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Abstract: Constitutively activated oncogenic signaling via genetic mutations such as in the 

EGFR/PI3K/Akt and Ras/RAF/MEK pathways has been recognized as a major driver for 

tumorigenesis in most cancers. Recent insights into tumor metabolism have further revealed 

that oncogenic signaling pathways directly promote metabolic reprogramming to upregulate 

biosynthesis of lipids, carbohydrates, protein, DNA and RNA, leading to enhanced growth 

of human tumors. Therefore, targeting cell metabolism has become a novel direction for 

drug development in oncology. In malignant gliomas, metabolism pathways of glucose, 

glutamine and lipid are significantly reprogrammed. Moreover, molecular mechanisms 

causing these metabolic changes are just starting to be unraveled. In this review, we will 

summarize recent studies revealing critical gene alterations that lead to metabolic changes in 

malignant gliomas, and also discuss promising therapeutic strategies via targeting the key 

players in metabolic regulation.  

Keywords: glioblastoma; tumor metabolism; SREBP-1; LDLR; LXR; glucose; lipids; 
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1. Introduction  

Malignant glioblastomas (GBM) are aggressive brain tumors, which are resistant to radiation and 

chemotherapy [1–4]. In the last decade, targeted inhibition of oncogenic signaling pathways such as 

EGFR [5–9], PI3K/Akt [10–13], and VEGF [14] has made some progress. However, in patients with 

malignant glioma, these treatments only show a transient effect and tumor cells quickly develop 
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resistance [15,16]. Therefore, in order to significantly improve patient survival, it is necessary to fully 

understand the biology of malignant gliomas. 

In recent years, the understanding of the regulation of tumor metabolism has significantly improved. 

Accumulating evidence show that tumor cells reprogram their metabolism to meet high energy 

demands, coordinate markedly elevated biosynthetic processes and energy production, which in turn 

promote rapid growth and division of tumor cells [17–20]. Thus, targeting metabolism has become a 

novel promising strategy for treating cancers. Recently, enhanced glycolysis [21,22], elevated 

glutaminolysis [10,23], and exacerbated lipogenesis have been demonstrated as prominent characteristics 

in glioblastoma (GBM) [24–29]. There are several important regulators of metabolic pathways, such as 

Hexokinase 2 (HK2), PKM2 [30,31], IDH1 [32], SREBP-1 and LDLR [24,25,28,29], that have been 

revealed to be upregulated in GBM. EGFR/PI3K/Akt signaling has been shown to be involved in the 

regulation of lipid metabolism in GBM [24,25,28,29] (Figure 1). Targeting SREBP-1, a key regulator in 

lipid metabolism (Figure 1), significantly inhibited tumor cell growth in GBM cell lines and xenograft 

models [28,33].  

In this review, we will focus on the basic metabolism pathways in GBM including glucose, 

glutamine, and lipid metabolism, and we will discuss the reprogramming of metabolic pathways and the 

molecular link between oncogenic signaling pathways and key metabolic regulators. 

2. Glucose Metabolism in GBM 

In normal tissues, ATP is primarily generated in mitochondria via complete oxidative 

phosphorylation (OXPHOS) of glucose. Conversely, only 10% of ATP is generated from glycolysis in 

which glucose is converted to lactate [34]. Intriguingly, tumor tissues demonstrate high levels of 

glycolysis even under aerobic conditions, which is upregulated by PI3K/Akt signaling, known as the 

Warburg effect [35–40] (Figure 1). In malignant gliomas, aerobic glycolysis is one of the major 

characteristics of these tumors [21,41]. A number of metabolic enzymes, such as HK2, PKM2 and IDH, 

play a crucial role in glucose metabolism, and serve as attractive molecular targets. 

2.1. Hexokinase II 

Hexokinase (HK) functions in the first step of glycolysis and irreversibly catalyzes the 

phosphorylation of glucose to glucose-6 phosphate (G6P) [42] (Figure 1). Hexokinase has four isoforms 

referred as type I, II, III and IV which are identified from different mammalian tissues [43]. The type I, II 

and III HKs have molecular weight at approximately 100 kilodaltons (KD) and can be inhibited by their 

product G6P. Type IV HK, also known as glucokinase (GK), displays different kinetics from other HK 

isoforms with a molecular weight of 50 KD [44,45]. In GBM, HK2 is highly expressed, whereas HK1 is 

