.18,
129.54, 128.43, 126.34, 123.63, 121.53, 116.399, 115.83,
114.92, 113.51, 58.80 (CH), 55.67 (OCH3), 44.16 (CH2),
18.30 (CH3), 16.34 (CH3); mass spectra: calculated for
C26H23FN4O2 = 442.1805; observed = 443.2291 [M + H]+.

(3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-(4-fluoro-
phenyl)-4,5-dihydro-1H-pyrazol-1-yl)(4-methoxyphenyl)-
methanone (3g). Yellow solid; MP: 102−104 °C; Yield =
96%; 1H NMR (400 MHz, DMSO-d6): δ 9.07 (s, 1H, Ar−H),
7.92 (d, J = 7.8 Hz, 2H, Ar−H), 7.56 (d, J = 8.7 Hz, 1H, Ar−
H), 7.43 (s, 2H, Ar−H), 7.32 (d, J = 8.6 Hz, 1H, Ar−H), 7.20
(d, J = 7.9 Hz, 2H, Ar−H), 7.09 (d, J = 7.7 Hz, 2H, Ar−H),
5.72 (d, J = 7.2 Hz, 1H, CH), 4.22−4.09 (m, 1H, CH2), 3.85
(s, 3H, OCH3), 2.51 (d, J = 5.1 Hz, 3H, CH3), 2.27 (s, 3H,
CH3); 13C NMR (100 MHz, DMSO-d6) δ 165.56, 161.63,
148.60, 147.67, 145.06, 139.05, 131.56, 129.88, 128.51, 128.42,
127.62, 126.31, 123.40, 116.04, 116.01, 115.80, 113.53, 58.78
(CH), 55.86 (OCH3), 44.03 (CH2), 18.34 (CH3), 16.37
(CH3); mass spectra: calculated for C26H23FN4O2 = 442.1805;
observed = 443.2205 [M + H]+.

(3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-(4-fluoro-
phenyl)-4,5-dihydro-1H-pyrazol-1-yl)(3,5-dinitrophenyl)-
methanone (3h). Yellow solid; MP: 124−126 °C; Yield =
96%; 1H NMR1H NMR (400 MHz, DMSO-d6): δ 9.05 (d, J =
15.1 Hz, 3H, Ar−H), 8.78 (s, 1H, Ar−H), 7.59−7.50 (m, 3H,
Ar−H), 7.30 (d, J = 8.9 Hz, 1H, Ar−H), 7.21 (t, J = 8.6 Hz,
2H, Ar−H), 5.78 (dd, J = 11.2, 4.7 Hz, 1H, CH), 4.24 (dd, J =
17.3, 11.6 Hz, 1H, CH2), 3.47 (d, J = 4.8 Hz, 1H, CH2), 2.55
(s, 3H, CH3), 2.02 (s, 3H, CH3); 13C NMR (100 MHz,
DMSO-d6) δ 161.40, 160.82, 160.80, 150.15, 148.24, 138.19,
137.99, 130.38, 129.81, 128.84, 128.76, 125.89, 123.73, 120.93,
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116.22, 116.06, 115.85, 59.27, 44.56, 18.10, 16.66; mass
spectra: calculated for C25H19FN6O5 = 502.1401; observed =
503.1851 [M + H]+.

(3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-(4-fluoro-
phenyl)-4,5-dihydro-1H-pyrazol-1-yl)(2-fluorophenyl)-
methanone (3i). Orange solid; MP: 132−134 °C; yield =
95%; 1H NMR (400 MHz, DMSO-d6): δ 8.69 (s, 1H, Ar−H),
7.87 (t, J = 7.6 Hz, 1H, Ar−H), 7.61−7.56 (m, 1H, Ar−H),
7.53 (d, J = 9.0 Hz, 1H, Ar−H), 7.45 (s, 1H, Ar−H), 7.42 (d, J
= 5.2 Hz, 1H, Ar−H), 7.37 (d, J = 7.5 Hz, 1H, Ar−H), 7.28 (d,
J = 4.7 Hz, 1H, Ar−H), 7.23 (t, J = 8.8 Hz, 2H, Ar−H), 5.74
(dd, J = 11.6, 4.7 Hz, 1H, CH), 4.23 (dd, J = 17.5, 11.7 Hz,
1H, CH2), 3.43−3.37 (m, 1H, CH2), 2.50 (s, 3H, CH3), 2.13
(s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 165.48, 163.17,
162.55, 160.75, 157.52, 148.84, 148.46, 145.12, 138.31, 135.20,
135.11, 132.43, 132.35, 130.01, 129.88, 128.43, 128.35, 125.94,
125.45, 125.28, 125.05, 124.93, 123.49, 117.49, 117.27, 116.13,
116.04, 115.98, 115.92, 113.26, 58.37, 44.74, 18.28, 16.22;
mass spectra: calculated for C25H21FN4O = 430.1605;
observed = 431.2112 [M + H]+.

