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SUMMARY
Allografts of retinal pigment epithelial (RPE) cells have been considered for the treatment of ocular diseases. We recently started the

transplantation of induced pluripotent stem cell (iPSC)-derived RPE cells for patients with age-related macular degeneration (autogenic

grafts). However, there are at least two problems with this approach: (1) high cost, and (2) uselessness for acute patients. To resolve these

issues, we established RPE cells from induced iPSCs in HLA homozygote donors. In vitro, human T cells directly recognized allogeneic

iPSC-derived RPE cells that expressed HLA class I/II antigens. However, these T cells failed to respond to HLA-A, -B, and -DRB1-matched

iPSC-derived RPE cells from HLA homozygous donors. Because of the lack of T cell response to iPSC-derived RPE cells from HLA

homozygous donors, we can use these allogeneic iPSC-derived RPE cells in future clinical trials if the recipient and donor are HLA

matched.
INTRODUCTION

Retinal pigment epithelial (RPE) cells play an important

role in maintaining the immune privileged status of the

eye. RPE cells have both proliferative and anti-prolifera-

tive effects on T cells, and these effects are regulated by

cytokines (Streilein, 2003; Sugita, 2009). Interferon-g

(IFN-g) inflammatory cytokines are upregulated in immu-

nological processes such as transplant rejection (Huber

and Irschick, 1988). IFN-g induces the expression of

major histocompatibility complex (MHC) class I and II

(MHC-I, MHC-II) molecules on RPE cells (Enzmann

et al., 1999; Sugita et al., 2009). T lymphocytes and in-

flammatory cytokines play the central effector role in

cellular immune reactions including immune rejection.

In addition to effective antigen recognition, the activa-

tion of these cells causes the secretion of inflammatory

cytokines, i.e., IFN-g. A complex network of helper

CD4+ T cells (Th cells) is then initiated, and the

lymphatic cell proliferation and immune reactions

continue. This cascade may play a role in the rejection

of allogeneic RPE transplants in the eye. Modulation of

the transplanted cells leads to secretion of inflammatory

cytokines that attract T cells and cause immune rejection.

Therefore, the investigation of rejection mechanisms is

important for the prevention of this process and pro-

longed graft survival.

RPE cell-associated allografts have been considered for

the treatment of ocular diseases such as age-related ma-

cular degeneration (AMD). We successfully established
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human RPE cells from human iPSCs (Kamao et al.,

2014; Sugita et al., 2015). In addition, we recently trans-

planted an iPSC-derived RPE (iPS-RPE) sheet into an

AMD patient autograft. RPE cells including iPS-RPE cells

have immunosuppressive properties; human RPE cells

suppress T cell activation and can convert T cells to regu-

latory T cells (Horie et al., 2010; Imai et al., 2012; Sugita

et al., 2015; Usui et al., 2008). However, several groups

in human clinical trials found that RPE allografts did

not survive because of immune rejection (Algvere, 1997;

Algvere et al., 1999; Peyman et al., 1991; Weisz et al.,

1999). Algvere et al. (1999) reported that immune rejec-

tion after RPE transplantation in humans includes loss

of visual function over the transplant, development of

an exudative response (e.g., serous retinal detachment),

fluorescein leakage of the grafts, disruption of the grafts,

depigmentation of the grafts, and encapsulation of the

grafts. However, there have been no previous reports of

how antigen and cell type affect the outcome of the

retinal transplantation. In addition, as far as we know,

no one has reported that RPE cells derived from embry-

onic stem cells (ESCs)/iPSCs are recognized by MHC-

restricted immune cells, especially T cells.