predominantly expressed in normal brain and low-grade gliomas [46]. Interestingly, HK2 is expressed in 

lower levels in the neural subtype, but at higher levels in mesenchymal subtype of GBM [46,47]. In 

addition, increased HK2 gene expression is correlated with poor overall survival in GBM  

patients [46,48]. Overexpression of HK2 in GBM promotes tumor cells proliferation, and enhances their 

resistance to radiation and temozolomide treatment. In contrast, knockdown of HK2 but not HK1 

decreases cell proliferation and enhances therapeutic sensitivity in GBM cell line and xenograft  

models [46]. 
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Figure 1. Regulation of metabolism in maligant gliomas. EGFR signaling upregulates 

glycolysis and is mediated by PI3K/Akt signaling through inducing GLUT1 translocation to 

the cell membrane as well as activation of HK2 and PFK. EGFR signaling also upregulates 

PKM2 expression via activation of the PKCε/NF-κB signaling pathway. Large amounts of 

lactate are generated even in abundant oxygen conditions. In addition to oxidative 

phosphorylation, glucose is converted to fatty acids through generation of citrate in the 

mitochondria, which is in turn released into to cytoplasm and lysed by ACLY to generate the 

fatty acid precursor acetyl-CoA. Acetyl-CoA is then used for palmitate synthesis and is 

regulated by ACC and FAS. SCD1 further catalyzes saturated fatty acids to monounsaturated 

fatty acids. Together they form phospholipids for membrane formation and promote tumor 

growth. EGFR/PI3K/Akt signaling also activates SREBP-1, which upregulates ACC, FAS 

and SCD1, to promote de novo fatty acid synthesis. Furthermore, glutamine enters into the 

TCA cycle to generate energy and also can be converted to lipids through reductive 

carboxylation under hypoxic conditions. GLUT, glucose transporter; HK2, hexokinase 2; 

PFK, phosphofructokinase; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; PGAM, 

phosphoglycerate mutase; PEP, phosphoenolpyruvic acid; PKM2, pyruvate kinase M2; 

LDH, lactate dehydrogenase; PDH, pyruvate dehydrogenase; TCA cycle, tricarboxylic acid 

cycle; ACLY, ATP citrate lyase; ACC, acetyl-CoA carboxylase; FAS, fatty acid synthase; 

GLS, glutaminase; EGFR, epidermal growth factor receptor; SREBP-1, sterol regulatory 

element-binding protein 1.  

 

2.2. PKM2 

PKM2 is the M2 isoform of pyruvate kinase (PK) [49]. PK functions in the last step of glycolysis, 

catalyzing phosphoenolpyruvate (PEP) to pyruvate and generating ATP [49]. Four PK isoforms are 

identified and derived from two genes, PKLR and PKM in mammals. R and L isoforms are derived from 

PKLR, expressed in erythrocytes and the liver [49]. M1 and M2 isoforms of PK are produced by 

alternative splicing of PKM gene, PKM1 contains exon 9 and PKM2 contains exon 10, respectively [50]. 

κ      
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Exon 9 and 10 of PKM show different properties, which results in the different activity of PKM1 and 

PKM2. PKM1 is constitutively active, but PKM2 can be regulated by fructose-1,6-bisphosphate. 

Recently, splicing repressors of hnRNP A1, hnRNP A2 (heterogeneous nuclear ribonucleoprotein, 

hnRNP) and PTB (polypyrimidine tract binding protein) were reported to directly bind to the flanking 

intron of exon 9 and repress the use of exon 9. Downregulation of these splicing repressors increased 

PKM1 expression levels in cancer cells [48]. 

PKM2 is mainly expressed in proliferating cells and tissues. In cancer, PKM2, not PKM1, is the 

major isoform expressed [49,51,52]. Recently, PKM2 has been revealed to be involved in the EGFR 

signaling pathway in GBM [31,53–55] (Figure 1). PKM2 was shown to translocate into the nucleus from 

the cytoplasm when activated by EGFR [55]. PKM2, not PKM1, is phosphorylated at Ser37 by ERK1/2 

after EGF stimulation. The phosphorylated PKM2 recruits protein interacting with NIMA (Never in 

Mitosis A)-1 (PIN1) and binds to importin α5, which results in the translocation of PKM2 from 

cytoplasm to the nucleus. After entering into the nucleus, PKM2 phosphorylates histone 3 at T7 site and 

also acts as a co-activator of β-catenin to then promote the transcription of CCND1 and MYC. C-Myc 

further upregulates glucose transporter (GLUT) and HK2 to promote glycolysis (Figure 2) [54]. 