(5-(3,4-Dimethoxyphenyl)-3-(2,6-dimethylimidazo[1,2-a]-
pyridin-3-yl)-4,5-dihydro-1H-pyrazol-1-yl)(3-fluorophenyl)-
methanone (3j). Yellow solid; MP: 98−100 °C; yield: 97%;
1H NMR (500 MHz, CDCl3): δ 9.05 (s, 1H, Ar−H), 7.79−
7.65 (m, 2H, Ar−H), 7.53 (d, J = 9.0 Hz, 1H, Ar−H), 7.51−
7.37 (m, 1H, Ar−H), 7.30−7.14 (m, 2H, Ar−H), 6.89 (s, 2H,
Ar−H), 6.83 (d, J = 8.0 Hz, 1H, Ar−H), 5.71 (dd, J = 11.5, 4.7
Hz, 1H, CH), 3.98 (dd, J = 17.0, 11.5 Hz, 1H, CH2), 3.86 (s,
3H, OCH3), 3.84 (s, 3H, OCH3), 3.44 (dd, J = 17.0, 4.9 Hz,
1H, CH2), 2.61 (s, 3H, CH3), 2.26 (s, 3H, CH3); 13C NMR
(100 MHz, CDCl3) δ 165.17, 165.17, 163.08, 161.12, 149.44,
148.85, 148.19, 147.75, 145.47, 137.33, 137.27, 134.05, 130.18,
129.59, 129.53, 126.72, 125.27, 123.93, 117.84, 117.78, 117.68,
116.67, 116.49, 115.78, 111.75, 109.46, 59.37 (CH), 56.08
(OCH3), 56.03 (OCH3), 44.35 (CH2), 18.28 (CH3), 16.33
(CH3); mass spectra: calculated for C27H25FN4O3 = 472.1911;
observed = 473.2660 [M + H]+.

(5-(3,4-Dimethoxyphenyl)-3-(2,6-dimethylimidazo[1,2-a]-
pyridin-3-yl)-4,5-dihydro-1H-Pyrazol-1-yl)(phenyl)-
methanone (3k). Yellow solid; MP: 110−112 °C; yield = 92%;
1H NMR (400 MHz, CDCl3): δ 9.02 (s, 1H, Ar−H), 8.03 (d, J
= 5.7 Hz, 1H, Ar−H), 7.89 (s, 2H, Ar−H), 7.50 (s, 2H, Ar−
H), 7.43 (d, J = 6.6 Hz, 1H, Ar−H), 7.14 (d, J = 8.4 Hz, 1H),
6.85 (s, 2H, Ar−H), 6.79 (s, 1H, Ar−H), 5.67 (d, J = 7.4 Hz,
1H, CH), 3.90 (d, J = 12.5 Hz, 1H, CH2), 3.81 (s, 3H, OCH3),
3.79 (s, 3H, OCH3), 3.38 (d, J = 16.8 Hz, 1H, CH2), 2.56 (s,
3H, CH3), 2.18 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ
165.76, 148.30, 147.65, 146.42, 146.04, 144.06, 134.24, 133.16,
129.71, 128.83, 128.26, 126.74, 125.72, 122.73, 116.68, 114.49,
112.61, 110.64, 108.32, 58.19 (CH), 54.96 (OCH3), 54.93
(OCH3), 44.80 (CH2), 17.30 (CH3), 14.94 (CH3); mass
spectra: calculated for C27H26N4O3 = 454.2005; observed =
455.2375 [M + H]+.

(5-(3,4-Dimethoxyphenyl)-3-(2,6-dimethylimidazo[1,2-a]-
py r id in -3 - y l ) - 4 , 5 -d ihyd ro -1H-py razo l - 1 - y l ) ( 3 , 5 -
dinitrophenyl)methanone (3l). Brown solid; MP: 114−116
°C; yield = 88%; 1H NMR (400 MHz, CDCl3): δ 9.16 (s, 2H,
Ar−H), 8.76 (s, 1H, Ar−H), 7.47 (s, 1H, Ar−H), 7.19 (s, 2H,
Ar−H), 6.84 (d, J = 19.8 Hz, 3H, Ar−H), 5.68 (s, 1H, CH),
4.02 (d, J = 18.1 Hz, 1H, CH2), 3.84 (s, 3H, OCH3), 3.80 (s,
3H, OCH3), 3.49 (d, J = 18.0 Hz, 1H, CH2), 2.59 (s, 3H,
CH3), 2.03 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ
159.96, 148.90, 148.77, 148.07, 147.05, 144.93, 137.48, 132.00,

129.44, 128.82, 128.43, 124.93, 123.01, 119.31, 116.83, 115.12,
111.99, 110.68, 108.63, 58.67 (CH), 55.07 (OCH3), 54.94
(OCH3), 44.73 (CH2), 17.35 (CH3), 15.77 (CH3); mass
spectra: calculated for C27H24N6O7 = 544.1706; observed =
545.2237 [M + H]+.

(5-(3,4-Dimethoxyphenyl)-3-(2,6-dimethylimidazo[1,2-a]-
p y r i d i n - 3 - y l ) - 4 , 5 - d i h y d r o - 1 H - p y r a z o l - 1 - y l ) ( 3 -
methoxyphenyl)methanone (3m). Yellow solid; MP: 109−
111 °C; yield = 86%; 1H NMR (400 MHz, CDCl3): δ 9.13 (s,
1H, Ar−H), 7.53 (d, J = 21.5 Hz, 3H, Ar−H), 7.40 (s, 1H,
Ar−H), 7.21 (s, 1H, Ar−H), 7.08 (s, 1H, Ar−H), 6.92 (s, 2H,
Ar−H), 5.73 (s, 1H, CH), 3.97 (d, J = 15.6 Hz, 1H, CH2),
3.85 (s, 9H, (OCH3)3), 3.45 (d, J = 17.2 Hz, 1H, CH2), 2.62
(s, 3H, CH3), 2.27 (s, 3H, CH3); 13C NMR (100 MHz,
CDCl3) δ 165.47, 158.07, 148.33, 147.72, 145.57, 144.50,
142.79, 135.32, 132.95, 130.26, 127.80, 125.99, 123.78, 120.59,
116.64, 115.48, 113.88, 113.68, 112.86, 110.66, 108.30, 58.37
(CH), 54.98 (OCH3), 54.94 (OCH3), 54.31 (OCH3), 44.83
(CH2), 17.17 (CH3), 14.31 (CH3); mass spectra: calculated
for C28H28N4O4 = 484.2111; observed = 485.2244 [M + H]+.