Therefore, the purpose of the present study was to deter-

mine whether human RPE cells derived from iPSCs could

be recognized by human leukocyte antigen (HLA)-

restricted T cells. We used an in vitro model with human

iPS-RPE cells from HLA-3 locus (A, B, DRB1) homozygote

donors as target cells and allogeneic T cells as responder

effector cells.
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RESULTS

Expression of HLA Class I and II on iPSC-Derived

RPE Cells

To confirm the expression of HLAmolecules on human iPS-

RPEcells,weprepared several iPS-RPEcell lines (Kamaoet al.,

2014; Sugita et al., 2015) and human control cells (ESC-

derived RPE cells, ARPE-19 cell lines, fetal primary RPE cells,

cornea endothelial cells, fibroblasts, and iPSCs). First, we

examined the expression of HLA class I and II on iPS-RPE

cells by flow cytometry. The iPS-RPE cells constitutively

expressed HLA class I (A, B, C), but not class II (DR, DP,

DQ, Figure 1A). IFN-g-pretreated iPS-RPE cells expressed

HLA class II, but interleukin-17A/F (IL-17A/F)-treated or tu-

mor necrosis factor a (TNF-a)-treated cells did not. Conven-

tional human RPE cell lines (ARPE-19) had similar results

(data not shown). Other RPE cell lines also did not express

class II under normal conditions, but class II expression

was induced in thepresence of IFN-g (Figure S1). The expres-

sionpattern incontrolhumanRPEcells, suchasESC-derived

RPE cells, ARPE-19 cells, and fetal RPE cells, and other con-

trol cells (cornea endothelial cells and fibroblasts) was

similar. However, iPSCs did not express HLA class II mole-

cules even when IFN-gwas added to the culture (Figure S1).

During culture, the expression pattern of class I and II mol-

ecules in iPS-RPE cells was similar, but a slightly different

(Figure S2). For example, iPS-RPE cells at the early stage

(p1, day 14) expressed high levels of HLA class II when

IFN-g was added to the culture, but the expression was

downregulated during the culture (p4, day 90). Importantly,

the expression of HLA-DR on iPS-RPE cells was upregulated

when the cells were pretreated with IFN-g, but not with

other recombinant proteins (IL-1b, IL-2, IL-4, IL-6, IL-12,

IL-17A/F, IL-22, IL-23, TNF-a, transforming growth factor

b2 [TGF-b2], granulocyte macrophage colony-stimulating

factor [GM-CSF], IL-8, MIG, MCP-1 [Figure 1B], IL-10, IL-

21, IL-27, TGF-b1, TNFRI,macrophagemigration inhibitory

factor, thrombospondin, and lipopolysaccharide; data not

shown). The expression of HLA-DR in the presence of

IFN-g was upregulated in a cytokine dose-dependent

manner (Figure 1C), and iPS-RPE cells exposed to superna-
Figure 1. Expression of HLA Class I and II on human iPSC-Derived
(A) iPS-RPE cells (836B1) were stained with anti-HLA class I antibod
presence of recombinant IFN-g, IL-17A/F, or TNF-a were cultured fo
intensity (MFI). Isotype control is shown in blue.
(B) iPS-RPE cells (454E2) were cultured with human recombinant prot
TNF-a, TGFb2, GM-CSF, IL-8/CXCL8, MIG/CXCL9, and MCP-1/CCL2, for
obtained similar results with anti-human HLA-DR, -DP, and -DQ antib
(C) 454E2 iPS-RPE cells were cultured with recombinant IFN-g in a dos
stained with anti-HLA-DR antibody. Numbers in parentheses indicate
(D) iPS-RPE cells exposed to supernatants from activated T cells (ago
anti-HLA-DR antibodies. Numbers in parentheses indicate MFI.
tants fromactivatedTcells, butnot fromnaiveTcells, clearly

expressed HLA-DR (Figure 1D). Taken together, our experi-

mental evidence indicates that HLAmolecules are uniquely

expressedon the surface ofRPE cells, including iPS-RPE cells.

HLA Molecule Disparity between Lymphocytes and

Allogeneic iPS-RPE Cells Induces Immune Responses

We confirmed that the HLA mismatch between peripheral

blood mononuclear cells (PBMCs) and allogeneic iPS-RPE

cells was sufficient to elicit allogeneic immune responses.

We summarized the results of HLA-typing tests for

HLA-A, -B, -C, -DRB1, -DQB1, and -DPB1, in Tcells collected

from healthy volunteers (n = 26, Table S1). MHC disparity

between T cells and allogeneic iPS-RPE cells was previously

shown to induce immune responses in animal models

(Kamao et al., 2014). PBMCs from healthy donors were

cultured with human iPS-RPE cells from the same donor

(autogenic) or another donor (allogeneic). In a PBMC-RPE

mixed lymphocyte reaction (MLR) assay, the PBMCs prolif-

erated in vitro when co-cultured with allogeneic 454E2 iPS-

RPE cells, as well as allogeneic B cells (positive control cells:

Figure 2A). On the other hand, the PBMCs did not prolifer-

ate when co-cultured with allogeneic iPSCs (data not

shown). PBMCs from a TLHD1 donor did not induce prolif-

eration of TLHD1 iPS-RPE cells, whereas the PBMCs

induced proliferation when co-cultured with allogeneic

454E2 iPS-RPE cells and ARPE-19 cells (Figure 2B). Alloge-

neic proliferation did not occur between TLHD21 or

TLHD10 PBMCs and 454E2 RPE cells with completely

matchedHLA class I and II (HLA-A, -B, and -DRB1), whereas

the PBMCs responded to other HLA-mismatched RPE cells

(Figures 2B, S3A, and S3B). In addition, PBMCs from

TLHD15, TLHD23, and TLHD24 donors proliferated when

HLA homozygote iPS-RPE cells (454E2 and 453F2) and

RPE cell lines were added to the cultures (Figure S3A).