Interestingly, GLUT3 has been shown to be highly express in gliomas correlated with tumors grade [56,57]. 

Moreover, in GBM cells, EGFR signaling was shown to also upregulate the expression of PKM2. 

Activation of EGFR by EGF induces PKCε monoubiquitylation, which then recruits and phosphorylates 

IKKβ, to further promote the interaction of activated RelA/p50 with HIF1. This complex then binds to 

the promoter of PKM2 and promotes its transcription (Figure 2) [31]. Recently, miR-326 has been 

reported to inhibit GBM by directly targeting PKM2 [30]. Taken together, these data demonstrated the 

novel roles for PKM2 in GBM beyond its traditional roles in glycolysis. 

Figure 2. EGFR signaling regulation of PKM2 in gliomas. EGFR signaling promotes PKM2 

translocation to nucleus after phosphorylation by ERK. PKM2 then phosphorylates histone 

H3-T11 and binds to β-catenin to promote MYC expression. MYC stimulates GLUT1 and 

LDH expression to further promote glycolysis. Moreover, EGFR signaling upregulates PKM2 

expression, which is mediated by PKCε/NF-κB activation and interaction with HIF1 α.  
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2.3. IDH 

Isocitrate dehydrogenase (IDH) is an enzyme that catalyzes the oxidative decarboxylation of 

isocitrate to produce -ketoglutarate, and also generate NADH in mitochondria or NADPH in  

cytoplasm [58]. In the human genome, 5 IDH genes have been identified: two of them produce IDH1 

and IDH2, which form homodimers; the other 3 genes produce IDH3 (IDH3α, IDH3β, and IDH3γ), 

which form heterotetrameric proteins [59]. IDH1 is located in the cytoplasm and peroxisomes, but IDH2 

and IDH3 are localized in the mitochondria [59]. 

In 2008, IDH1 and IDH2 mutations were first reported in low grade of gliomas and secondary  

GBM [60–62]. IDH1 mutation is described in more than 70% and 50% of grade II and III glioma  

tumors [63], but only 5% in primary GBM [64]. In addition, IDH1 mutations occur approximately in 

80% and 85% of diffuse astrocytomas and secondary GBMs, respectively [59]. IDH1/2 mutation often 

co-occurs with the deletion of 1p19q and mutation of p53 [64,65]. IDH1 and IDH2 mutation results in 

reduced enzymatic ability and therefore reduces the production of -KG [66]. -KG is required by 

propyl hydroxylases (PHD) for degradation of hypoxia-induced factor-1 (HIF-1) [67]. Therefore, 

IDH1 is involved in the HIF-1 signaling pathway, which is critical for tumor progression, glucose 

metabolism, angiogenesis, and invasion under low oxygen levels [68]. Surprisingly, IDH1/2 mutants 

gain new enzyme activity, which catalyzes -KG to 2-hydroxyglutarate (2-HG), a metabolite produced 

mostly in error in normal metabolism where it is usually present in low levels [58,69–71]. In glioma 

patients, IDH mutations are associated with elevated 2-HG levels [69–72]. 

Recently, CpG island methylation profiling was performed to identify the difference between 

IDH1-R132 mutant and IDH1-R132 wild type GBM. The profiling analysis showed a similar 

methylation pattern in IDH1-R132 mutant GBM and a newly-described CpG island methylator 

phenotype (CIMP) [73]. The phenotypes of induction of extensive DNA hypermethylation with 

inhibition of histone demethylation were observed when the mutant IDH1 was introduced into primary 

human astrocytes. These data demonstrate that the mutation of IDH1 is sufficient to remodel the 

methylome in glioma and establish CIMP [74]. IDH mutation also reduces histone demethylation and 

inhibits differentiation of non-transformed astrocyte cells [75]. The expression of lineage-specific 

differentiation genes is inhibited by the introduction of mutant IDH1 or cell-permeable 2-HG [75]. The 

accumulation of histone methylation is observed with the introduction of 2-HG-producing mutant IDH 

into immortalized astrocytes [75]. In summary, these data strongly reveal that IDH mutations are clearly 

involved in the regulation of differentiation of non-transformed cells. 

3. Glutamine Metabolism 

In addition to glucose, glutamine is another major energy source for cells [76,77] (Figure 1). 