(5-(3,4-Dimethoxyphenyl)-3-(2,6-dimethylimidazo[1,2-a]-
p y r i d i n - 3 - y l ) - 4 , 5 - d i h y d r o - 1 H - p y r a z o l - 1 - y l ) ( 4 -
methoxyphenyl)methanone (3n). Orange solid; MP: 142−
144 °C; yield = 92%; 1H NMR (400 MHz, CDCl3): δ 9.19 (s,
1H, Ar−H), 8.04 (s, 2H, Ar−H), 7.55 (d, J = 7.7 Hz, 1H, Ar−
H), 7.21 (d, J = 7.3 Hz, 1H, Ar−H), 6.99 (d, J = 6.4 Hz, 2H,
Ar−H), 6.91 (s, 2H, Ar−H), 6.86 (s, 1H, Ar−H), 5.74 (d, J =
7.2 Hz, 1H, CH), 3.96 (d, J = 12.3 Hz, 1H, CH2), 3.88 (s, 6H,
(OCH3)2), 3.85 (s, 3H, OCH3), 3.43 (d, J = 17.3 Hz, 1H,
CH2), 2.63 (s, 3H, CH3), 2.32 (s, 3H, CH3); 13C NMR (100
MHz, CDCl3) δ 164.23, 156.83, 147.09, 146.48, 144.33,
141.55, 134.08, 131.71, 129.02, 126.56, 124.75, 122.54, 119.35,
115.40, 114.24, 112.44, 111.62, 109.42, 107.06, 57.13 (CH),
53.74 (OCH3), 53.07 (OCH3), 43.58 (CH2), 15.93 (CH3),
13.07 (CH3); mass spectra: calculated for C28H28N4O4 =
484.2111; observed = 485.2517 [M + H]+.

(5-(2,4-Dichlorophenyl)-3-(2,6-dimethylimidazo[1,2-a]-
pyridin-3-yl)-4,5-dihydro-1H-pyrazol-1-yl)(3-fluorophenyl)-
methanone (3o). Yellow solid; MP: 138−140 °C; yield: 97%;
1H NMR (500 MHz, CDCl3): δ 9.06 (s, 1H, Ar−H), 7.81−
7.76 (m, 2H, Ar−H), 7.54 (d, J = 9.0 Hz, 1H, Ar−H), 7.50−
7.45 (m, 2H, Ar−H), 7.28−7.25 (m, 1H, Ar−H), 7.24−7.19
(m, 3H, Ar−H), 6.03 (dd, J = 11.8, 5.4 Hz, 1H, CH), 4.06 (dd,
J = 17.2, 11.8 Hz, 1H, CH2), 3.31 (dd, J = 17.2, 5.4 Hz, 1H,
CH2), 2.60 (s, 3H, CH3), 2.28 (s, 3H, CH3); 13C NMR (100
MHz, CDCl3) δ 165.14, 163.12, 161.16, 148.42, 147.82,
145.56, 136.78, 134.41, 132.89, 130.33, 130.21, 129.87, 129.71,
129.64, 127.89, 127.55, 126.71, 125.43, 124.06, 118.19, 118.02,
118.02, 116.81, 116.62, 115.85, 77.37, 77.11, 76.86, 57.15,
42.92, 18.30, 16.38; mass spectra: calculated for
C25H19Cl2FN4O = 480.0920; observed = 481.1536 [M + H]+.

(5-(2,4-Dichlorophenyl)-3-(2,6-dimethylimidazo[1,2-a]-
pyridin-3-yl)-4,5-dihydro-1H-pyrazol-1-yl)(phenyl)-
methanone (3p). Yellow solid; MP: 150−152 °C; yield =
95%; 1H NMR (400 MHz, DMSO) δ 8.94 (s, 1H, Ar−H),
7.93 (d, J = 7.0 Hz, 2H, Ar−H), 7.70 (s, 1H, Ar−H), 7.67−
7.50 (m, 4H, Ar−H), 7.41 (q, J = 8.3 Hz, 2H, Ar−H), 7.28 (d,
J = 8.9 Hz, 1H, Ar−H), 5.92 (dd, J = 11.6, 5.2 Hz, 1H, CH),
4.19 (dd, J = 17.1, 12.2 Hz, 1H, CH2), 2.50 (s, 3H, CH3), 2.20
(s, 3H, CH3); 13C NMR (100 MHz, DMSO-d6) δ 166.03,
148.91, 148.11, 145.14, 138.45, 135.42, 133.17, 132.66, 131.26,
129.93, 129.71, 129.62, 129.41, 128.42, 128.35, 126.25, 123.44,
116.01, 113.23, 56.77, 42.57, 18.31, 16.33; mass spectra:
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calculated for C25H20Cl2N4O = 462.1014; observed =
463.1502 [M + H]+.

