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Grey wolf optimizer (GWO) is a global search algorithm based on grey wolf hunting activity. However, the traditional GWO is
prone to fall into local optimum, affecting the performance of the algorithm. .erefore, to solve this problem, an equalized grey
wolf optimizer with refraction opposite learning (REGWO) is proposed in this study. In REGWO, the issue about the low swarm
population variety of GWO in the late iteration is well overcome by the opposing learning of refraction. In addition, the
equilibrium pool strategy reduces the likelihood of wolves going to the local extremum. To investigate the effectiveness of
REGWO, it is evaluated on 21 widely used benchmark functions and IEEE CEC 2019 test functions. Experimental results show/
that REGWO performs better than the other competitors on most benchmarks.

1. Introduction

Complex optimization problems in practice are often discon-
tinuous, nondifferentiable, and nonconvex. Prior to the advent
of metaheuristic optimization technology [1], the most widely
used optimizationmethods were the gradient descent algorithm
and the Gauss-Newton method [2]. However, the gradient-
based optimization approach is prone to obtaining the local
extremum interference, resulting in a reduction in optimization
precision. On the contrary, metaheuristic optimization algo-
rithms are able to identify optimum or near-optimum solutions
within an acceptable time. .erefore, many scholars have
researched metaheuristic optimization algorithms in order to
address challenging optimization problems, such as particle
swarm algorithm (PSO) [3], artificial bee colony algorithm
(ABC) [4], ant colony optimization algorithm (ACO) [5], slime
mould algorithm (SMA) [6], hunger games search (HGS) [7],
Runge–Kutta method (RUN) [8], grey wolf optimizer (GWO)
[9], weighted mean of vectors (INFO) [10], and so on. Among
these algorithms, GWO has become the focus of research in

recent years due to its advantages, such as few parameters and
straightforward principle.

GWO is a swarm intelligence stochastic optimization al-
gorithm introduced in 2014, as a result of information in-
teraction between the social level and hunting behavior of grey
wolves in nature [9]. GWO is an effective metaheuristic, and it
attracted the interest of academics when it was initially in-
troduced. It has been widely used in many fields such as
feature selection [11, 12], image processing [13, 14], path
planning [15], weld shop inverse scheduling [16], and so on. In
GWO, the search process is guided by the leading wolves in
each iteration, which shows great convergence toward leading
wolves. .e leading wolves sometimes fall into the local ex-
tremum, especially in multimodal problems. However, when
leading wolves get trapped at local optima, other individuals in
the population are also vulnerable to local extremes..is is the
cause of the decrease in population diversity. .erefore, the
standard GWO suffers from the same issues as most swarm
intelligence algorithms, such as lack of the population diversity
and ease of falling into local optimum [17].
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.emotivation of this paper is to solve the above problem;
in order to overcome these weaknesses, an equalized grey wolf
optimizer with refraction opposite learning (REGWO) is
proposed in this paper. In REGWO, two search strategies with
different features are introduced to generate candidate so-
lutions. Among them, the opposite learning of refraction
strategy is inspired by the principle of light refraction in
nature. .is strategy is introduced to improve population
diversity during the search and expand the scope of solution
space. At the same time, the fuzzy theory is used to adjust the
parameter so that the refraction solution is more random and
the algorithm can find more potential solutions. Moreover,
the equilibrium pool strategy is designed to impair the
leadership of the leading wolves. .is method can make
wolves update their position following nonoptimal solution
with a certain probability, so wolves have the ability to jump
out of the local extremum even when the optimal solution
falls into the local optimum. REGWO can achieve better
performance by combining the aforementioned tactics.

.e remainder of this paper is organized as follows. .e
related work is discussed in Section 2. Section 3 presents the
original GWO algorithm. .e proposed REGWO algorithm
is introduced in Section 4. In Section 5, the performance of
the proposed REGWO is evaluated on different benchmark
functions; furthermore, the significance of the results is
proved by statistical analysis. Finally, we end the paper with
conclusions and future work in Section 6.

2. Related Work

.e metaheuristic optimization algorithms have been widely
used to solve optimization problems. .ese algorithms are
divided into three categories: physics-based algorithms, evo-
lutionary algorithms, and swarm intelligence algorithms.
Physics-based algorithms mimic the physical rules in nature in
which the individuals communicate around the search space by
the physical concepts, such as inertia force, light refraction law,
gravitational force, and so on. .ere are some popular algo-
rithms in this category, such as atom search optimization
(ASO) [18] and Henry gas solubility optimization [19]. Evo-
lutionary algorithms are a kind of iterative optimization al-
gorithms simulating natural evolutionary processes. .e best
individuals are combined to form a new generation, which is
the main advantage of EAs because it promotes population
improvement during iteration, such as genetic algorithm (GA)
[20] and differential evolution (DE) [21]. Swarm intelligence
algorithms are inspired by the collective behavior of swarm
organisms, such as bird flocking, animal grazing, and so on.
Individuals in a population with cooperation and interaction
move collectively to the promising areas in the search space.
Some recently proposed swarm-based intelligence algorithms
are grey wolf optimizer (GWO) [9], monarch butterfly opti-
mization (MBO) [22], moth search algorithm (MSA) [23],
Harris hawks optimization (HHO) [24], colony predation
algorithm (CPA) [25], and so on.

Swarm intelligence algorithms have been shown to be
effective at solving optimization problems, but they may fall
into local optimum and loss of diversity. As a result, some
scholars have proposed modified variations to tackle the

flaws. DEWCO algorithm has improved the initial pop-
ulation through a hyperheuristic to increase its convergence
speed [26]. EFSABC algorithm is proposed by a search
strategy for group escape and foraging based on Levy flight
to exit from local optima [27].

GWO is a kind of swarm intelligence algorithm, which
imitates the social level of wolves and the group hunting
behavior. It has fewer parameters and is easy to implement.
.erefore, this algorithm has been widely used to solve
different optimization problems, such as multidimensional
knapsack problem [28], path planning [29], parameter es-
timation [30], economic dispatch [31], feature selection [32],
large scale unit commitment problem [33], wind speed
forecasting [34], and so on.

In recent years, numerous scholars have developed var-
iants of the basic GWO to address the weaknesses of GWO
and provide better performance. .ree different position
update methods are proposed [35], which are weighted av-
erage, fitness-based, and fuzzy logic. Further experimental
analysis reveals that the GWO improved using the fuzzy logic
method has better performance. In order to improve the
search ability of grey wolf, a modified algorithm RW-GWO
based on a random walk has been imported [36]. A cellular
grey wolf optimizer with a topological structure (CGWO) is
introduced. In CGWO, each wolf has its own topological
neighbors, and interactions among wolves are restricted to
their neighbors, which favors exploitation. Furthermore, the
information diffusion mechanism by overlap among neigh-
bors can allow maintaining the population diversity for
longer, usually contributing to exploration [37]. Grey wolf
optimizer with crossover and opposition-based learning
(GWO-XOBL) is presented to the jump out local optima [38].
An improved grey wolf optimizer is proposed using the
explorative equation and opposition-based learning (OBL)
[39]. To get a more stable sense of balance between exploi-
tation and exploration, a newmodified GWO calledmemory-
based grey wolf optimizer (mGWO) is introduced [40].
Randomized balanced grey wolf optimizer (RBGWO), which
improves the overall efficiency of the search process by
establishing a balance between its exploitation and explora-
tion capability incorporating three successive enhancement
strategies equipped with a social hierarchy mechanism and
random walk with student’s t-distributed random numbers
[41]. By dividing the search process into three stages and using
different population updating strategies at each stage, an
improved GWO called multistage grey wolf optimizer
(MGWO) is proposed; the MGWO is improved while
maintaining a certain convergence speed [42].