iPS-RPE Cells from HLA Homozygote iPSCs Do Not

Respond to HLA-Matched Allogeneic Immune Cells

In Vitro

Next, we examined what kind of cell proliferates in

cultures of PBMCs plus iPS-RPE cells. For the assay, we used
RPE Cells
y (A, B, C) or class II antibody (DR, DQ, DP). iPS-RPE cells in the
r 48 hr (red). Numbers in the graphs indicate mean fluorescence

eins, such as IL-1b, IL-2, IL-4, IL-6, IL-12, IL-17A/F, IL-22, IL-23,
48 hr, and the cells were stained with anti-HLA-DR antibodies. We
odies.
e-dependent manner (0, 0.1, 1, 10, 100 ng/mL), and the cells were
MFI.

nistic anti-CD3 antibody-treated) or naive T cells were stained with
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anti-human Ki-67 antibody (a cell proliferation marker) in

fluorescence-activated cell sorting (FACS) analysis. In the

MLR assay with fresh PBMCs all cell types in PBMCs prolif-

erated, except CD11b+ cells, when co-cultured with alloge-

neic B cells as a positive control compared with PBMCs

only (Figure S4). The target B cells greatly expressed HLA

class I, class II, CD40, CD80 (B7-1), and CD86 (B7-2) mole-

cules (data not shown). By contrast, CD4+ cells (Th cells),

CD8+ cells (cytotoxic T cells), CD11b+ cells (macrophages/

monocytes), CD19+ cells (B cells), and CD56+ cells (natural

killer [NK] cells) in TLHD1 PBMCs failed to proliferate

when co-cultured with autogenic RPE cells (Figure S4).

In the PBMC-RPE MLR assay with allogeneic HLA homo-

zygote iPS-RPE cells (454E2 and Ff-I01), these immune cells

in PBMCs (TLHD10) failed to proliferate when co-cultured

with HLA-matched allogeneic iPS-RPE cells (HLA-A, -B,

and -DRB1 matched: Figure 3A). However, these immune

cells in PBMCs (TLHD14) induced the proliferation of

HLA-mismatched iPS-RPE cells (TLHD1 and Ff-I01), i.e.,

all inflammatory cell types, especially CD4+ and CD8+

T cells, responded to TLHD1 iPS-RPE cells (all HLA mis-

matched) compared with PBMCs only (Figure 3B). More-

over, CD4+ and CD8+ Tcells in a TLHD14 donor responded

to Ff-I01 RPE lines that were HLA-A matched and HLA-B,

-DRB1 mismatched. We had similar results with TLHD21

donor PBMCs plus HLA-mismatched TLHD1 RPE cells and

HLA-matched Ff-I01 RPE cells; CD4 + and CD8+ T cells in

TLHD21 donor PBMCs failed to respond to Ff-I01 RPE, but

CD4+andCD8+Tcellshighly responded toTLHD1RPEcells

in vitro (Figure S5). These results imply that T lymphocytes

may recognize MHC molecules on allogeneic iPS-RPE cells

and thenproliferate.However, an immune response cannot

be induced in the PBMC-RPEMLR assay when the lympho-

cytes and RPE cells are HLA matched.

CD4+ T Cells Can Recognize HLA Molecules on

Allogeneic iPS-RPE Cells, but Not MHC-Matched

RPE Cells

We next examined whether the RPE-direct recognition by

T cells occurred in an HLA-restricted manner. We used pu-

rifiedCD4+ Tcells co-culturedwith iPS-RPE cells in the pres-

ence of recombinant IL-2 for a CD4-RPE cytokine assay.