(5-(2,4-Dichlorophenyl)-3-(2,6-dimethylimidazo[1,2-a]-
py r id in -3 - y l ) - 4 , 5 -d ihyd ro -1H-py razo l - 1 - y l ) ( 3 , 5 -
dinitrophenyl)methanone (3q). White solid; MP: 102−104
°C; yield = 96%; 1H NMR (400 MHz, CDCl3) δ 9.28 (s, 2H,
Ar−H), 9.23−9.18 (m, 2H, Ar−H), 8.83 (s, 1H, Ar−H), 7.52
(s, 2H, Ar−H), 7.24 (s, 1H, Ar−H), 6.08 (s, 1H, Ar−H), 4.11
(d, J = 33.3 Hz, 1H, CH), 3.43 (d, J = 16.8 Hz, 1H, CH2), 2.64
(s, 3H, CH3), 2.12 (s, 3H, CH3); 13C NMR (100 MHz,
CDCl3) δ 160.02, 148.70, 148.07, 147.39, 147.14, 144.45,
136.83, 134.75, 133.80, 131.86, 129.31, 128.87, 128.44, 126.98,
126.63, 124.94, 119.63, 114.88, 111.84, 56.47, 44.78, 17.38,
15.32; mass spectra: calculated for C25H18Cl2N6O5 =
552.0716; observed = 553.1284 [M + H]+.

(5-(2,4-Dichlorophenyl)-3-(2,6-dimethylimidazo[1,2-a]-
p y r i d i n - 3 - y l ) - 4 , 5 - d i h y d r o - 1 H - P y r a z o l - 1 - y l ) ( 3 -
methoxyphenyl)methanone (3r). Yellow solid; MP: 120−122
°C; yield = 92%; 1H NMR (400 MHz, CDCl3): δ 9.12 (s, 1H,
Ar−H), 7.64 (s, 1H, Ar−H), 7.59−7.46 (m, 3H, Ar−H), 7.43
(s, 1H, Ar−H), 7.26 (s, 1H, Ar−H), 7.23 (s, 2H, Ar−H), 7.11
(s, 1H, Ar−H), 6.06 (s, 1H, CH), 4.15−4.00 (m, 1H, CH2),
3.86 (s, 3H, CH3), 3.33−3.29 (m, 1H, CH2), 2.61 (s, 3H,
CH3), 2.28 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ
165.26, 158.08, 147.34, 146.31, 144.57, 135.95, 134.87, 133.13,
131.75, 129.01, 128.86, 127.80, 126.74, 126.41, 125.74, 122.60,
120.83, 115.77, 114.74, 113.79, 112.33, 55.97 (CH), 54.31
(OCH3), 44.82 (CH2), 17.17 (CH3), 15.34 (CH3); mass
spectra: calculated for C26H22Cl2N4O2 = 492.1120; observed =
493.0882 [M + H]+.

(5-(2,4-Dichlorophenyl)-3-(2,6-dimethylimidazo[1,2-a]-
pyridin-3-yl)-4,5-dihydro-1H-pyrazol-1-yl)(2-fluorophenyl)-
methanone (3s). White solid; MP: 140−142 °C; yield = 90%;
1H NMR (400 MHz, CDCl3): δ 8.82 (s, 1H, Ar−H), 7.63 (s,
1H, Ar−H), 7.49 (s, 3H, Ar−H), 7.32−7.24 (m, 4H, Ar−H),
7.17 (s, 1H, Ar−H), 6.05 (s, 1H, CH), 4.12−4.10 (m, 1H,
CH2), 3.32−3.28 (m, 1H, CH2), 2.58 (s, 3H, CH3), 2.19 (s,
3H, CH3); 13C NMR (100 MHz, CDCl3) δ 162.42, 159.25,
156.77, 145.40, 134.98, 133.55, 131.69, 131.24, 131.16, 129.09,
129.00, 126.95, 126.33, 126.01, 124.85, 123.57, 123.30, 114.60,
114.39, 113.17, 112.71, 55.65, 44.81, 17.35, 13.32; mass
spectra: calculated for C25H19Cl2FN4O = 480.0920; observed
= 481.1446 [M + H]+.

(5-(2,4-Dichlorophenyl)-3-(2,6-dimethylimidazo[1,2-a]-
p y r i d i n - 3 - y l ) - 4 , 5 - d i h y d r o - 1 H - p y r a z o l - 1 - y l ) ( 4 -
methoxyphenyl)methanone (3t). Yellow solid; MP: 110−112
°C; yield = 92%; 1H NMR (400 MHz, CDCl3): δ 9.18 (s, 1H,
Ar−H), 8.09 (s, 3H, Ar−H), 7.54 (s, 1H, Ar−H), 7.47 (s, 1H,
Ar−H), 7.27 (s, 1H, Ar−H), 7.00 (s, 3H, Ar−H), 6.05 (s, 1H,
CH), 4.05 (t, J = 13.4 Hz, 1H, CH2), 3.90 (s, 3H, OCH3), 3.30
(d, J = 17.6 Hz, 1H, CH2), 2.61 (s, 3H, CH3), 2.33 (s, 3H,
CH3); 13C NMR (100 MHz, CDCl3) δ 165.00, 163.55, 161.27,
160.88, 147.13, 146.00, 136.16, 133.04, 131.80, 130.70, 128.97,
128.78, 126.69, 125.63, 122.45, 120.21, 114.77, 113.11, 112.01,
56.10 (CH), 54.41 (OCH3), 44.59 (CH2), 17.40 (CH3), 15.27
(CH3); mass spectra: calculated for C26H22Cl2N4O2 =
492.1120; observed = 493.1617 [M + H]+.

