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Abstract: The focus of this brief review is to describe the role of noncoding regulatory RNAs,
including short RNAs (sRNA), transfer RNA (tRNA) fragments and microRNAs (miRNA) secreted
in extracellular vesicles (EVs), in inter-kingdom communication between bacteria and mammalian
(human) host cells. Bacteria secrete vesicles that contain noncoding regulatory RNAs, and recent
studies have shown that the bacterial vesicles fuse with and deliver regulatory RNAs to host cells,
and similar to eukaryotic miRNAs, regulatory RNAs modulate the host immune response to infection.
Recent studies have also demonstrated that mammalian cells secrete EVs containing miRNAs that
regulate the gut microbiome, biofilm formation and the bacterial response to antibiotics. Thus,
as evidence accumulates it is becoming clear that the secretion of noncoding regulatory RNAs
and miRNAs in extracellular vesicles is an important mechanism of bidirectional communication
between bacteria and mammalian (human) host cells. However, additional research is necessary to
elucidate how noncoding regulatory RNAs and miRNA secreted in extracellular vesicles mediate
inter-kingdom communication.

Keywords: outer membrane vesicles (OMV); extracellular vesicles (EVs); bacterial extracellular
vesicles (BEV); small non-coding RNA (sRNA); inter-kingdom communication

1. Introduction

Numerous studies have demonstrated that extracellular vesicles (EVs) play an impor-
tant role in cell–cell signaling in all three domains of life, and that EVs are an important
mechanism of intra-kingdom and inter-kingdom communication, including communica-
tion between hosts and pathogens (reviewed in [1–13]). The secretion of EVs as a mechanism
of intra-kingdom and inter-kingdom communication is evolutionarily conserved, as cells
from prokaryotes, plants, and animals release EVs [14–16]. Intercellular communication
mediated by EVs is an important aspect of host–pathogen interaction that does not require
direct cell–cell contact, since, for example, many bacteria reside in mucus overlying ep-
ithelial cells in the gut and lungs [17,18]. EVs are spherical, cell-derived fragments ~10 nm
to 1000 nm in diameter delimited by a lipid bilayer and contain proteins, lipids, nucleic
acids and many other cellular constituents [2,8,19–21]. The lipid bilayer protects intra-
vesicular RNA from extra-vesicular RNases, and proteins from extracellular proteases,
thereby increasing the biological half-life of the intra-vesicular content [18,22]. However,
studies have shown that RNA and proteins also decorate the extra-vesicular surface of
EVs and have biological activity [23]. EVs have been identified in all biological fluids and
organs [24], have long half-lives in blood (30 min to 6 h [25,26]), enter cells by a variety
of mechanisms, and once inside target cells, release their contents whereupon proteins,
small RNAs (sRNAs), tRNA fragments and microRNAs (miRNAs) regulate recipient cell
gene expression and function [1–13]. Currently, eukaryotic EVs are classified into many
subgroups, including exosomes, microvesicles, and apoptotic bodies, based on their origin,
biogenesis, size (~10 to 1000 nm) and composition [10,21,27,28]. However, at the present
time there is no consensus on EV subtypes due to a variety of issues, including the cellular
source, overlap in size, composition, the lack of knowledge about their biogenesis, and
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difficultly in isolating specific subtypes [10,27]. The International Society of Extracellular
Vesicles recommends the use of the term EVs in publications since most studies do not
identify the subtype [21,27–29]. Thus, in this review, the term EVs will be used as a gen-
eral term to describe vesicles secreted by non-microbial cells. The term outer membrane
vesicle (OMV) will be used to describe EVs secreted by Gram-negative bacteria. OMVs
are ~10 to 300 nm vesicles delimited by the outer membrane of Gram-negative bacteria
and their contents include periplasmic and cytoplasmic components, including sRNA,
tRNA fragments, DNA, lipids and proteins [18,30–37]. Gram-negative bacteria also secrete
outer-inner membrane vesicles (O-IMV), which are delimited by the outer and inner mem-
brane of the bacteria, although secretion of O-IMV represents less that 1% of the vesicles
secreted by Gram-negative bacteria [38,39]. The role of O-IMV in interdomain signaling is
not clear [38,39]. Gram-positive bacteria also secrete EVs, but since Gram-positive bacteria
do not contain an outer membrane, these EVs are often described as bacterial extracellular
vesicles (bEV or BEV) [10,19,20,40–46]. In this review, the terms EVs, OMVs and BEVs will
be used to describe EVs secreted by non-microbial cells, Gram-negative bacteria, and Gram-
positive bacteria, respectively. Many recent studies have shown that OMVs and BEVs
secreted by bacteria deliver sRNA and tRNA fragments (~18 to 50 nucleotides (nt) long) to
mammalian (human) cells and, although many details are lacking, it has been suggested
that the sRNA and tRNA fragments regulate target cell gene expression by sequestering
regulatory proteins and/or by base pairing with target mRNAs [4,18,22,30–32,41,47–56].
sRNAs are heterogeneous in size (~20 to 500 nt) and regulate gene expression by base-
pairing with the translation initiation region or coding sequence of target mRNAs or by
acting as sRNA sponges, which are produced by transgenes and have complementary
binding sites to specific miRNAs [13]. tRNAs are ~70 to 100 nt long molecules with highly
conserved sequences that form secondary cloverleaf and L-shaped three-dimensional struc-
tures [13,57–59]. tRNA fragments have been shown to mediate gene silencing in eukaryotic
cells through an argonaute (Ago2)-microRNA-like mechanism and have both negative
and positive effects on protein translation [57–59]. Many excellent and comprehensive
reviews on EVs, OMVs and BEVs have been published [1–13]. However, very few studies
have been published describing the role of extracellular vesicles as a delivery mechanism
for sRNA, tRNA fragments and miRNAs to target cells and elucidating the mechanism
whereby they mediate inter-kingdom signaling. Thus, in this review, the focus will be
on recent studies describing how sRNAs, tRNA fragments and miRNAs secreted inside
vesicles mediate host–pathogen interactions between bacteria and mammalian (human)
cells. In addition, unresolved issues and research opportunities will be discussed.