HLA homozygote 454E2 iPS-RPE cells and CD4+ T cells

were co-cultured, and the supernatants were collected for

48 hr to measure the inflammatory cytokines.
Figure 2. Lymphocyte Reactions of Allogeneic iPSC-Derived RPE C
(A) CFSE-labeled PBMCs with iPS-RPE cells were analyzed by flow cy
donors) or B cells (a positive control) were co-cultured with PBMCs (e
200:1, 100:1, or 50:1).
(B) RPE cells (454E2 iPS-RPE, TLHD1 iPS-RPE, and ARPE-19 cells) w
TLHD21 donor (right panels). The TLHD21 donor was completely match
donor was mismatched. Numbers in the histogram indicate CFSE-posi
We first examined which cytokines are released at high

concentrations in the direct reactions between CD4+

Tcells and allogeneic iPS-RPE cells. As revealed in Figure 4A,

supernatants from the cultures of 454E2 iPS-RPE cells and

CD4+ T cells (a TLHD1 MHC-mismatched donor) con-

tained significant levels of IL-1a, IL-1b, IL-1RA, IL-4, IL-6,

IL-12p70, GM-CSF, TNF-a, TNF-b, and IFN-g, compared

with that of T cells only or T cells exposed to autogenic

TLHD1 RPE cells. When CD4+ T cells were prepared from

an MHC-matched donor TLHD21 to 454E2 RPE cells, the

T cells did not respond to the RPE cells. The T cells did

not produce inflammatory cytokines, especially Th1-

related cytokines (IL-1b, IL-12p70, GM-CSF, TNF-a, TNF-

b, and IFN-g), although the Tcells are able to produce these

cytokines in the presence of 453F2 RPE cells that are

MHC-mismatchedMHChomozygote cell lines (Figure 4A).

These T cells in the cultures do not produce IL-7, IL-15,

IL-31, or IFN-a (data not shown).

We next examined whether T cells exposed to allogeneic

iPS-RPE cells can exhibit the Th1 phenotype. In qRT-PCR

analysis, PBMCs in the presence of iPS-RPE cells expressed

higher levels of mRNA for Th1-related genes such as T-bet,

Stat1, IFN-g, and CXCR3 compared with PBMCs alone

without RPE cells (Figure 4B).

We then confirmed these results by performing FACS

analysis with antibodies for Th1 cytokines, IFN-g, IL-2,

and TNF-a. Compared with control cultures (T cells

without iPS-RPE cells), CD4+ T cells exposed to 454E2

iPS-RPE cells expressed IFN-g, IL-2, and TNF-a (Figure 5A).

However, TLHD21 T cells failed to express IFN-g (but not

IL-2 and TNF-a) when co-cultured with MHC-matched

RPE cells (Figure 5B). Therefore, we chose IFN-g evaluation

for the following experiments.

CD4+ T Cells Cannot Recognize HLA-DRB1-Matched

Allogeneic iPS-RPE Cells from HLA Homozygous

Donors

To examine the allogeneic recognition of T cells to HLA ho-

mozygous iPS-RPE cells, we next prepared CD4+ T cells

from several healthy volunteers. First, we confirmed that

CD4+ T cells recognize autogenic iPS-RPE cells. TLHD1

T cells did not produce IFN-g when co-cultured with

TLHD1 RPE cells, and the Tcells produced significant levels

of IFN-g without RPE cells (control culture, Figure 6A). On

the other hand, TLHD3 T cells recognized TLHD1 iPS-RPE
ells: PBMC-RPE MLR Assay
tometry. iPS-RPE cells (target cells, 454E2 from HLA homozygote
ffector cells) from a TLHD1 donor for 120 hr (effector/target ratio =

ere co-cultured with PBMCs from a TLHD1 donor (left panels) or a
ed for HLA-A, -B, and -DRB1 in 454E2 iPS-RPE cells, and the TLHD1
tive cells.

Stem Cell Reports j Vol. 7 j 619–634 j October 11, 2016 623



Figure 3. Another PBMC-RPE MLR Assay with Alloge-
neic iPS-RPE Cells by Ki-67 Proliferation
To evaluate the PBMC-RPE MLR assay with allogeneic HLA
homozygote iPS-RPE cells (454E2, 453F2, and Ff-I01)
and B cells as positive control cells, we used Ki-67 pro-
liferation by FACS analysis using antibodies against CD4+

cells (helper T cells), CD8+ cells (cytotoxic T cells),
CD11b+ cells (macrophages/monocytes), CD19+ cells
(B cells), and CD56+ (NK cells).
(A) TLHD10 PBMCs versus both 454E2 and Ff-I01 iPS-RPE
cells = HLA-A, -B, -DRB1 matched.
(B) TLHD14 PBMCs versus TLHD1 iPS-RPE cells =
HLA-A, -B, -DRB1 mismatched, and Ff-I01 iPS-RPE
cells = HLA-A matched, and HLA-B and -DRB1 mis-
matched.
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cells (HLA mismatched), and the T cells produced signifi-