Another area of interest for researchers is to combine
other evolutionary algorithms or operators to improve the
performance of GWO. PSO-GWO algorithm merged with
PSO [43], the idea of PSO was introduced into the GWO to
update the position information of each individual using the
optimal value of the individual and the optimal value of the
group, which enhanced the diversity of the population and
improved the global search ability. .e crossover operator is
introduced into GWO to promote population diversity [44].
.e purpose of the crossover operator is to enhance in-
formation sharing among individuals in the population. At
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the same time, the search accuracy and convergence speed
of the algorithm are improved. Grey wolf optimizer has
been hybridized with differential evolution (DE) muta-
tion, and two versions, namely DE-GWO and gDE-GWO,
have been proposed to avoid the stagnation of the solution
[45]. To improve the performance of the GWO, a new
variant of the GWO called a mutation-driven modified
grey wolf optimizer and denoted by MDM-GWO is
proposed. .e MDM-GWO combines a new update
search mechanism, modified control parameter, muta-
tion-driven scheme, and greedy approach of selection in
the search procedure of the GWO [46]. SCGWO algo-
rithm combines GWO with an improved spread strategy
and a chaotic local search mechanism to accelerate the
convergence rate of the evolving agents [47]. GWO
variant enhanced with a covariance matrix adaptation
evolution strategy, Levy fight mechanism, and orthogonal
learning strategy named GWOCMALOL is proposed.
GWOCMALOL algorithm uses these strategies to bring
more effective exploratory inclinations [48].

According to the various improvement strategies
mentioned above, the main aim of the GWO variants is to
improve search accuracy and convergence speed. Although
the above GWOs can overcome some drawbacks of the
original GWO, GWO still faces the problem of poor global
exploration ability in the late iteration. .erefore, an
equalized grey wolf optimizer with refraction opposite
learning (REGWO) is presented in this paper.

3. Grey Wolf Optimizer

GWO is a typical swarm intelligence optimization algorithm.
.e model of GWO originates from the leading class and
hunting behavior of grey wolves. .ere is a clear division of
labor and cooperation among grey wolf individuals. As shown
in Figure 1, the grey wolf population is separated into four
levels, namely α, β, δ, and ω wolves. .e first layer is the α
wolf, and the next layer is called the β wolf. .e δ wolf is
located in the third layer. .e grey wolf in the population is
called the ω wolf (search wolf), which is located in the bottom
layer. .e α, β, and δ wolves are called leading wolves, and
their number is set to 1. In GWO, the ω wolf must update its
position to obtain the optimal solution, and α, β, and δ wolves
represent the optimal value, suboptimal value, and third
optimal value, respectively. .e hunting process of grey
wolves is mainly guided by α, β, and δ wolves, and ω wolves
update iteratively according to the position of leading wolves.

.e formula of the grey wolf around prey can be
expressed as follows [41]:

D � C ∘Xp(t) − X(t),

X(t + 1) � Xp(t) − A ∘D.
(1)

Here, t is the current number of iterations; ∘ is the
Hadamard product operation; Xp and X denote the position
vector of the prey and a grey wolf, respectively; and the
calculation formulas of random vectors A and C are as
follows:

A � 2a ∘ r1 − a,

C � 2r2,
(2)

where r1 and r2 are randomvectors between [0, 1] and the vector
a is linearly decreased from 2 to 0 over the course of iterations.

To better understand the optimization rules of GWO, the
possible areas are shown in Figure 2 when the position of the
grey wolf is updated. It can be seen from Figure 2 that ω wolf
can reach different positions around the prey by adjusting the
values of parametersA andC. Furthermore, random variables
r1 and r2 can assist search wolves to reach any of the points
depicted in Figure 2. Parameters A and C are responsible for
exploration and exploitation behavior in GWO. A is a ran-
dom value between [− a, a]. When A> 1 and C> 1, the
population is inclined to exploration. In addition, when A< 1
and C< 1, the population is prone to exploitation.

.e formulas of grey wolf tracking target prey are as
follows [41]:

Da � C1 ∘Xα − X,

Dβ � C2 ∘Xβ − X,

Dδ � C3 ∘Xδ − X,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

X1 � Xα − A1 ∘Dα,

X2 � Xβ − A2 ∘Dβ,

X3 � Xδ − A3 ∘Dδ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

X(t + 1) �
X1 + X2 + X3

3
.

(3)

Here, Dα, Dβ, and Dδ denote the distance between α, β,
and δ wolves and other individuals, respectively; Xα, Xβ, and
Xδ represent the positions of α, β, and δ, severally, re-
spectively; C1, C2, and C3 are random vectors; X1, X2, and X3
represent the step length and direction of ωwolf toward α, β,
and δ, respectively; and ω wolf determines the final position
according to equation (3).

4. Proposed Algorithm REGWO

To improve the global search ability of GWO, the opposite
learning of refraction and equilibrium pool technique are in-
troduced in this work. Opposite learning of refraction is chosen
in the proposed algorithm to generate more potential solutions.
Besides, the equilibrium pool strategy can achieve a better
exploration byweakening the leadership of the leadingwolf..e
two strategies are introduced in Sections 4.1 and 4.2,

α

δ

ω

β

Figure 1: Four-layer pyramid model in GWO.
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respectively. .e proposed algorithm is named REGWO and
described in Section 4.3.

4.1. Opposite Learning of Refraction. .e opposition-based
learning (OBL) technique is proposed in 2005 [49]. .e
fundamental idea is to expand the search space of the
population by calculating the opposite solution of the
current solution, so as to select the candidate solution that is
more suitable for the optimization problem. Applying this
method to the optimization algorithm can effectively im-
prove the search accuracy of the algorithm [50]. However,
the standard OBL has certain shortcomings. OBL only
speeds up the convergence of GWO and obtains only one
opposite solution of fixed position. .erefore, the opposite
solution may fall near the local optimal solution, causing the
algorithm to fall into the local optimum with the iteration
[51]. In order to tackle this problem, this paper introduces
the refraction principle to improve the traditional opposite
learning process. Refracted opposition-based learning
(ROBL) strategy is based on the OBL, combined with the
principle of light refraction to identify a better solution.
ROBL strategy not only considers the opposite direction of
individuals but also considers other directions of individ-
uals. .e schematic is shown in Figure 3.