2. Extracellular Vesicles Secreted by Bacteria Are Important Mediators of Inter-Kingdom
Communication and Deliver sRNA and tRNA Fragments to the Mammalian Host

OMVs and BEVs secreted by microbes serve a variety of intra-kingdom functions,
including horizontal gene transfer, quorum sensing, biofilm formation, pathogenicity,
depredation, antibiotic resistance, defense, and nutrient acquisition [1–12,38,60,61]. Similar
to miRNAs, every bacterial sRNA and tRNA fragment is predicted to have multiple targets,
can regulate genes in cis and trans, modulates transcription and translation, and affects
mRNA stability [2]. Although, unlike eukaryotes, bacteria do not have a sRNA-mRNA-
induced silencing complex (RISC). The Hfq protein in bacteria stabilizes and presents
sRNAs to mRNA by a mechanism that resembles RISC in eukaryotes [2].

OMVs and BEVs mediate the inter-kingdom transfer of sRNA and tRNA fragments
between bacteria and mammalian cells without requiring direct contact [4,30–32,41,47–56].
For example, Pseudomonas aeruginosa, residing in the mucus layer overlying lung epithelial
cells, secretes OMVs that diffuse through the mucus, fuse with lipid rafts in the apical
membrane of airway epithelial cells and deliver a 23 nt tRNA fragment (sRNA-52320) into
host cells. sRNA-52320 suppresses the immune response to bacterial infection by target-
ing several genes in the LPS stimulated MAPK signaling pathway, thereby reducing IL-8
secretion and the migration of neutrophils into the lungs of mice (Figure 1) [18,36,56,62].
Thus, sRNA-52320 is predicted to facilitate the ability of P. aeruginosa to establish a chronic