Glutamine also is a nitrogen donor for tumor cells [78]. Recently, glutamine metabolism has been 

reported to be highly upregulated in cancers [17,79–82]. Elevated expression of glutaminase (GLS) is 

found in tumors and rapidly proliferating cells [83] (Figure 1). GLS, located in the mitochondria, 

catalyzes the conversion of glutamine to glutamate, and is upregulated by the oncogene c-Myc [84,85]. 

NF-κB-dependent upregulation of glutaminase by oncogene Rho GTPase has also been described 

whereas blocking Rho GTPase leads to the inhibition of cancer growth [86]. Nuclear magnetic 
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resonance (NMR) spectroscopy shows that glutamine concentration (3.4 ± 0.9 mmol/L) was 

significantly higher in GBM patients than in control subjects (2.7 ± 0.7 mmol/L; p = 0.01) [87]. 

Interestingly, lower expression of glutamine synthetase (GS), which catalyzes glutamate to glutamine 

correlates with better survival of patients with GBM [88]. Compared to our knowledge of glucose 

metabolism in cancers, glutamine metabolism in GBM is much less known. Thus significant 

investigations are needed to reveal the function of glutamine metabolism in GBM tumorigenesis and 

resistance to therapies. 

4. Lipid Metabolism in GBM 

Lipids consist of phospholipids, fatty acid, cholesterol, triglycerides, cholesterol esters, sphingolipids 

and others, which are critical components to form cellular membranes [89–93]. In addition to their role 

as structural components, lipids also function as energy resources and as signaling molecules to maintain 

cell growth [25,94,95]. 

Lipid metabolism has been found to be largely altered in cancers [96–99], and exacerbated 

lipogenesis has been shown to be a prominent characteristic in most cancers [25,94,100]. In GBM, 

tumor tissues contain higher levels of unsaturated fatty acids compared with normal brain [101]. Recent 

studies have revealed intrinsic molecular alterations in lipid metabolism. Key genes that regulate lipid 

metabolism, such as SREBP-1 and its downstream-targeted genes Acetyl-CoA carboxylase (ACC), 

Fatty acid synthase (FAS) and low-density lipoprotein receptor (LDLR), are upregulated in  

GBMs [27–29] (Figures 1 and 3). Intriguingly, the oncogenic signaling pathway EGFR/PI3K/Akt has 

been shown to regulate this metabolic reprogramming [27–29] (Figures 1 and 3).  

4.1. SREBP-1  

Sterol regulatory element-binding proteins (SREBPs) are important transcription factors that regulate 

lipid metabolism thereby playing a crucial role in the regulation of lipogenesis and cholesterol  

uptake [102]. There are three SREBP isoforms, namely SREBP-1a, -1c and -2 [102]. SREBP-1 (-1a and 

-1c) regulates fatty acid synthesis [103] while SREBP-2 regulates cholesterol synthesis [104]. The 

transcriptional activity of SREBPs is tightly regulated by cellular sterol levels via post-translational 

regulation. Morevoer, the full length SREBP-1 or -2 proteins have no activity. Indeed, these proteins 

bind to SREBP cleavage-activating protein (SCAP) and are retained by Insig protein on the membrane 

of the endoplasmic reticulum (ER) when sterol levels are high [105]. However, when sterol levels 

decrease, SCAP will dissociate from Insig and then carry SREBPs to the Golgi [105]. Upon 

translocation to the Golgi, the N-terminus of SREBPs will be released from the membrane after 

sequential cleavage by the membrane-bound serine proteases, S1P and S2P [106,107]. Then, only the 

N-terminus enters into the nucleus to promote its downstream gene expression [104,108,109].  

Interestingly, SREBP-1 has been found to be highly activated in GBM and other cancers [28,110–113]. 

Its nuclear form is abundantly present in GBM patient tissues, which is accompanied with the high 

expression of its downstream genes ACC and FAS, the key genes regulating de novo fatty acid  

synthesis [28] (Figure 1). Moreover, genetically or pharmaceutically inhibition of SREBP1, ACC or 

FAS in GBM has been shown to significantly induce cell death, suggesting that SREBP1 is a promising 

therapeutic target in GBM [28]. More recently, inhibition of SREBP-1 has been shown to markedly 
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reduce the levels of unsaturated fatty acids by downregulating stearoyl-CoA desaturase 1 (SCD1), a key 

enzyme to catalyze saturated fatty acid to mono-unsaturated fatty acid (Figure 1), thus increasing the 

ratio of saturated- to unsaturated-fatty acids and leading to lipotoxicity in GBM cells [33,114]. 