In the one-dimensional space where the individual of the
population is located, the x-axis is separated into the upper
and lower parts. Above the x-axis is the natural vacuum part
of the refraction model, and below the x-axis is the other
propagation medium of the refraction model. In Figure 3,
the search range of individuals on the x-axis is [a, b], that is,
x∈[a, b], and the y-axis is normal. x′ is the incident point of
the light source, and the length of the incident light segment
x′o is denoted by h. .e incident light refracts at the in-
tersection o, and x′∗ is the refraction point; the length of

refraction light segment ox′∗ is denoted by h∗; and θ and φ
are the incidence angle and the refraction angle, respectively.
.e x coordinate (position) of intersection o is (a+ b)/2,
which is the midpoint of the individual search range [a, b].
From the geometric relationship in Figure 3, we can obtain

sin θ �
((a + b)/2 − x)

h
. (4)

sinφ �
x
∗

− (a + b)/2( 􏼁

h
∗ . (5)

.e refractive index (n � sin θ/sin φ) of light obtained
by equations (4) and (5) is

|A|>1

|A|<1

(XP,Y)

(X,Y)(XP-X,Y)

(X,YP)

(XP,YP-Y)

(X,YP-Y)(XP-X,YP-Y)

(XP-X,YP)

Prey(XP,YP)

Wolf

(a)

Prey(XP,YP,ZP)

Wolf

(XP,Y,Z) (X,Y,Z)

(X,YP,Z)

(X,YP-Y,Z)

(X,YP-Y,ZP-Z)

(X,YP-Y,Z)

(XP,YP-Y,ZP-Z)(XP-X,YP-Y,ZP-Z)

(XP-X,YP,ZP-Z)
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(b)

Figure 2: 2D and 3D position vectors and the possible next position of grey wolf: (a) 2D view of grey wolf in GWO and (b) 3D view of grey
wolf in GWO.
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Figure 3: Refraction opposite learning model.

4 Computational Intelligence and Neuroscience



n �
(((a + b)/2 − x)/h)

x
∗

− (a + b)/2( 􏼁/h∗( 􏼁
. (6)

Let k� h/h∗; equation (6) can be transformed into

kn �
((a + b)/2 − x)

x
∗

− (a + b)/2( 􏼁
. (7)

According to equation (7), we can obtain

x
∗

�
(a + b)/2 − x

kn
+

a + b

2
. (8)

When n and k are both 1, equation (8) is the standard
opposite learning formula:

x
∗

� a + b − x. (9)

Obviously, the OBL strategy is a special case of the ROBL
strategy. In order to improve the ability of GWO to jump out
of the local extremum, the above ROBL model is applied to
GWO. Since the individuals in GWO are multidimensional,
equation (8) can be extended to the D-dimensional space as
follows:

x
∗
i,j �

aj + bj􏼐 􏼑/2 − xi,j

kn
+

aj + bj

2
. (10)

Here, xi,j represents the value of the j-th dimension of the
i-th individual; x∗i,j is the opposite solution obtained by the
ROBL model; and aj and bj are the j-th dimension upper
bound and lower bound, respectively.

As shown in Figure 3 and above, as the k value changes,
the position of the opposite solution generated by (10) will be
changed. .at is to say, the adjustment of k improves the
randomness of the solution. .e k is calculated by

k(t) � kmax −
kmax − kmin( 􏼁t

T
, (11)

where kmax � 1, kmin � 0, t denotes the current iteration
number, and T is the total number of iterations.

Meanwhile, in order to make the decline rate of k well
match the convergence rate of the fitness value, this paper
proposes a method to adjust the k value as shown in Figure 4.
.e fuzzy membership degree μk(t) of k is

μk(t) �
k(t) − kmin

kmax − kmin
, (12)

where μk(t)∈[0,1], μk(t) increases with the increase of k(t),
μk(t) decrease with the decrease of k(t), and the optimal
fitness relative change rate η is

η �
f(t) − f(t − 10)

f(t − 10)
. (13)

Here, f(t)is the objective function, namely the optimal
fitness value of the t-th iteration of the population; f(t − 10)
represents the optimal fitness value of the (t − 10)-th iter-
ation of the population; then η denotes the relative change
rate of the optimal fitness value in 10 iterations of evolution;
and when η value is large, it indicates that the change rate of

the optimal fitness value is large, and at this time, the k value
should be larger to improve global search capability; oth-
erwise, when η value is small, it indicates that the change rate
of the optimal fitness value is small, and at this time, the k
value should be smaller. In the ROBL model, firstly, the
current η and μk(t) are judged. .en, the k of the next it-
eration is adaptively adjusted by fuzzy rules, which can
accelerate the convergence speed of the algorithm.

Fuzzy rules to adjust (k):

Rule 1. If (μk(t)> 0.5 and η> c) or (μk(t)≤ 0.5 and
η≤ c), then k(t) �

��������
(tmax − t)

􏽰
/

����
tmax

√
× (kmax − kmin) +

kmin

Rule 2. If (μk(t)≤ 0.5 and η> c), then
k(t) � τ1/4 + (kmax + kmin)/2
Rule 3. If (μk(t)> 0.5 and η≤ c), then k(t) � τ2/4 + kmin

Here, c is the threshold, and its value is 0.05; τ1 and τ2
are the parameters between [0, 1] in the rules.

On further observation of Figure 3, the purpose of k is to
adjust the population, improve population diversity, expand
the search space, and improve the global search ability of the
algorithm. .erefore, the adjustment of parameter k based on
fuzzy rules in the ROBL model can effectively improve the
diversity of individual distribution in the search space. It makes
up for the weak exploration ability of GWO in the late iter-
ation. .e advantage of the ROBL model over the OBL model
is that the candidate solution can be obtained dynamically by
parameter adjustment, which enhances the chance of the al-
gorithm jumping out of the local optimum to a great extent.
However, OBL can only obtain a fixed candidate solution..at
is, parameter k has the ability to extend search space.

4.2. Equilibrium Pool Strategy. In GWO, the search is pri-
marily guided by α, β, and δ wolves. If the leading wolves fall
into the local optimum, the entire population will update
their position in the direction of the local optimum. To
address this issue, this paper introduces the equilibrium pool
strategy to enhance population diversity [52]. .e funda-
mental idea of the strategy is to calculate the fitness value of
each individual after population initialization and choose
three candidate solutions (X1, X2, and X3) based on the
fitness value. Among them,X1,X2, and X3 represent α, β, and
δ wolves, respectively. In addition, the average value of three
candidate solutions is calculated as the average candidate
solution Xavg, and then the equalization pool X_ pool is
constructed. .e mathematical model is as follows:

kmax–kmin

k (t)–kmin

f (t–10)
f (t)–f (t–10)

Fuzzy 
rules to 
adjust k

k (t)

f (t)

µk (t)

η

new k (t)

Figure 4: Fuzzy control structure.

Computational Intelligence and Neuroscience 5



X_ pool � X1,X2,X3,Xavg􏼐 􏼑,

Xeq � rand(X_ pool).
(14)

Here, three candidate solutions (X1, X2, X3) are con-
tributed to exploitation and the average candidate solution
(Xavg) is contributed to exploration. ω wolf randomly selects
candidate individuals from the candidate pool with equal
probability for location updating. Besides, parameter F is
used to balance exploration and exploitation, and the
mathematical description is as follows:

F � sign(r − 0.5) e
− λm

− 1􏼐 􏼑,

m � (1 − t/T)
(t/T)

,
(15)

where λ is the random vector between [0,1], r denotes a
random number between [0,1], sign(r-0.5) is used to control
the direction of exploration and exploitation, t represents the
current number of iterations, and T notes the maximum
number of iterations. In addition, the generation rate G is
used to improve exploitation capability. .e mathematical
expression is as follows:

G � G0F,

G0 �
rand × Xeq − λX􏼐 􏼑, rand≥ 0.5

0, rand< 0.5
,

⎧⎨

⎩

(16)

where Xeq is a candidate solution randomly chosen from the
equilibrium pool with equal probability.