cant amounts of IFN-g. Unlike TLHD1 RPE cells, TLHD1

T cells greatly produced IFN-g when co-cultured with

HLA-mismatched 454E2 RPE cells (Figure 6B). Importantly,

there was a statistically significant difference between

T cells and RPE cells, but the extent of the difference was

reduced when we added anti-CD3 antibody (first signal

blocking) to the cultures (Figure 6B). On the other hand,

there was no difference between T cells and RPE cells

when TLHD10 T cells were co-cultured with 454E2 RPE

cells (HLA-A, -B, -DRB1 matched) in the presence or

absence of anti-CD3 antibody (Figure 6C). Moreover, we

obtained similar results when using other HLA homozy-

gote lines 453F2 (Figure 6D) and human RPE cell lines (Fig-

ure 6E). These results suggest that T cells directly recognize

MHC molecules on RPE cells via the first signal.

To confirm the ratio of T cells to RPE cells in the cultures,

we prepared 5 3 105 T cells and from 1 3 103 (500:1) to

5 3 105 RPE cells (1:1). T cells significantly produced

IFN-g in an RPE cell number-dependent manner, whereas

T cell activation was suppressed with 5 3 105 confluent

RPE cells (Figure 6F), indicating that human RPE cells also

have anti-inflammatory properties (Horie et al., 2010;

Imai et al., 2012; Sugita et al., 2015; Usui et al., 2008).

To confirm these results, we prepared T cells from several

HLA-mismatched donors. Representative results indicate

that supernatants contained significant levels of IFN-g in

the T cell RPE cultures when the tested T cells were mis-

matched to HLA class II (DRB1) of 454E2 RPE cells (Figures

S6A and S6B) or 453F2 RPE cells (Figures S6D and S6F). In

contrast, the RPE recognition by T cells was reduced if the

tested T cells (TLHD4 or TLHD6) matched the HLA-DRB1

on these RPE cells (Figures S6C and S6E). These results sug-

gest that CD4+ helper Tcells can recognizeMHCmolecules,

probably HLA class II such as HLA-DRB1, on allogeneic

iPS-RPE cells. We summarize the results of the T cell

response to MHC homozygote 454E2 iPS-RPE cells in Table

S2. In the tested donors, six types of T cells from TLHD6

(HLA-B*52:01 and DRB1*15:02 matched), TLHD10

(HLA-A*24:02, B*52:01, and DRB1*15:02 matched),

TLHD11 (HLA-A*24:02 matched), TLHD18 (HLA-B*52:01

and DRB1*15:02 matched), TLHD19 (HLA-DRB1*15:02

matched), and TLHD21 (HLA-A*24:02, B52:01, and

DRB1*15:02 matched) did not respond to the RPE cells

in vitro.

To confirm this finding, we examined whether CD4+

T cells can recognize allogeneic iPS-RPE cells in the pres-

ence of anti-HLA class II (MHC-II) blocking antibody.

T cells significantly produced IFN-g when co-cultured

with 454E2 RPE cells, but the T cells failed to respond

when anti-HLA class II antibodies were added to the cul-

tures (Figure 7A). In addition, FACS analysis exhibited

similar results (Figure 7B). These results indicate that the
helper T cell response to allogeneic iPS-RPE cells is HLA

class II restricted.

We next examined whether T cells are able to recognize

iPSCs in vitro. First, we examined the expression of HLA

class II (MHC-II) on human iPSCs, 454E2 homozygote

lines. The iPSCs did not express HLA class II even when

IFN-g was added to the culture (Figure 7C). In an in vitro

rejection assay using iPSCs, CD4+ T cells produced less

IFN-g even if co-cultured with allogeneic iPSCs (Figure 7C).

In contrast, T cells produced large amounts of IFN-g when

co-cultured with allogeneic iPS-RPE cells or human skin

fibroblasts (both from a 454E2 donor). Therefore, it is

assumed that RPE cells are highly immunogenic compared

with iPSCs.

We also examined whether IFN-g-pretreated RPE cells

have more immunogenicity because these iPS-RPE cells in-

ducibly express HLA class II (see Figure 1). As expected,

supernatants from T-RPE cultures contained high levels of

IFN-g when 454E2 or 453F2 RPE cells were pretreated

with recombinant IFN-g, compared with the results for un-

treated RPE cells (Figure S7A).We also verified that the Tcell

recognition is required for antigen-presenting cell (APC)