(3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-(4-nitro-
phenyl)-1H-pyrazol-1-yl)(3-fluorophenyl)methanone (3u).
White solid; MP: 198−200 °C; yield: 97%; 1H NMR (400
MHz, CDCl3): δ 9.08 (s, 1H, Ar−H), 8.25 (d, J = 8.7 Hz, 2H,
Ar−H), 7.77 (d, J = 8.2 Hz, 2H, Ar−H), 7.55 (dd, J = 8.7, 4.8
Hz, 3H, Ar−H), 7.47 (dd, J = 7.9, 5.7 Hz, 1H, Ar−H), 7.24 (d,

J = 9.1 Hz, 2H, Ar−H), 5.85 (dd, J = 11.7, 5.2 Hz, 1H, CH),
4.09 (dd, J = 17.2, 11.8 Hz, 1H, CH2), 3.42 (dd, J = 17.2, 5.2
Hz, 1H, CH2), 2.61 (s, 3H, CH3), 2.30 (s, 3H, CH3); 13C
NMR (100 MHz, CDCl3) δ 149.73, 147.67, 144.71, 132.84,
129.22, 128.78, 128.58, 127.60, 127.40, 127.35, 126.68, 126.35,
126.29, 124.51, 124.39, 124.27, 123.98, 122.99, 116.02, 115.60,
77.35, 77.10, 76.84, 62.71, 44.52, 18.58, 16.14; mass spectra:
calculated for C25H18FN5O3 = 455.1394; observed = 456.2601
[M + H]+.

(3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-(4-nitro-
phenyl)-4,5-dihydro-1H-pyrazol-1-yl)(phenyl)methanone
(3v). White solid; MP: 128−130 °C; yield = 90%; 1H NMR
(400 MHz, CDCl3): δ 9.07 (s, 1H, Ar−H), 8.23 (d, J = 8.6 Hz,
2H, Ar−H), 7.98 (d, J = 7.1 Hz, 2H, Ar−H), 7.60−7.46 (m,
6H, Ar−H), 7.23−7.16 (m, 1H, Ar−H), 5.85 (dd, J = 11.7, 5.3
Hz, 1H, CH), 4.11−4.02 (m, 1H, CH2), 3.40 (dd, J = 17.2, 5.3
Hz, 1H, CH2), 2.60 (s, 3H, CH3), 2.26 (s, 3H, CH3); 13C
NMR (100 MHz, DMSO-d6) δ 166.13, 149.95, 148.87, 147.98,
147.27, 145.12, 135.45, 131.25, 129.95, 129.40, 128.34, 127.83,
126.25, 124.48, 123.44, 115.97, 113.25, 46.02, 43.75, 18.28,
16.33; mass spectra: calculated for C25H21N5O3 = 439.1644;
observed = 440.1452 [M + H]+.

(3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-(4-nitro-
phenyl)-4,5-dihydro-1H-pyrazol-1-yl)(2-fluorophenyl)-
methanone (3w). Yellow solid; MP: 144−146 °C; yield =
95%; 1H NMR (400 MHz, CDCl3): δ 8.86 (s, 1H, Ar−H),
8.27 (d, J = 8.6 Hz, 2H, Ar−H), 7.67−7.48 (m, 6H, Ar−H),
7.31 (d, J = 7.5 Hz, 1H, Ar−H), 7.22 (d, J = 9.2 Hz, 1H, Ar−
H), 5.86 (dd, J = 11.8, 5.0 Hz, 1H, CH), 4.13 (dd, J = 17.1,
11.9 Hz, 1H, CH2), 3.41 (dd, J = 17.2, 5.0 Hz, 1H, CH2), 2.63
(s, 3H, CH3), 2.21 (s, 3H, CH3); 13C NMR (100 MHz,
CDCl3) δ 166.67, 148.57, 148.36, 147.52, 146.78, 145.64,
134.52, 131.08, 129.93, 129.37, 127.80, 126.84, 126.66, 124.42,
123.61, 115.81, 113.20, 77.33, 77.01, 76.70, 59.00, 43.80,
18.30, 16.36; mass spectra: calculated for C25H20FN5O3 =
457.1550; observed = 458.1274 [M + H]+.

(2,6-Difluorophenyl)(3-(2,6-dimethylimidazo[1,2-a]-
pyridin-3-yl)-5-(4-nitrophenyl)-4,5-dihydro-1H-pyrazol-1-yl)-
methanone (3x). Yellow solid; MP: 126−128 °C; yield = 90%;
1H NMR (400 MHz, CDCl3): δ 8.74 (s, 1H, Ar−H), 8.27 (d, J
= 8.6 Hz, 2H, Ar−H), 7.65 (d, J = 9.0 Hz, 1H, Ar−H), 7.57 (d,
J = 8.6 Hz, 2H, Ar−H), 7.54−7.44 (m, 1H, Ar−H), 7.28 (d, J
= 9.1 Hz, 1H, Ar−H), 7.06 (d, J = 8.6 Hz, 2H, Ar−H), 5.88
(dd, J = 11.7, 4.7 Hz, 1H, CH), 4.23−4.11 (m, 1H, CH2), 3.42
(dd, J = 17.2, 4.8 Hz, 1H, CH2), 2.63 (s, 3H, CH3), 2.17 (s,
3H, CH3); 13C NMR (101 MHz, cdcl3) δ 173.18, 149.96,
148.64, 147.58, 146.05, 143.87, 138.53, 132.10, 129.86, 128.73,
125.92, 125.55, 123.73, 122.69, 120.75, 116.29, 112.82, 61.22,
44.57, 18.81, 16.72.