In summary, when GWO applies equilibrium pool
strategy, the position update formula of the individual is as
follows:

X(t + 1) � Xeq + X(t) − Xeq􏼐 􏼑F +
G
λ

(1 − F). (17)

4.3. REGWO Algorithm. It is well known that exploration
and exploitation are necessary for population-based opti-
mization algorithms, such as PSO, ABC, ACO, and so on. In
standard GWO, the issue is that since all of the other in-
dividuals are attracted toward leader wolves, they may
converge prematurely without enough exploration of search
space, that is, standard GWO is prone to premature
convergence.

To improve the performance of GWO, each grey wolf
obtains the opposite solution via the ROBL strategy, which
enhances individual randomness. Refraction opposite
learning strategy makes up for the shortcomings of tradi-
tional opposite learning, expands the search space, and ef-
fectively enhances population diversity. In addition, an
equilibrium pool strategy is introduced to reduce the like-
lihood of the algorithm falling into the local extremum. .e
equilibrium pool retains four individuals, namely α, β, and δ
wolves as well as their mean values..e ability of exploration
is properly improved by randomly selecting an individual
from the equalization pool to lead the position update of ω
wolf. .e process of REGWO is described in Algorithm 1,
and the flowchart of the proposed REGWO algorithm is
shown in Figure 5. In REGWO, the α, β, and δ wolves are
chosen by population initialization and fitness calculations.
.en, the position is updated with equal probability by
equation (3) or (17). Finally, the refraction opposite solution
and its fitness value are calculated by equation (10); fur-
thermore, the refraction solution is retained if the refraction

Initialization parameters a, A, and C, iteration number t, maximum iteration number T
Initialize the location of the wolves xi (i� 1, 2, . . ., N)
Calculate xi fitness values f(xi)
Select the former three-excellent solutions as α, ß, and d wolves
while t<T
if rand >0.5
for i� 1:N
Position update according to equation (3)

end for
else
for i� 1:N
Position update according to equation (17)

end for
end if
Calculate refraction solution x’∗

i of individual x’
i by equation (10)

Calculate fitness values f(x’
i) and f(x’∗

i ) of x’
i and x’∗

i , respectively
if f(x’

i)>f(x’∗
i )

x’
i � x’∗

i

end if
Select the former three-excellent solution as α, ß, and d wolves
t� t+1

end while
return α

ALGORITHM 1: Equalized grey wolf optimizer with refraction opposite learning (REGWO).
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solution is better than the original solution; otherwise, the
original solution is retained. Until the end of the iteration, α
wolf is the ultimate optimization result.

5. Experiments and Analysis

5.1. Experimental Settings. To fairly compare the perfor-
mance of different algorithms, the function test set is needed.
.e numerical efficiency of REGWO developed in this paper
was tested by solving 31 mathematical optimization prob-
lems. .e first 21 benchmark functions are the classical
functions utilized in literature [9, 53]; they (f1∼f21) are
composed of unimodal, multimodal, fixed-dimensional
multipeak, and shifted functions. .e specific expressions
and search intervals of these functions are shown in Table 1.
.e unimodal function (f1∼f9) with just one local and also
global optimal solution is commonly used to evaluate the
local exploitation ability of the algorithm; f10∼f14 are mul-
timodal function and often used to test the ability of the
algorithm to explore. .e f15 and f16 are fixed-dimensional
multipeak functions with many extreme points but low
dimensions, so it is easy to optimize and can be used to assess
the stability of the algorithm. .e last 5 functions in Table 1
are shifted functions, which are mainly to avoid the situation
that some algorithms copy one parameter to another to
generate a neighbor solution [53]..e other 10 test problems
(f22∼f31) considered in this paper (see Table 2) regard

composite benchmark functions considered in the IEEE
CEC 2019 special session [54]. .ese benchmark functions
are more complex than the first 21 benchmark functions,
and f22∼f31 are designed to have a minimum value of 1. .e
optimization performance of each algorithm can be further
verified by solving complex problems.

Two sets of experiments are conducted in this paper. In
the first experiment, REGWO is compared with some
popular algorithms and novel algorithms to evaluate con-
vergence speed and optimization accuracy. Furthermore, the
comparisons of GWO, RGWOL (GWO improved only by
refraction principle with linear control parameter k),
RGWOF (GWO improved only by refraction principle with
fuzzy control parameter k), EGWO (GWO improved only by
equilibrium pool strategy), and REGWO are executed. .e
influences of two strategies and dynamic changes of pa-
rameter k on the optimization results can be observed
through the experiment. In the second experiment, the
comparisons of mean and standard deviation are performed
between REGWO and the other six different GWO variants.
Meanwhile, the population size is set to 30; the maximum
number of iterations is set to 5000, and experimental results
are based on 30 independent experiments.

5.2. Comparison with Swarm Intelligence Algorithms and
Strategies Analysis. To validate the performance of the
proposed REGWO algorithm in this paper, it is used to solve
the functions f1∼f31, and the performance is compared with
RGWOL, RGWOF, EGWO, and other swarm intelligence
algorithms, including standard GWO [9], sparrow search
algorithm (SSA) [55], Archimedes optimization algorithm
(AOA) [56], particle swarm optimization (PSO) [57], firefly
algorithm (FA) [58], and artificial bee colony (ABC) [4].
Among them, SSA and AOA are novel intelligent algo-
rithms, and PSO, FA, and ABC are popular intelligent al-
gorithms. For better comparison, the other parameters of
algorithms are shown in Table 3.

.e results on each benchmark function of the algo-
rithms are shown in Table 4. It can be seen from Table 4 that
the effectiveness of each strategy has been verified. RGWOL
outperforms six test functions. RGWOF outperforms nine
test functions. EGWO outperforms six test functions.
Among them, the results of the RGWOF algorithm on most
functions are better than RGWOL. .e experimental results
in Table 4 show that the effect of fuzzy control parameter k is
better than the linear decrease of parameter k. .erefore, the
REGWO algorithm proposed in this paper combines the
equilibrium pool strategy (EGWO) with the refraction
opposite learning strategy (RGWOF). At the same time, the
fuzzy theory control parameter k is used in the refraction
opposite learning. Although the RGWOF and EGWO can
find the solutions, combining the two strategies has more
benefits since the solutions obtained by REGWO are always
better than theirs.

On the other hand, it can be seen from Table 4 that the
average fitness of REGWO outperforms on 26 test functions
compared with other swarm intelligence optimization al-
gorithms. Astonishingly, REGWO can converge into the

Start

Initialization of parameters and 
generate initial population 

Update the positions of wolves by 
Equation 3

Update the positions of wolves by 
Equation 17

Termination criteria satisfied ?

If rand < 0.5?