Genes 2021, 12, 1010 3 of 9

lung infection in immunocompromised individuals [18]. sRNAs secreted in OMVs by
Aggregatibacter actinomycetemcomitans, a periodontic pathogen, can cross the blood–brain
barrier, and sRNAs in the OMVs stimulate TNF-a production by activating the NF-κB sig-
naling pathways in macrophages, promoting the secretion of pro-inflammatory cytokines
in the brain [63–65]. sRNAs in OMVs secreted by Escherichia coli are transferred into bladder
epithelial cells and suppress LPS-induced IL-1a secretion [66]. In E. coli OMVs, over 90%
of sequence reads are mapped to tRNA fragments, which are differentially packaged [67].
Listeria monocytogenes secretes OMVs containing the sRNA rli32 that stimulates IFN-β pro-
duction in bone marrow derived macrophages, thereby promoting the intracellular growth
of the pathogen [68,69]. Two sRNAs (sR-2509025 and sR-989262) secreted by Helicobacter
pylori in OMVs reduce LPS-stimulated IL-8 secretion by human gastric adenocarcinoma
cells in culture [70]. Although the mechanism whereby bacterial-derived sRNAs regulate
gene expression in eukaryotic host cells is not well characterized, several studies suggest
that prokaryotic sRNAs use Ago2 to enhance binding to mRNA targets [71,72]. For exam-
ple, the intracellular pathogen Mycobacterium marinum infects human THP-1 macrophage
cells and secretes a ∼23-nt sRNA that binds to the host RNA-induced silencing complex
(RISC) and interferes with gene expression [72]. In addition, Salmonella secretes numer-
ous sRNAs into the cytosol of infected human intestinal epithelial cells, and within the
host cell the sRNAs are processed into ~22 nt fragments by the Ago2-based non-classical
miRNA processing machinery [71]. One sRNA, Sal-1, facilitates the intracellular survival
of Salmonella in infected cells [71].
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rial gene expression and phenotype [10–12,27,28]. Transfection of eukaryotic miRNAs into 
Fusobacterium nucleatum and E. coli affects mRNA abundance and bacterial growth in the 
gut [73]. The same research group also found that miR-30d given orally ameliorates auto-
immune encephalomyelitis (EAE), a model of multiple sclerosis, by increasing Akkerman-
sia muciniphila abundance in the gut, which leads to an increase in regulatory T cells that 
suppress EAE symptoms [74].  None of these studies, however, examined the ability of 
EVs to deliver miRNAs to bacterial cells. In a recent study, EVs secreted by primary hu-
man airway epithelial cells were shown to deliver the miRNA let-7b-5p to P. aeruginosa 
[75]. Moreover, it was demonstrated that let-7b-5p reduced the formation of antibiotic re-
sistant biofilms by decreasing the abundance of several proteins essential for biofilm for-
mation [75] (Figure 2). The effect of let-7b-5p was inhibited by a let-7b-5p antagomir, 
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secretes OMVs containing sRNA52320, a 23 nt tRNA fragment. OMVs fuse with cholesterol-rich lipid
rafts in the apical membrane of airway epithelia cells, and deliver sRNA52320, which reduces the
expression of several genes in the LPS stimulated MAPK pathway, thereby reducing IL-8 secretion and
the migration of neutrophils into the lungs of mice [18,36,56,62]. Since neutrophils kill P. aeruginosa, it
is proposed that the secretion of sRNA52320 in OMVs is a mechanism to reduce neutrophil mediated
killing of P. aeruginosa, thereby enabling P. aeruginosa to establish/maintain chronic infection in
immunocompromised individuals.

BEVs (~20 nm to 400 nm) secreted by Gram-positive bacteria also contain sRNAs
(<100 nt, with most in the range of 10 to 40 nt) [10,19,20,40–46]. Although recent studies
have shown that sRNAs in BEVs affect host cell biology, to date no studies have identified
specific sRNAs that mediate the host response to BEVs. Staphylococcus aureus secretes
sRNA and DNA in BEVs that have been implicated in inducing IFN-β mRNA by activation
of Toll-like receptors in mouse macrophages [41]. S. aureus secrete BEVs that contain im-
munostimulatory DNA, RNA and peptidoglycan that activate innate immune receptors and
induce autophagy in host A549 epithelial cells [40]. Although Mycobacterium tuberculosis
(M.tb) is not considered a Gram-positive or Gram-negative bacterium, BEVs secreted by
M.tb contain RNAs that promote IFN-b secretion upon entry into RAW 264.7 macrophages,
which leads to M.tb clearance via activation of the macrophage RIG-I/MAVS signaling path-
way [61]. Importantly, combined treatment with M.tb BEVs and antibiotics decreases bacte-
rial load in a mouse model, reducing lung damage compared to treatment with antibiotics
alone [61]. Thus, several studies have demonstrated that Gram-positive bacteria regulate
the mammalian (human) host immune response by secreting BEVs containing sRNAs.

3. Extracellular Vesicles Secreted by Mammalian Cells Are Important Mediators of
Intercellular Communication and Delivery of miRNAs to Bacteria

A few studies have demonstrated that eukaryotic miRNAs (~22 nt long) affect bac-
terial gene expression and phenotype [10–12,27,28]. Transfection of eukaryotic miRNAs
into Fusobacterium nucleatum and E. coli affects mRNA abundance and bacterial growth
in the gut [73]. The same research group also found that miR-30d given orally amelio-
rates autoimmune encephalomyelitis (EAE), a model of multiple sclerosis, by increasing
Akkermansia muciniphila abundance in the gut, which leads to an increase in regulatory T
cells that suppress EAE symptoms [74]. None of these studies, however, examined the
ability of EVs to deliver miRNAs to bacterial cells. In a recent study, EVs secreted by
primary human airway epithelial cells were shown to deliver the miRNA let-7b-5p to
P. aeruginosa [75]. Moreover, it was demonstrated that let-7b-5p reduced the formation
of antibiotic resistant biofilms by decreasing the abundance of several proteins essential
for biofilm formation [75] (Figure 2). The effect of let-7b-5p was inhibited by a let-7b-5p
antagomir, which blocked the ability of let-7b-5p to bind to target mRNAs. Let-7b-5p was
also predicted to target the corresponding biofilm gene orthologs in Burkholderia cenocepacia,
another opportunistic lung pathogen, suggesting that the ability of let-7b-5p to reduce
biofilm formation and antibiotic sensitivity is not limited to P. aeruginosa [75]. Since several
let-7 family members are in clinical trials to reduce inflammation and, because chronic
P. aeruginosa lung infections are associated with a hyper-inflammatory state, treatment
with let-7b-5p and a β-lactam antibiotic in nanoparticles or EVs may benefit patients with
antibiotic-resistant P. aeruginosa infections [75]. Additional studies are required to deter-
mine if EVs secreted by other mammalian cells affect bacterial gene expression, how the
EVs deliver miRNA to the cytoplasm of bacteria and to elucidate the mechanism whereby
a eukaryotic miRNA affects prokaryotic gene expression.