In addition to the feedback regulation by sterol levels, SREBP-1 is highly upregulated by receptor 

tyrosine kinases (RTKs)/PI3K/Akt signaling in GBM [28] (Figure 1). More interestingly, inhibiting 

SREBP-1 and its downstream genes ACC and FAS has been shown to markedly induce cell death in 

GBM cells, particularly in cells with high levels of EGFR signaling [28,33]. These data demonstrate that 

GBM cells with activated RTK signaling are dependent on the SREBP-1-regulated de novo fatty acid 

synthesis pathway for survival and malignant growth. 

4.2. LDLR  

Cholesterol is also an important component of cell membranes [90,115]. In cells, extra cholesterol 

will be esterified with fatty acids to form cholesterol esters which are then stored within the cells [116]. 

Using NMR technique, cholesterol esters have been found to be abundantly present in tumor tissues in 

high grade gliomas, human urothelial carcinoma, and malignant renal cell carcinomas, but undetectable 

in normal tissues [116–120]. These findings demonstrate that cholesterol metabolism is also altered in 

these cancers. But the molecular mechanism underlying this alteration is largely unknown.  

Recently, low density lipoprotein receptor (LDLR) has been found to be upregulated in GBM patient 

tissues, xenograft tumors and cell lines, and this upregulation is correlated with high levels of cholesterol 

esters in GBM cells [29,121]. The function of LDLR is to bind low-density lipoprotein (LDL), the major 

cholesterol found in abundance within the bloodstream, and then bring LDL into cells and provide 

cholesterol for cell utilization [122]. Its upregulation could partially explain the accumulation of 

cholesterol esters in GBM. Interestingly, LDLR has been shown to also be upregulated by 

EGFR/PI3K/Akt signaling, which was been shown to be mediated by SREBP-1, but not SREBP-2 in 

GBM cells [29] (Figure 3).  

4.3. LXR/ABCA1 

Cholesterol homeostasis is regulated by uptake, de novo synthesis, and efflux (Figure 3). When 

cellular cholesterol level increases, it will be oxygenized to oxidized sterol and then activates liver X 

receptor (LXR), a transcriptional factor that controls expression of cholesterol efflux genes, such as 

ATP-binding cassette protein A1 (ABCA1) and G1 (ABCG1) [123]. ABCA1 and ABCG1 promote 

reverse transport of cholesterol outside of cells, thus reducing cellular cholesterol levels [124] (Figure 3). 

Interestingly, activation of LXR by its agonists GW3965 and T0901317 has been shown to significantly 

inhibit tumor growth in GBM, breast, and prostate cancers [24,25,29,125]. Additionally, activation of 

LXR by GW3965 downregulates LDLR levels through upregulating a ubiquitin ligase E3 known as 

inducible degrader of LDLR (Idol), which leads to LDLR degradation [29,126] (Figure 3). Therefore, 

activation of LXR could be a potential therapeutic strategy to inhibit GBM growth through increasing 

cholesterol efflux as well as decreasing its uptake. 
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Figure 3. Regulation of cholesterol metabolism in gliomas. Cholesterol homeostasis is 

regulated by uptake, synthesis and efflux. EGFR/PI3K/Akt signaling upregulates LDLR 

expression mediated by SREBP-1 to promote cholesterol uptake. Activation of LXR 

stimulates ABCA1 expression and promotes cholesterol efflux, but also reduces LDLR 

levels via upregulation of Inducible Degrader of LDLR (Idol), a ubiquitin ligase E3. LXR, 

liver X receptor; ABCA1, ATP-binding cassette transporter member 1; LDL, low density 

lipoprotein; LDLR, LDL receptor.  

 

5. Conclusions 

Metabolic reprogramming is a key feature driving oncogenesis in cancers. Recent studies have 

revealed that glucose, glutamine and lipid metabolism are largely altered in GBM and facilitate its 

malignant growth. Oncogenic signaling pathways are found to regulate these metabolic alterations. 

Targeting metabolic reprogramming is a novel and promising therapeutic strategy to treat cancers. 

Further understanding of the metabolic alterations in GBM will definitely shed light on developing 

effective approaches to abrogate GBM malignant growth, and also provide insights to overcome GBM 

resistance with current therapies.  
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