Calculate refraction solutionby 
Equation 10

Preserve better (original solution, 
refraction solution)

End

Y

NY

N

Figure 5: .e flowchart of the REGWO algorithm.
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global optimal solution in solving functions f1∼f3, f7, f8, and
f11∼f19, indicating that REGWO has the potential to con-
verge to the global optimal value. On further observation in
Table 4, the standard GWO is still competitive compared

with SSA and AOA for unimodal functions. It is proved that
the standard GWO has good exploitation ability when
solving unimodal functions. However, the optimization
performance of standard GWO is relatively weak for mul-
timodal functions, while REGWO shows better performance
both in unimodal functions and multimodal functions.
Moreover, it can be seen from the Friedman test average
rank in Table 4 that the order from low to high is REGWO,
RGWOF, EGWO, RGWOL, SSA, FA, GWO, AOA, PSO,
and ABC. Obviously, REGWO has preferable competi-
tiveness compared with novel algorithms (SSA, AOA) and
the classical algorithms (PSO, FA, ABC). .e superior
performances of REGWO should be attributed to the im-
proved strategies. Individuals maintain high diversity during
optimization due to refraction opposite solution strategy,
and the equalization pool strategy weakens the leadership of

Table 2: IEEE CEC 2019 test suite (f22∼f31).

No. Function names Fi∗� Fi
(x∗) Dim Range

f22
(F1)

Storn’s Chebyshev
polynomial fitting

problem
1 9 [− 8,192,

8,192]

f23
(F2)

Inverse Hilbert matrix
problem 1 16 [− 16,384,

16,384]
f24
(F3)

Lennard–Jones minimum
energy cluster 1 18 [− 4, 4]

f25
(F4) Rastrigin’s function 1 10 [− 100, 100]

f26
(F5) Griewank’s function 1 10 [− 100, 100]

f27
(F6) Weierstrass function 1 10 [− 100, 100]

f28
(F7)

Modified Schwefel’s
function 1 10 [− 100, 100]

f29
(F8)

Expanded Schaffer’s F6
function 1 10 [− 100, 100]

f30
(F9) Happy Cat function 1 10 [− 100, 100]

f31
(F10) Ackley function 1 10 [− 100, 100]

Table 3: Parameter setting (PSO, FA, ABC, SSA, AOA, and GWO).

Algorithms Parameter setting

PSO [57] Inertia weight w � 0.75, b1 � b2 � 2,
vmax � 0.1∗(xmax − xmin)

FA [58] Light absorption coefficient ζ � 1, step size s� 0.2

ABC [4] Control parameter limit� 0.6∗ population
size∗ dim

SSA [55] Discoverers n� 0.2∗ population size
AOA [56] Constants d1 � 2, d2 � 6, d3 �1, d4 � 2
GWO [9] Control parameter a decrease linearly from 2 to 0

Table 1: Benchmark functions (f1∼f21).

No. Functions
f1 f1(x) � 􏽐

n
i�1 x2

i

f2 f2(x) � 􏽐
n
i�1 |xi| + 􏽑

n
i�1 |xi|

f3 f3(x) � 􏽐
n
i�1 (􏽐

j
i�1 xj)

2

f4 f4(x) � max |xi|, 1≤ i≤ n􏼈 􏼉

f5 f5(x) � 􏽐
n
i�1 ([xi + 0.5])2

f6 f6(x) � 􏽐
n
i�1 ix4

i + random[0, 1)

f7 f7(x) � 􏽐
n
i�1 (106)i− 1/n− 1x2

i

f8 f8(x) � 􏽐
n
i�1 ix2

i

f9 f9(x) � 􏽐
n− 1
i�1 [100(xi+1 − x2

i )2 + (xi − 1)2]

f10 f10(x) � − 20 exp(− 0.2
���������
1/n 􏽐

n
i�1 x2

i

􏽱
) − exp(1/n 􏽐

n
i�1 cos(2πxi)) + e

f11 f11(x) � 􏽐
n
i�1[y2

i − 10 cos(2πyi) + 10], yi �
xi, |xi|< 0.5
round(2xi)/2 |xi|≥ 0.5􏼨

f12 f12(x) � 1/4000􏽐
n
i�1 x2

i − 􏽑
n
i�1 cos(xi/

�
i

√
) + 1

f13 f13(x) � 1/n 􏽐
n
i�1(x4

i − 16x2
i + 5xi)

f14 f14(x) � 􏽐
n
i�1 |xi · sin(xi) + 0.1 · xi|

f15
f15(x) � (1/500 + 􏽐

25
j�11/􏽐

2
i�1 (xi − aij)

6)− 1

f16
f16(x) � [1 + (x1 + x2 + 1)

2
(19 − 14x1 + 3x

2
1 − 14x2 + 6x1x2 + 3x

2
2)]∗

[30 + (2x1 − 3x2)
2

× (18 − 32x1 + 12x
2
1 + 48x2 − 36x1x2 + 27x

2
2)].

f17 f17(x) � 􏽐
n
i�1 z2i , z � x − o

f18 f18(x) � 􏽐
n
i�1(z2i − 10 cos(2πzi) + 10), z � x − o

f19 f19(x) � 1/4000􏽐
n
i�1 z2i − 􏽑

n
i�1 cos(zi/

�
i

√
) + 1, z � x − o

f20 f20(x) � − 20 exp(− 0.2
���������
1/n 􏽐

n
i�1 z2i

􏽱
) − exp(1/n 􏽐

n
i�1 cos(2πzi)) + e, z � x − o

f21 f21(x) � 􏽐 |zi · sin(zi) + 0.1 · zi|, z � x − o
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the optimal solution. .erefore, the combination of the two
strategies can effectively improve the performance of
standard GWO in solving multimodal functions. .at is to
say, the ability of the algorithm to jump out of the local
extremum is enhanced.

Due to the stochastic nature of these algorithms, the
statistical test is necessary for providing confidential com-
parisons [44]. .erefore, the Wilcoxon sign rank test is
conducted in this paper. .e test results of the REGWO
algorithm and the other 9 selected algorithms on 31 test
functions are shown in Table 5. .e sign + (–) denotes that
the REGWO algorithm is better (worse) than its compared
algorithms. .e symbol � indicates that the REGWO al-
gorithm gets the same results as its competitors. It can be
seen from Table 5 that REGWO provides higher R+ values
than R− values in all cases. Moreover, the p values of 9
algorithms are less than 0.05, indicating that they are sig-
nificantly different from REGWO, and REGWO is superior
to other algorithms.

.ere are some reasons for REGWO has such a good
performance. Firstly, the refraction principle and fuzzy
control parameter are introduced in GWO; individual di-
versity is enhanced. RGWO improves the optimization
precision and convergence speed of the standard GWO
algorithm by retaining better (original solution and re-
fraction inverse solution). Secondly, the equilibrium pool
strategy enhances the global search ability of the original
GWO algorithm by reducing the leadership of the leading
wolves. .e advantage of this strategy is particularly obvious
when solving themultimodal function..en, REGWO, as an
improved GWO algorithm, combines the advantages of the
two strategies. It not only improves the convergence speed of
the GWO but also improves the optimization precision of
the original GWO algorithm.