(3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-(thiophen-
2-yl)-4,5-dihydro-1H-pyrazol-1-yl)(3-fluorophenyl)-
methanone (3y). Brown solid; MP: 122−124 °C; yield: 93%;
1H NMR (500 MHz, CDCl3): δ 9.02 (s, 1H, Ar−H), 7.88 (d, J
= 7.0 Hz, 1H, Ar−H), 7.82−7.63 (m, 3H, Ar−H), 7.64 (d, J =
7.1 Hz, 1H, Ar−H), 7.50−7.36 (m, 2H, Ar−H), 7.15 (s, 1H,
Ar−H), 6.96 (s, 1H, Ar−H), 6.11 (d, J = 7.8 Hz, 1H, CH),
3.97 (dd, J = 16.5, 11.6 Hz, 1H, CH2), 3.61 (d, J = 17.0 Hz,
1H, CH2), 2.66 (s, 3H, CH3), 2.26 (s, 3H, CH3); 13C NMR
(100 MHz, CDCl3) δ 165.31, 163.08, 161.66, 147.63, 147.48,
145.13, 143.68, 137.03, 136.97, 133.68, 130.66, 129.96, 129.90,
129.61, 129.55, 127.12, 126.73, 125.66, 125.44, 125.30, 125.05,
124.31, 119.84, 119.67, 118.00, 117.83, 116.88, 116.70, 116.52,
115.59, 113.47, 55.00, 43.97, 18.28, 15.93; mass spectra:
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calculated for C23H19FN4OS = 418.1300; observed = 419.1908
[M + H]+.

(3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-fluoro-
phenyl)-4,5-dihydro-1H-pyrazol-1-yl)(3-fluorophenyl)-
methanone (3z). Yellow solid; MP: 126−128 °C; yield: 97%;
1H NMR (400 MHz, CDCl3): δ 9.10 (s, 1H, Ar−H), 7.90 (s,
1H, Ar−H), 7.75 (s, 4H, Ar−H), 7.46 (s, 2H, Ar−H), 7.42 (s,
1H, Ar−H), 7.37 (s, 2H, Ar−H), 5.80 (d, J = 5.6 Hz, 1H, CH),
4.07−4.00 (m, 1H, CH2), 3.46−3.42 (m, 1H, CH2), 2.68 (s,
3H, CH3), 2.30 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ
163.76, 163.57, 163.22, 161.31, 147.37, 137.01, 136.85, 130.69,
129.85, 129.77, 129.51, 129.43, 129.62, 127.63, 127.54, 126.58,
125.64, 125.16, 124.36, 119.84, 199.63, 117.90, 117.69, 116.60,
116.37, 116.12, 115.90, 115.47, 58.91, 44.10, 18.15, 15.60;
mass spectra: calculated for C25H20F2N4O = 430.1605;
observed = 431.1404 [M + H]+.

(3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-Yl)-5-(4-methox-
yphenyl)-4,5-dihydro-1H-pyrazol-1-Yl)(3-fluorophenyl)-
methanone (3aa). Yellow solid; MP: 106−108 °C; yield:
97%; 1H NMR (500 MHz, CDCl3): δ 9.07 (s, 1H, Ar−H),
7.79−7.65 (m, 2H, Ar−H), 7.55 (d, J = 9.5 Hz, 1H, Ar−H),
7.51−7.36 (m, 1H, Ar−H), 7.29 (d, J = 8.5 Hz, 2H, Ar−H),
7.27−7.15 (m, 2H, Ar−H), 6.88 (d, J = 8.5 Hz, 2H, Ar−H),
5.72 (dd, J = 11.5, 5.0 Hz, 1H, CH), 3.98 (dd, J = 17.0, 11.5
Hz, 1H, CH2), 3.77 (s, 3H, OCH3), 3.43 (dd, J = 17.0, 4.5 Hz,
1H, CH2), 2.61 (s, 3H, CH3), 2.27 (s, 3H, CH3); 13C NMR
(100 MHz, CDCl3) δ 165.06, 163.07, 161.11, 159.38, 147.91,
147.66, 145.30, 137.36, 133.59, 130.29, 129.54, 129.48, 127.21,
126.75, 125.30, 124.02, 117.79, 117.63, 116.70, 116.52, 115.73,
114.54, 113.76, 113.63, 59.07 (CH), 55.40 (OCH3), 44.27
(CH2), 18.29 (CH3), 16.26 (CH3); mass spectra: calculated
for C26H23FN4O2 = 442.1805; observed = 443.1560 [M + H]+.

(3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-(p-tolyl)-
4,5-dihydro-1H-pyrazol-1-yl)(3-fluorophenyl)methanone
(3ab). Yellow solid; MP: 118−120 °C; yield: 97%; 1H NMR
(500 MHz, CDCl3) δ 9.07 (s, 1H, Ar−H), 7.73 (t, J = 9.3 Hz,
2H, Ar−H), 7.53 (d, J = 9.0 Hz, 1H, Ar−H), 7.43 (td, J = 8.0,
5.7 Hz, 1H, Ar−H), 7.26 (s, 1H, Ar−H), 7.24 (s, 1H, Ar−H),
7.20 (dd, J = 8.9, 1.5 Hz, 2H, Ar−H), 7.16 (d, J = 8.0 Hz, 2H,
Ar−H), 5.73 (dd, J = 11.6, 4.8 Hz, 1H, CH), 3.98 (dd, J =
17.1, 11.6 Hz, 1H, CH2), 3.42 (dd, J = 17.1, 4.8 Hz, 1H, CH2),
2.60 (s, 3H, CH3), 2.31 (s, 3H, CH3), 2.27 (s, 3H, CH3); 13C
NMR (100 MHz, CDCl3) δ 165.05, 163.07, 161.12, 148.10,
147.71, 145.42, 138.54, 137.87, 137.36, 137.30, 130.19, 129.86,
129.54, 129.47, 126.75, 125.79, 125.31, 123.94, 117.79, 117.62,
116.71, 116.52, 115.76, 59.37, 44.36, 21.23 (CH3), 18.29
(CH3), 16.30 (CH3); mass spectra: calculated for
C26H23FN4O: 426.1856, observed: 428.2122 [M+2H]+.