immunity. Autogenic APCs were used in the CD4-RPE

rejection assay. T cells produced significant amounts of

IFN-g in cultures of 454E2 RPE cells with or without

APCs, but there was more effective production when

APCs were added (Figure S7B). These results imply that

T cell recognition by RPE cells might be required for APC

activation.
DISCUSSION

In the present study, we prepared human RPE cells derived

from iPSCs as stimulators and T cells as responders to eval-

uate immune rejection in vitro. The ability of RPE cells to

stimulate the bystander T cells was analyzed using MLR

and IFN-g production by T cells. In some experiments,

APCs and anti-CD3 antibody (first signal blocking) were

also used for the in vitro rejection assay. For the assay, we

used T cell culture medium containing recombinant hu-

man IL-2. IL-2 is a growth factor for all subpopulations of

T cells and acts as an antigen-nonspecific factor in the pro-

liferation of these T cells. Th1 cells produce IL-2 as well as

IFN-g. The MLR assay is a useful tool with which to inves-

tigate the mechanisms of allogeneic responsiveness

in vitro (allo-MLR) including the response to RPE cells (Ka-

mao et al., 2014). In addition, we purified CD4+ T cells co-

cultured with iPS-RPE cells in the presence of recombinant

IL-2. To evaluate the recognition of T cells, we collected the

supernatants to measure inflammatory cytokines such as

IFN-g for CD4+ T cells. We then analyzed whether the

T cell recognition of RPE cells was HLA restricted. In this
Stem Cell Reports j Vol. 7 j 619–634 j October 11, 2016 625
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study, we focused on HLA-A, -B, and -DRB1 among the six

HLA loci antigens, although we tested all six HLA geno-

types, A, B, C, DRB1, DQB1, and DPB1, in PBMCs and

RPE cells.

Retinal allografts have been considered for the treatment

of ocular disease, and there is extensive evidence that allo-

grafts can survive in the retinawithout immunosuppression

(Algvere et al., 1999). However, we previously showed that

allogeneic transplants of iPS-RPE cells in animal models

could elicit immune responses in the retina (Kamao et al.,

2014), and several groups found that RPE allografts did not

survive in human clinical trials (Algvere, 1997; Algvere

et al., 1999; Peyman et al., 1991; Weisz et al., 1999). There

have been no previous reports of how antigen (including

MHC antigen) and cell type affect the outcome of retinal

transplantation. In humans, allogeneic cell transplants

almost always include a short course of immunosuppres-

sion, commonly cyclosporine A or tacrolimus, to minimize

the chances of graft rejection through a T cell-mediated

adaptive immune response (Clipstone and Crabtree,

1992). Eventuallywemightbeable to control immunerejec-

tion by using T cell-specific medication. In addition, in

immunohistochemistry with retinal sections, many T cells

had invaded the retina after transplantation of iPS-RPE

cells/sheets (allografts) in animal models, whereas control

retinal sections examined by immunohistochemistry had

no T cells in the retina (our unpublished data). Therefore,

the T cell-mediated immune response plays a critical role

in the pathogenesis of immune rejection after allogeneic

RPE transplantation. As revealed in the present study,

T cells exposed to iPS-RPE cells exhibited a Th1-type

response (IFN-g+ IL-2+ IL-1b+ T-bet+ STAT1+ CXCR3+). In

fact, RPE cells, especially IFN-g-treated RPE cells, can pro-

duce Th1-related chemokines (IFN-g-related chemokines)

such as CXCL9, CXCL10, and CXCL11 (Juel et al., 2012).

We have confirmed that established iPS-RPE cells consti-

tutively expressMHC-I but notMHC-II. However, the cyto-

kines produced acutely in response to immune rejection

may upregulate RPE MHC-II expression, as seen in vitro.
Figure 4. Detection of Inflammatory Cytokines by CD4+ T Cells fro
Homozygote iPS-RPE Cells
(A) Supernatants of CD4+ T cells (a TLHD1 donor) exposed to TLHD1
collected for a multiplex cytokine array assay (IL-1a, IL-1b, IL-1RA, I
In addition, data from TLHD21 CD4+ T cells plus 454E2 iPS-RPE cells (al
cells (allogeneic reaction, HLA-A, -B, -DRB1 mismatched) are also pr
periments. *p < 0.05, **p < 0.005, ***p < 0.0005 compared with the
(B) Detection of mRNA for Th1-related genes in PBMCs in the presenc
exposed to allogeneic iPS-RPE cells (453F2 MHC homozygote lines).
amplification, cDNA was amplified by using primers for T-bet (trans
transcription 1), CXCR3 (chemokine C-X-C motif receptor 3), IFN-g, an
(DDCt for control PBMCs = 1). We obtained similar results with other iP
of three independent experiments. *p < 0.05 compared with the con
This upregulation may be sufficient to initiate a recogni-