.e convergence histories of the compared algorithms
are shown in Figure 6. .rough the convergence histories in
Figure 6, we can find that the convergence speed of REGWO
is faster than other swarm intelligence optimization algo-
rithms on unimodal functions except f5. Although the
convergence speed of the REGWO algorithm onmultimodal
function is not as fast as that on unimodal function, REGWO
has high search precision than other algorithms. Especially,
the optimization performance of REGWO is remarkable
when solving more complex functions (IEEE CEC 2019 test

suite). It demonstrates that REGWO algorithm not only
improves the convergence speed of the standard GWO al-
gorithm on unimodal function but also enhances the op-
timization precision on complex functions.

5.3. Comparison with GWOs. To further validate the effec-
tiveness of the REGWO. .e performances of different
GWO variants are compared, and the benchmark functions
(f1∼f31) are solved by REGWO, WGWO [35], DGWO [59],
AGWO [60], IGWO [61], RLGWO [62], and GNHGWO
[63]. To make a fair comparison, the 6 algorithms use the
same parameter settings as their original literature..en, the
results are analyzed by Friedman test average rank and
Wilcoxon signed-rank test, and statistical results (mean cost
and standard deviation) for 30 independent experiments are
reported in Table 6.

It can be seen from Table 6 that the average fitness of the
REGWO is superior except for the functions f5, f10, and f20.
In addition, the corresponding standard deviation is much
smaller than other algorithms for most functions. .e av-
erage fitness of the REGWO outperforms the other 6 en-
hanced GWOs on 14 benchmark functions. It can be seen
that the combination of the refraction opposite learning
approach and equilibrium pool strategy effectively improves
the optimization accuracy of the standard GWO. .e above
algorithms can achieve the theoretical optimal value for the
function f16. Because f16 is a fixed-dimensional multimodal
function with low dimension, it is simple to solve. However,
REGWO shows better stability in terms of standard devi-
ation. .e f22∼f31 are more complicated than the test
functions listed in Table 1. It can better test the algorithm
exploration and exploitation ability. Especially, REGWO
converges to the theoretical optimal value 1 on function f22.
For functions f26 and f30, the iterative optimization results of
REGWO are also close to the theoretical optimal value 1. It
demonstrates that REGWO still has the ability to converge to
the global optimum for more complex mathematical opti-
mization problems. Moreover, REGWO also achieves better
performance in most functions in terms of standard devi-
ation, indicating that REGWO has a better stability. From
the Friedman test average rank in Table 6, the order from low
to high is REGWO, IGWO, DGWO, RLGWO, AGWO,
WGWO, and GNHGWO (IGWO is equal to DGWO). It
shows that the performance of REGWO is much superior to
other GWOs in accuracy. From the results of the Wilcoxon
sign rank test in Table 7, REGWO provides higher R+ values
than R− values in all cases. Moreover, it can be seen that the p
values of WGWO, DGWO, AGWO, IGWO, RLGWO, and
GNHGWO are less than 0.05, indicating that they are sig-
nificantly different from REGWO, and REGWO is far su-
perior to the other six algorithms.

In summary, REGWO has such good performance be-
cause of the contribution of the two strategies. Firstly, the
diversity of solutions is increased by refractive opposite
learning. Secondly, the equilibrium pool strategy weakens
the leadership of the leading wolves to increase the prob-
ability of individuals jumping out of the local optimum.
.erefore, the REGWO algorithm combining two strategies

Table 5: Results of Wilcoxon signed-rank test (comparison with
PSO, FA, ABC, SSA, AOA, GWO, RGWOL, RGWOF, and
EGWO).

Case +/�/− R− R+ p value
REGWO vs. PSO 30/1/0 21 444 1.36e–05
REGWO vs. FA 28/1/2 55 410 2.61e–04
REGWO vs. ABC 30/1/0 11 454 5.21e–06
REGWO vs. SSA 25/3/3 57 349 8.85e–04
REGWO vs. AOA 30/1/0 10 455 4.72e–06
REGWO vs. GWO 30/1/0 0 465 1.73e–06
REGWO vs. RGWOL 24/7/0 123 276 2.70e–05
REGWO vs. RGWOF 20/11/0 178 210 8.85e–05
REGWO vs. EGWO 25/6/0 96 311 6.45e–05
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Figure 6: Convergence diagrams.

Table 6: Search result comparisons of GWOs.

No. Performance index WGWO DGWO AGWO IGWO RLGWO GNHGWO REGWO

f1
Mean 0 0 0 3.72e–317 0 1.02e–04 0
Std 0 0 0 0 0 2.18e–04 0

f2
Mean 2.41e–200 0 1.82e–281 1.69e–187 0 1.64e–04 0
Std 0 0 0 0 0 2.93e–04 0

f3
Mean 8.92e–98 1.80e–172 1.46e–144 1.53e–62 0 2.09e–03 0
Std 2.82e–97 0 4.64e–144 4.53e–62 0 1.14e–03 0

f4
Mean 5.31e–82 3.54e–151 3.00e–128 7.94e–60 3.54e–46 5.59e–03 3.06e–252
Std 2.28e–81 1.11e–150 1.64e–128 3.25e–59 1.84e–45 1.83e–02 0
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Table 6: Continued.

No. Performance index WGWO DGWO AGWO IGWO RLGWO GNHGWO REGWO

f5
Mean 5.90e–01 5.56e–01 1.03e+00 1.09e–27 4.75e–01 6.85e+00 1.66e–02
Std 2.94e–01 3.55e–01 4.55e–01 9.26e–27 2.48e–01 3.08e–01 6.35e–02

f6
Mean 1.53e–04 2.14e–04 3.59e–05 6.72e–04 8.89e–04 1.28e–05 7.43e–06
Std 6.91e–04 1.14e–04 5.84e–05 9.98e–04 9.56e–04 1.61e–05 1.38e–06

f7
Mean 0 0 0 0 0 3.52e–03 0
Std 0 0 0 0 0 1.72e–02 0

f8
Mean 0 0 0 0 0 3.15e–08 0
Std 0 0 0 0 0 1.02e–07 0

f9
Mean 5.68e+00 6.51e+00 6.00e+00 5.75e+00 6.75e+00 8.83e+00 2.99e+00
Std 7.70E–01 6.68e–01 3.93e–01 4.23e+00 1.02e+00 3.51e–01 5.53e–01

f10
Mean 7.51e–15 7.99e–15 6.21e–15 7.63e–15 1.24e–15 1.73e–03 4.44e–15
Std 1.22e–15 0 1.77e–15 1.08e–15 1.12e–15 3.36e–03 0

f11
Mean 0 0 0 3.70e+00 0 8.65e–06 0
Std 0 0 0 1.82e+00 0 2.73e–05 0

f12
Mean 0 8.20e–03 0 1.45e–02 0 6.51e–07 0
Std 0 1.17e–02 0 1.39e–02 0 1.25e–06 0

f13
Mean − 7.22e+01 − 7.25e+01 − 7.46e+01 − 7.74e+01 − 7.23e+01 − 5.82e+01 −7.83e+01
Std 3.43e+00 4.01e+00 2.80e+00 1.31e+00 3.80e+00 3.74e+00 1.25e+00

f14
Mean 0 0 0 1.42e–07 4.63e–06 2.60e–07 0
Std 0 0 0 4.51e–07 1.15e–05 5.86e–07 0

f15
Mean 1.39e+00 4.53e+00 3.54e+00 9.98e–01 4.90e+00 1.06e+00 9.98e–01
Std 8.36e–01 4.39e+00 3.91e+00 5.03e–01 5.02e+00 1.44e–01 1.81e–12