Taken together, the studies described above demonstrate that inter-kingdom commu-
nication mediated by sRNA, tRNA fragments and miRNA containing EVs is bi-directional:
eukaryotic EVs containing miRNA regulate gene expression in bacteria, and conversely,
sRNA and tRNA fragments secreted by OMVs and BEVs affect gene expression and func-
tion in eukaryotic cells. However, to date, only one study has shown that EVs secreted by
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mammalian (human) cells deliver a miRNA that directly targets bacterial genes and affects
the bacterial phenotype [75].
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Figure 2. EVs (extracellular vesicles) secreted by mammalian (human) lung epithelial cells contain
a miRNA that increase the sensitivity of P. aeruginosa to antibiotics and reduces biofilm formation.
Airway epithelial cells secrete EVs which deliver the miRNA let-7b-5p to P. aeruginosa. Let-7b-
5p reduces the formation of antibiotic resistant P. aeruginosa biofilms and increases the ability of
antibiotics to kill P. aeruginosa. A proteomic analysis of P. aeruginosa revealed that let-7b-5p increases
the ability of β-lactam antibiotics to reduce biofilm formation by decreasing the abundance of several
proteins essential for biofilm formation [75].

4. Future Prospects

This brief review has summarized the current state of knowledge regarding our
understanding of how small noncoding regulatory RNAs secreted in vesicles mediate
inter-kingdom communication between bacteria and mammalian (human) hosts. Several
excellent reviews have described how vesicles also mediate signaling between all seven
kingdoms of life, including animalia, plantae, and fungi, etc. [2,7,11,12]. However, many
aspects of inter-kingdom communication by small regulatory RNAs in vesicles are either
poorly understood or unknown and require additional study. For example, the effect of
growth conditions, temperature, and antibiotics on vesicle secretion and small regulatory
RNA content of OMVs and BEVs are not well understood [22,44,51,76,77]. A few studies
have shown that small regulatory RNAs are differentially packaged in vesicles and that
the sRNA content of BEVs and OMVs is dependent on growth conditions and antibi-
otics [22,44,51,76]. Thus, additional studies are required to determine the effect of growth
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conditions and antibiotics on RNA content of bacterial vesicles, as well as the effect of
polymicrobial infections on RNA content of OMVs and BEVs, and how these factors affect
the host response to OMVs and BEVs. In addition, the mechanism whereby noncoding
regulatory RNAs affect inter-kingdom communication is also not well understood [78].
At least two mechanisms may be used by noncoding regulatory RNAs to mediate inter-
kingdom communication [11]. First, RNA molecules secreted by one organism could
integrate into the regulatory RNA pathway present in the other. As noted above, RNAs
secreted by Salmonella and E. coli are processed in eukaryotic cells by the RISC complex,
but details are unknown [71,79]. Second, some regulatory RNAs are exported in vesicles
containing the molecules required for their activity in the recipient cell. For example, Hfq
is exported in OMVs secreted by Yersinia pestis [76]. Moreover, little is known about the
mechanism whereby EVs deliver small regulatory RNAs to bacteria, and very few studies
have unambiguously elucidated the specific gene targets and mechanisms whereby small
regulatory RNAs affect gene expression in target cells. Additional studies are also required
to explore the use of EVs to prevent the formation of multidrug resistant biofilms [75].
The use of EVs as immunotheropeutics and as diagnostic tools for infectious disease also
warrant additional research. It should also be noted that vesicles contain other constituents
including proteins and virulence factors that mediate host–pathogen interactions [36,80].
Based on presentations at recent international meetings, including the International Society
of Extracellular Vesicles 2021 meeting, many of these issues, and more, are being studied.
Thus, the future of research in this exciting field of inter-kingdom communication by
regulatory RNAs secreted in vesicles is likely to produce many novel insights, which could
lead to the development of therapeutics using small regulatory RNAs to treat bacterial
infections and reduce bacteria-induced inflammation in the host.
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