tion response in vivo, and it seems that infiltrating T cells

would be strongly activated by the presentation of allospe-

cificMHC. SinceMHC-II was inducibly expressed by IFN-g-

treated RPE cells, but not by other cytokine-treated cells, it

is assumed that the uniqueMHC-II expression on RPE cells

might be IFN-g specific, as shown in this study. In addition,

RPE cells have been reported to act as APCs in the retina

(Percopo et al., 1990). In previous reports (Drukker et al.,

2002; Suarez-Alvarez et al., 2010), human iPSCs/ESCs

have low MHC-I expression, undetectable MHC-II expres-

sion, and no expression of CD80 (B7-1)/CD86 (B7-2) co-

stimulatory molecules, suggesting that the human iPSCs/

ESCs have a limited capacity for antigen processing and

presentation. However, RPE cells, including differentiated

cells from human iPSCs, expressed MHC-I, MHC-II, and

several co-stimulatory molecules (B7-H1, B7-H3, and

B7-H5; data not shown), and the expression of these

antigens in RPE cells determines the outcome of alloan-

tigen-specific T cell responses in vitro.

Compared with the rejection of other graft types, corneal

allograft rejection is delayed and less frequent, in part

because the normal cornea lacks MHC-II-expressing APCs

(Hamrah et al., 2002). Human RPE cells have a similar

phenotype as corneal cells. As shown in the present study,

iPS-RPE cells do not express MHC-II, and they constitu-

tively express MHC-I. During the stress of immune rejec-

tion, MHC-II molecules are expressed by RPE cells, making

these MHC-II-positive retinal cells potential targets for

CD4+ effector T cells, especially Th1 cells. After the activa-

tion of helper T cells, CD8+ cytotoxic T cells (CTLs) can

be activated by inflammatory cytokines such as IL-2 and

IFN-g, which are produced by Th1 cells. Eventually, CTLs

attack and kill the target cells that express MHC-I. To avoid

immune rejection without strong immunosuppression for

successful transplantation, we should use HLA homozy-

gous RPE cell lines to match the recipient. As revealed in

the present study, HLA disparity between Tcells and alloge-

neic iPS-RPE cells can induce immune responses, i.e., MLRs
m HLA-Matched or -Mismatched Donors when Co-cultured with

iPS-RPE cells (autogenic) or 454E2 iPS-RPE cells (allogeneic) were
L-4, IL-5, IL-6, IL-12p70, IL-13, GM-CSF, TNF-a, TNF-b, and IFN-g).
logeneic reaction, but HLA-A, -B, -DRB1 matched) or 453F2 iPS-RPE
esented. Data represent the mean ± SEM of three independent ex-
positive control (CD4+ T cells alone, open bars). ND, not detected.
e of iPS-RPE cells by qRT-PCR. Total RNA was extracted from PBMCs
PBMCs without RPE cells were also prepared as a control. For PCR
cription factors T box), Stat1 (signal transducer and activator of
d b-actin. Results indicate the relative expression of the molecules
S-RPE cell lines (836B1 and 454E2). Data represent the mean ± SEM
trol (PBMCs alone, open bars).

Stem Cell Reports j Vol. 7 j 619–634 j October 11, 2016 627



Figure 5. Expression of Th1-Associated Cytokines in Allogeneic iPS-RPE Cell-Exposed Helper T Cells
In FACS analysis, purified CD4+ T cells exposed to allogeneic HLA homozygous 454E2 iPS-RPE cells were stained with anti-human
CD4/IFN-g, IL-2, or TNF-a antibody for 48 hr.
(A) TLHD1 donor (versus 454E2 MHC-mismatched).
(B) TLHD21 donor (versus 454E2 MHC-matched).
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(allogeneic) and T cell activation (production of infla-

mmatory cytokines). However, the HLA-restricted immune

reaction did not occur when iPS-RPE cells from HLA

homozygous donors were used. Although a more detailed

analysis is needed with a large number of target cells (RPE

cells) and effector cells (T cells or PBMCs), we note that

effector T cells can recognize MHCmolecules on allogeneic

iPS-RPE cells, and the immune reaction by the Tcells can be

prevented after HLA blood tests.