f16
Mean 3.00e+00 3.00e+00 3.00e+00 3.00e+00 3.00e+00 3.00e+00 3.00e+00
Std 3.63e–07 5.57e–07 3.33e–07 2.17e–15 3.89e–07 1.94e–02 1.18e–15

f17
Mean 0 0 0 0 0 4.66e–06 0
Std 0 0 0 0 0 1.43e–05 0

f18
Mean 0 0 0 3.97e–01 0 3.83e–10 0
Std 0 0 0 1.20e–01 0 8.87e–10 0

f19
Mean 7.44e–04 2.35e–03 0 2.02e–02 6.26e–06 5.09e–06 0
Std 2.46e–03 3.61e–03 0 2.49e–02 4.12e–05 1.59e–05 0

f20
Mean 4.44e–15 4.41e–15 4.44e–15 4.43e–15 8.88e–16 7.16e–07 4.44e–15
Std 0 0 9.01e–16 0 1.70e–15 1.16e–04 0

f21
Mean 1.77e–07 2.44e–06 9.87e–09 5.01e–14 6.54e–10 4.14e–06 1.54e–46
Std 6.75e–07 1.26e–05 5.40e–08 2.58e–13 5.88e–09 6.09e–06 8.43e–46

f22
Mean 2.85e+01 1.98e+04 8.64e+01 1.29e+03 1.00e+00 1.00e+00 1.00e+00
Std 5.43e+01 6.25e+04 2.48e+02 1.90e+03 0 6.83e–06 6.37e–15

f23
Mean 4.68e+00 4.62e+00 4.64e+00 4.31e+00 4.89e+00 4.98e+00 4.24e+00
Std 3.53e–01 3.73e–01 3.98e–01 2.77e–01 2.61e–01 8.71e–02 4.77e–02

f24
Mean 4.75e+00 3.27e+00 5.39e+00 7.19e+00 4.83e+00 9.07e+00 1.46e+00
Std 3.01e+00 3.06e+00 3.54e+00 1.69e+00 3.28e+00 8.73e–01 4.87e–00

f25
Mean 1.33e+01 1.64e+01 1.65e+01 8.19e+00 2.01e+01 7.50e+01 7.64e+00
Std 5.30e+00 8.47e+00 8.05e+00 2.09e+00 6.01e+00 9.40e+00 1.14e+00

f26
Mean 1.39e+00 1.42e+00 1.63e+00 1.42e+00 1.42e+01 4.74e+01 1.16e+00
Std 2.30e–01 2.41e–01 7.57e–01 6.68e–02 3.91e+01 8.78e+00 8.47e–02

f27
Mean 2.46e+00 2.17e+00 3.88e+00 1.51e+00 2.77e+00 1.00e+01 1.50e+00
Std 8.17e–01 9.82e–01 3.57e–01 1.24e+00 1.65e+00 7.06e–01 6.23e–01

f28
Mean 5.54e+02 6.64e+02 6.04e+02 2.82e+02 7.79e+02 1.60e+03 2.17e+02
Std 2.41e+02 2.91e+02 2.37e+02 2.70e+02 3.37e+02 1.49e+02 2.19e+02

f29
Mean 3.72e+00 3.73e+00 4.02e+00 3.18e+00 3.69e+00 4.96e+00 2.69e+00
Std 6.63e–01 6.74e–01 4.03e–01 6.61e–01 4.71e–01 1.47e–01 7.66e–01

f30
Mean 1.11e+00 1.10e+00 1.14e+00 1.09e+00 1.13e+00 2.80e+00 1.06e+00
Std 5.04e–02 5.58e–02 3.89e–02 3.48e–02 6.24e–02 5.32e–01 2.88e–02

f31
Mean 2.13e+01 2.13e+01 2.07e+01 1.99e+01 2.10e+01 2.13e+01 1.11e+01
Std 9.81e–02 1.98e+00 9.55e–02 6.42e+00 1.38e–01 9.34e–02 9.80e+00

Friedman test average rank 3.85 3.98 4.09 3.98 4.04 6.09 1.93
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is able to achieve competitive optimization results on the test
problems compared with other GWOs.

6. Conclusion and Future Work

In order to further improve the optimization performance of
GWO, this paper proposes an equalized grey wolf optimizer
with refraction opposite learning (REGWO). .e main idea
of the algorithm is to improve the opposite learning process
of OBL based on the refraction principle of light. .is
strategy further expands the search space of the population,
increases population variety, and enhances the ability of
individuals to jump out of the local extremum. At the same
time, the equilibrium pool strategy is combined to weaken
the leadership of the leading wolves, which effectively avoids
the situation that the rest of the individuals move to the
leading wolves when the leading wolves fall into the local
optimum. .erefore, the combination of the two strategies
effectively enhances the exploration of GWO in the late
iteration. In addition, REGWO is tested on 31 benchmark
functions. .e experimental results show that REGWO has
higher convergence speed, search accuracy, and stability
compared with standard GWO, other state-of-art GWOs,
and other swarm intelligence algorithms. On the whole,
REGWO is more effective in solving complex optimization
problem.

In our future work, the selection of search strategies still
needs to be further investigated. Furthermore, the REGWO
algorithm can be extended to solve multiobjective optimi-
zation, binary optimization, and application-designed
problems in the future.

Data Availability

.e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

.e authors declare that they have no conflicts of interest
regarding the publication of this paper.

Acknowledgments

.is work was supported by the National Natural Science
Foundation of China (Grant nos. 62173127, 61803146, and
61973104); the Scientific and Technological Innovation
Leaders in Central Plains (No. 224200510008); the Henan

Excellent Young Scientists Fund (No. 212300410036); the
Program for Science and Technology Innovation Talents in
Universities of Henan Province (Grant no. 21HASTIT029);
the Training Program for Young Backbone Teachers in
Universities of Henan Province (Grant no. 2019GGJS089);
the Key Science and Technology Projects in Henan Province
(Grant nos. 212102210169 and 212102210086); the Innova-
tive Funds Plans of Henan University of Technology (Grant
no. 2020ZKCJ06); the Zhengzhou Science and Technology
Collaborative Innovation Project (No. 21ZZXTCX06); the
Cultivation Program of Young Backbone Teachers in Henan
University of Technology (Grant chentianfei); and the Open
Fund from Research Platform of Grain Information Pro-
cessing Center in Henan University of Technology (Grant
nos. KFJJ-2020-107, KFJJ-2020-111, and KFJJ-2020-114).

References

[1] J. Del Ser, E. Osaba, D. Molina et al., “Bio-inspired compu-
tation: where we stand and what’s next,” Swarm and Evo-
lutionary Computation, vol. 48, pp. 220–250, 2019.

[2] H. k. Hjalmarsson, “Iterative feedback tuning?an overview,”
International Journal of Adaptive Control and Signal Pro-
cessing, vol. 16, no. 5, pp. 373–395, 2002.

[3] L. Li, Y. Liang, T. Li, C. Wu, G. Zhao, and X. Han, “Boost
particle swarm optimization with fitness estimation,” Natural
Computing, vol. 18, no. 2, pp. 229–247, 2019.