(3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-hydroxy-
4-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl)(3-
fluorophenyl)methanone (3ac). Yellow solid; MP: 146−148
°C; yield: 98%; 1H NMR (500 MHz, CDCl3): δ 9.02 (s, 1H,
Ar−H), 8.01−7.78 (m, 1H, Ar−H), 7.80−7.68 (m, 2H, Ar−
H), 7.57−7.38 (m, 3H, Ar−H), 7.29 (s, 1H, Ar−H), 7.34−
7.10 (m, 2H, Ar−H), 5.73 (dd, J = 11.5, 4.5 Hz, 1H, CH), 3.97
(dd, 17.0, 12.0 Hz, 1H, CH2), 3.82 (s, 3H, OCH3), 3.44 (s,
1H, CH2), 2.60 (s, 3H, CH3), 2.25 (s, 3H, CH3); 13C NMR
(100 MHz, CDCl3) δ 165.12, 163.07, 161.65, 161.11, 151.04,
147.79, 140.18, 134.09, 130.30, 130.24, 130.13, 129.56, 129.51,
129.45, 126.73, 126.17, 125.37, 125.02, 123.87, 120.82, 120.65,
117.89, 117.74, 115.80, 115.71, 112.96, 111.61, 111.05, 58.85
(CH), 56.15 (OCH3), 44.09 (CH2), 18.27 (CH3), 16.42

(CH3); mass spectra: calculated for C26H23FN4O3 = 458.1800;
observed = 459.2380 [M + H]+.

(3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-hydroxy-
phenyl)-4,5-dihydro-1H-pyrazol-1-yl)(3-fluorophenyl)-
methanone (3ad). White solid; MP: 98−100 °C; yield: 98%;
1H NMR (500 MHz, CDCl3): δ 9.18 (s, 1H, Ar−H), 8.04−
7.88 (m, 2H, Ar−H), 7.81 (d, J = 9 Hz, 1H, Ar−H), 7.75−7.59
(m, 2H, Ar−H), 7.54 (d, J = 8.0 Hz, 1H, Ar−H), 7.53−7.40
(m, 2H, Ar−H), 7.28 (d, J = 9.0 Hz, 1H, Ar−H), 5.83 (dd, J =
11.5, 5.5 Hz, 1H, CH), 4.06 (dd, J = 15.5, 11.0 Hz, 1H, CH2),
3.49 (dd, J = 17.0, 5.0 Hz, 1H, CH2), 2.76 (s, 3H, CH3), 2.31
(s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ 163.99, 163.09,
161.67, 161.13, 145.89, 142.41, 136.57, 136.51, 134.66, 130.46,
130.40, 129.92, 129.86, 127.69, 127.36, 126.04, 125.27, 123.61,
121.75, 121.09, 120.92, 119.19, 118.37, 118.20, 117.21, 117.03,
116.58, 116.39, 113.47, 59.61, 43.93, 18.34, 13.46; mass
spectra: calculated for C26H23FN4O3 = 428.1649; observed =
429.1454 [M + H]+.

(3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-methox-
yphenyl)-4,5-dihydro-1H-pyrazol-1-yl)(3-fluorophenyl)-
methanone (3ae). Yellow solid; MP: 98−100 °C; yield: 97%;
1H NMR (500 MHz, CDCl3): δ 9.07 (s, 1H, Ar−H), 7.80−
7.67 (m, 2H, Ar−H), 7.54 (d, J = 9.0 Hz, 1H, Ar−H), 7.52−
7.37 (m, 1H, Ar−H), 7.35−7.21 (m, 1H, Ar−H), 7.27−7.15
(m, 2H, Ar−H), 6.94 (d, J = 8.0 Hz, 1H, Ar−H), 6.88 (s, 1H,
Ar−H), 6.88−6.76 (m, 1H, Ar−H), 5.73 (dd, J = 11.5, 4.5 Hz,
1H, CH), 3.99 (dd, J = 17.0, 11.5 Hz, 1H, CH2), 3.78 (s, 3H,
OCH3), 3.42 (dd, J = 17.0, 5.0 Hz, 1H, CH2), 2.60 (s, 3H,
CH3), 2.27 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ
165.13, 163.09, 161.13, 160.20, 147.94, 147.64, 145.30, 143.03,
137.24, 137.18, 130.39, 130.33, 129.58, 129.52, 126.77, 125.32,
124.05, 117.89, 117.70, 116.71, 116.53, 115.69, 113.58, 113.00,
111.90, 59.49 (CH), 55.36 (OCH3), 44.33 (CH2), 18.29
(CH3), 16.24 (CH3); mass spectra: calculated for
C26H23FN4O2 = 442.1800; observed = 443.2464 [M + H]+.