[4] D. Karaboga and B. Basturk, “A powerful and efficient al-
gorithm for numerical function optimization: artificial bee
colony (ABC) algorithm,” Journal of Global Optimization,
vol. 39, no. 3, pp. 459–471, 2007.

[5] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony opti-
mization,” IEEE Computational Intelligence Magazine, vol. 1,
no. 4, pp. 28–39, 2006.

[6] S. Li, H. Chen,M.Wang, A. A. Heidari, and S. Mirjalili, “Slime
mould algorithm: a new method for stochastic optimization,”
Future Generation Computer Systems, vol. 111, pp. 300–323,
2020.

[7] Y. Yang, H. Chen, A. A. Heidari, and A. H. Gandomi,
“Hunger games search: visions, conception, implementation,
deep analysis, perspectives, and towards performance shifts,”
Expert Systems with Applications, vol. 177, Article ID 114864,
2021.

[8] I. Ahmadianfar, A. A. Heidari, A. H. Gandomi, X. Chu, and
H. Chen, “RUN beyond the metaphor: an efficient optimi-
zation algorithm based on Runge Kutta method,” Expert
Systems with Applications, vol. 181, Article ID 115079, 2021.

[9] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf opti-
mizer,” Advances in Engineering Software, vol. 69, pp. 46–61,
2014.

[10] I. Ahmadianfar, A. A. Heidari, S. Noshadian, H. Chen, and
A. H. Gandomi, “INFO: an efficient optimization algorithm
based on weighted mean of vectors,” Expert Systems with
Applications, vol. 195, Article ID 116516, 2022.

[11] E. M. R. Devi and R. C. Suganthe, “Feature selection in in-
trusion detection grey wolf optimizer,” Asian Journal of Re-
search in Social Sciences and Humanities, vol. 7, no. 3,
pp. 671–682, 2017.

[12] Q. Li, H. Chen, H. Huang et al., “An enhanced grey wolf
optimization based feature selection wrapped kernel extreme
learning machine for medical diagnosis,” Computational and
Mathematical Methods in Medicine, vol. 15, Article ID
9512741, 2017.

Table 7: Results of Wilcoxon signed-rank test (comparison with
GWOs).

Case +/� /− R− R+ p value
REGWO vs. WGWO 21/10/0 127 231 5.95e–05
REGWO vs. DGWO 22/9/0 117 250 6.08e–05
REGWO vs. AGWO 20/11/0 146 210 8.85e–05
REGWO vs. IGWO 25/5/1 72 334 5.68e–05
REGWO vs. RLGWO 20/9/2 161 205 1.89e–04
REGWO vs. GNHGWO 29/2/0 21 435 2.56e–06

16 Computational Intelligence and Neuroscience



[13] A. K. M. Khairuzzaman and S. Chaudhury, “Multilevel
thresholding using grey wolf optimizer for image segmen-
tation,” Expert Systems with Applications, vol. 86, pp. 64–76,
2017.

[14] L. Li, L. Sun, B. Xu, and S. Li, “Modified discrete grey wolf
optimizer algorithm for multilevel image thresholding,”
Computational Intelligence and Neuroscience, vol. 2017, Ar-
ticle ID 3295769, 2017.

[15] S. Zhang, Y. Zhou, Z. Li, andW. Pan, “Grey wolf optimizer for
unmanned combat aerial vehicle path planning,” Advances in
Engineering Software, vol. 99, pp. 121–136, 2016.

[16] C. Wang, L. Zhao, X. Li, and Y. Li, “An improved grey wolf
optimizer for welding shop inverse scheduling,” Computers &
Industrial Engineering, vol. 163, Article ID 107809, 2022.

[17] Q. Tu, X. Chen, and X. Liu, “Hierarchy strengthened grey wolf
optimizer for numerical optimization and feature selection,”
IEEE Access, vol. 7, pp. 78012–78028, 2019.

[18] W. Zhao, L. Wang, and Z. Zhang, “Atom search optimization
and its application to solve a hydrogeologic parameter esti-
mation problem,” Knowledge-Based Systems, vol. 163,
pp. 283–304, 2019.

[19] F. A. Hashim, E. H. Houssein,M. S.Mabrouk,W. Al-Atabany,
and S. Mirjalili, “Henry gas solubility optimization: a novel
physics-based algorithm,” Future Generation Computer Sys-
tems, vol. 101, pp. 646–667, 2019.

[20] J. H. Holland, “Genetic algorithms,” Scientific American,
vol. 267, no. 1, pp. 66–72, 1992.

[21] R. Storn and K. Price, “Differential evolution–a simple and
efficient heuristic for global optimization over continuous
spaces,” Journal of Global Optimization, vol. 11, no. 4,
pp. 341–359, 1997.

[22] G.-G. Wang, S. Deb, and Z. Cui, “Monarch butterfly opti-
mization,” Neural Computing & Applications, vol. 31, no. 7,
pp. 1995–2014, 2015.

[23] G.-G. Wang, “Moth search algorithm: a bio-inspired meta-
heuristic algorithm for global optimization problems,”
Memetic Computing, vol. 10, no. 2, pp. 151–164, 2016.

[24] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and
H. Chen, “Harris hawks optimization: algorithm and appli-
cations,” Future Generation Computer Systems, vol. 97,
pp. 849–872, 2019.

[25] J. Tu, H. Chen, M. Wang, and A. H. Gandomi, “.e colony
predation algorithm,” Journal of Bionics Engineering, vol. 18,
no. 3, pp. 674–710, 2021.

[26] M. A. Elaziz and S. Mirjalili, “A hyper-heuristic for improving
the initial population of whale optimization algorithm,”
Knowledge-Based Systems, vol. 172, pp. 42–63, 2019.

[27] M. Chen, “Improved artificial bee colony algorithm based on
escaped foraging strategy,” Journal of the Chinese Institute of
Engineers, vol. 42, no. 6, pp. 516–524, 2019.

[28] K. Luo and Q. Zhao, “A binary grey wolf optimizer for the
multidimensional knapsack problem,” Applied Soft Com-
puting, vol. 83, Article ID 105645, 2019.

[29] J. Liu, X. Wei, and H. Huang, “An improved grey wolf op-
timization algorithm and its application in path planning,”
IEEE Access, vol. 9, pp. 121944–121956, 2021.

[30] D. Miao, W. Chen, and W. Zhao, “Parameter estimation of
PEM fuel cells employing the hybrid grey wolf optimization
method,” Energy, vol. 193, Article ID 116616, 2020.

[31] T. Jayabarathi, T. Raghunathan, B. R. Adarsh, and
P. N. Suganthan, “Economic dispatch using hybrid grey wolf
optimizer,” Energy, vol. 111, pp. 630–641, 2016.

[32] P. M. Kitonyi, “Hybrid gradient descent grey wolf optimizer
for optimal feature selection,” BioMed Research International,
vol. 2021, 2021.

[33] L. K. Panwar and S. Reddy K, “Binary grey wolf optimizer for
large scale unit commitment problem,” Swarm and Evolu-
tionary Computation, vol. 38, pp. 251–266, 2018.

[34] J. Song, J. Wang, and H. Lu, “A novel combined model based
on advanced optimization algorithm for short-term wind
speed forecasting,” Applied Energy, vol. 215, pp. 643–658,
2018.
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