(3-(2,6-Dimethylimidazo[1,2-a]pyridin-3-yl)-5-phenyl-4,5-
dihydro-1H-pyrazol-1-yl)(3-fluorophenyl)methanone (3af).
Yellow solid; MP: 108−110 °C; yield: 97%; 1H NMR (500
MHz, CDCl3): δ 9.08 (s, 1H, Ar−H), 7.81−7.67 (m, 2H, Ar−
H), 7.53 (d, J = 9.0 Hz, 1H, Ar−H), 7.49−7.37 (m, 1H, Ar−
H), 7.41−7.31 (d, J = 4.4 Hz, 4H, Ar−H), 7.29 (d, J = 4.4 Hz,
1H, Ar−H), 7.23−7.21 (m, 1H, Ar−H), 7.20 (s, 1H, Ar−H),
5.77 (dd, J = 11.6, 4.8 Hz, 1H, CH), 4.01 (dd, J = 17.1, 11.7
Hz, 1H, CH2), 3.44 (dd, J = 17.1, 4.9 Hz, 1H, CH2), 2.60 (s,
3H, CH3), 2.27 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ
165.09, 163.08, 161.13, 148.25, 147.71, 145.52, 141.44, 137.28,
137.23, 130.15, 129.56, 129.50, 129.22, 128.11, 126.74, 125.84,
125.33, 123.91, 117.84, 117.68, 116.73, 116.55, 115.81, 113.56,
59.56, 44.34, 18.29, 16.37; mass spectra: calculated for
C25H21FN4O = 412.1700; observed = 413.2194 [M + H]+.
Cell Lines and Cell Viability Assay. The cell viability

assay was performed using AlamarBlue (Invitrogen, DAL1025,
US). Briefly, 2 × 103 MCF-7 cells were seeded in 96-well plates
and treated with 10-fold serial diluted concentrations of the
compounds (0.001, 0.01, 0.1, 1.0, 10.0, and 100.0 μM) or
control medium RPMI 1640 (Gibco,11875093, US) supple-
mented with 2% FBS (cell-box, CF-01S-02, China) maintained
at 37 °C in a humidified 5% CO2 incubator for 72 h,
respectively. After treatment, cells were washed with phosphate
buffered saline (PBS) and incubated for 4 h in 0.2 mL of 10%
AlamarBlue solution at 37 °C in 5% CO in an incubator. Next,
fluorescence was determined at an excitation wavelength of
575 nm and an emission wavelength of 595 nm using a Tecan
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microplate reader. The viability of cells cultured in the
presence of the assessed compounds was calculated as a
percentage of the control cells, and the IC50 values were
obtained from dose−response curves. All experiments were
performed with triplicate determinations, and the IC502 was
calculated using GraphPad Software 10.0 (GraphPad Inc., San
Diego, CA, USA).
Molecular Docking. Molecular docking simulation was

performed using AutoDock4 tools.57 Initially, the crystal
structure of STAT3 (PDB ID: 1BG1) was retrieved from the
Protein Data Bank. The protein structure was prepared by
removing water molecules and heteroatoms. Hydrogen atoms
were added by using BIOVIA Discovery Studio software.58

Later, ligand preparation was performed and the three-
dimensional structure of 3p was generated and optimized
using suitable software. Ligand was assigned partial charges
and saved in PDBQT format. AutoDock4 tools were employed
to perform molecular docking simulations. The grid box was
generated for 3p with grid dimensions of 40 Å × 40 Å × 40 Å
and a spacing of 0.453 Å. The Lamarckian Genetic Algorithm
(LGA) was used to search for favorable binding modes of 3p
within the STAT3. The number of genetic algorithm runs was
set to 10, and other parameters were kept at default settings.
Later, the docking results were visualized using AutoDock,
Discovery Studio, and UCSF Chimera.59

Western Blot Analysis. Briefly, cells were lysed in RIPA
buffer and proteins in the cell lysate were resolved using SDS
polyacrylamide gel electrophoresis, the proteins were trans-
ferred on a PVDF membrane following electrophoresis,
blocked with 5% BSA blocking buffer (5g BSA in 50 ML
TBST), and probed with different antibodies (1:1000)
overnight at 4 °C. After a 1 h exposure to horseradish
peroxidase (HRP)-conjugated secondary antibodies, the blot
was washed and analyzed using chemiluminescence, and
visualized by ChemiDoc Touch (BIO-RAD, USA) with Clarity
and Clarity Max Western ECL Blotting Substrates (BIO-RAD,
USA). The primary antibodies used are tabulated as below.
The secondary antirabbit, antimouse, and antigoat horseradish
peroxidase (HRP)-conjugated antibodies were obtained from
Cell Signaling Technology (MA USA).
Live/Dead Cells Assay. Live/dead cells visualization was

performed as per manufacturer’s instructions using LIVE/
DEAD Cell Imaging Kit (Thermo Fisher Scientific, USA), IF
analyses were performed as previously described60 using
confocal microscopy (C2+, Nikon, Japan). Microscopic
visualization of calcein-AM (green) stained colonies (live)
and BOBO-3 iodide (red) stained cell debris (dead) after
exposure to 3p. Scale bars, 100 μm.

■ CONCLUSIONS
In conclusion, newer imidazo[1,2-a]pyridine clubbed pyrazo-
lines 2(a-o) and derivatives 3(a-af) have been synthesized and
evaluated for efficacy in producing loss of viability of MCF-7
cells. Among the series, compounds 3n and 3p are more potent
with IC50 values of 55 and 15 nM, respectively. In silico
docking analysis of compound 3p predicted that 3p bound to
STAT3 protein with a higher binding energy of −9.57 kcal/
mol. Furthermore, compound 3p inhibited pSTAT3 levels in
MCF-7 and T47D cells in a dose-dependent manner.
Additionally, live/dead assay revealed that compound 3p
produced significant cell death in MCF-7 and T47D cells. In
summary, the synthesis of imidazo[1,2-a]pyridine clubbed
pyrazoline derivatives which are efficacious in ER+ BC cells,

serving as inhibitors of STAT3 phosphorylation, is reported.
The novel drug structures offer avenues to develop therapeutic
approaches that may be useful in BC, either alone or in
combination with other therapeutic modalities.
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