In conclusion, T lymphocytes cannot recognize HLA

molecules on allogeneic iPS-RPE cells established from

HLA homozygote donors, as well as autogenic iPS-RPE cells

in vitro. We plan to transplant human iPS-RPE cells using

HLA homozygote allografts in our next clinical trial, and

are now examining the HLA phenotype in patients with

ocular retinal diseases such as AMD.
EXPERIMENTAL PROCEDURES

Establishment of Human iPSCs
After informed consent was obtained, iPSCs (454E2, 453F2, and

TLHD1) were established from skin fibroblasts or dental pulp cells

of a patient with retinitis pigmentosa or a healthy donor by using

an episomal vector of several genes, OCT3/4, SOX2, KLF4, L-MYC,

LIN28, and p53 small hairpin RNA (Sugita et al., 2015). iPSCs were

established from dermal fibroblasts of a patient with retinitis pig-

mentosa (101G26) or a healthy donor (836B1) by using an

episomal vector of six genes, OCT3/4, SOX2, KLF4, L-MYC,

LIN28, and GLIS1 (Sugita et al., 2015). Ff-I01 iPSCs (Okita et al.,

2013) were also established from healthy donor PBMCs by pCE-

hSK, pCE-hUL, pCE-hOCT3/4, pCE-mp53DD, and pCXB-EBNA1.

101G26, 836B1, and TLHD1 iPSCs were established from HLA

heterozygous donors, and 454E2, 453F2, and Ff-I01 iPSCs were es-

tablished from HLA homozygous donors. The research followed

the tenets of the Declaration of Helsinki, and the study was

approved by the Institutional Ethics Committees of the Center

for Developmental Biology, RIKEN.

Preparation of iPSC-Derived RPE Cells
To differentiate into RPE cells, we cultured human iPSCs on

gelatin-coated dishes using Glasgow’s minimal essential medium

(GMEM) supplemented as previously described (Kamao et al.,

2014; Sugita et al., 2015). Signal inhibitors Y-27632 (10 mM,

Wako), SB431542 (5 mM, Sigma), and CKI-7 (3 mM, Sigma) were

added to the GMEM (Kamao et al., 2014; Sugita et al., 2015). After

the appearance of pigment epithelium-like colonies, the medium

was switched to DMEM/F12 medium with B27 supplement

(Invitrogen). iPS-RPE cells expressed specific makers for primary

RPE cells such as RPE65, bestrophin, MiTF, ZO-1, TGF-b1, -b2,

and -b3, pigment epithelium-derived factor, and vascular endothe-

lial growth factor (Kamao et al., 2014; Sugita et al., 2015).

HLA Typing
HLA typing (A, B, C, DRB1, DQB1, and DPB1) of human iPS-RPE

cells, control cells, or blood of healthy donors was performed
with PCR reverse sequence-specific oligonucleotide probes

using LABType SSO (One Lambda) or WAKFlow (Wakunaga Phar-

maceutical) (Okita et al., 2011). The results of HLA-allele typing

of blood from healthy donors are shown in Table S1. HLA-allele

type in human iPS-RPE cells and control cells was as follows. (1)

836B1 iPS-RPE cells as HLA-A*02:01/-; HLA-B*27:03/50:01;

HLA-C*01:02/04:01; HLA-DRB1*01:01/13:03; HLA-DQB1*03:01/

05:01; HLA-DPB1*01:01/23:01. (2) 101G26 iPS-RPE cells as

HLA-A*11:01/24:02; HLA-B*40:01/54:01; HLA-C*01:02/07:02;

HLA-DRB1*04:05/08:03; HLA-DQB1*06:01/-; HLA-DPB1*02:01/

05:01. (3) 454E2 iPS-RPE cells as HLA-A*24:02/-; HLA-B*52:01/-;

HLA-C*12:02/-; HLA-DRB1*15:02/-; HLA-DQB1*06:01/-; HLA-

DPB1*05:01/09:01. (4) 453F2 iPS-RPE cells as HLA-A*11:01/-;

HLA-B*15:01/-; HLA-C*04:01/-; HLA-DRB1*04:06/-; HLA-

DQB1*03:02/-; HLA-DPB1*02:01/04:02. (5) Ff-I01 iPS-RPE

cells as HLA-A*24:02/-; HLA-B*52:01/-; HLA-C*12:02/-; HLA-

DRB1*15:02/-; HLA-DQB1*06:01/-; HLA-DPB1*09:01/-. (6) TLHD1

iPS-RPE cells as HLA-A*11:01/-; HLA-B*15:01/67:01; HLA-

C*04:01/07:02; HLA-DRB1*09:01/16:02; HLA-DQB1*03:03/

05:02; HLA-DPB1*02:02/05:01. (7) RPE cell lines (ARPE19) as

HLA-A*02:01/03:01; HLA-B*07:02/14:02; HLA-C*07:02/08:02;

HLA-DRB1*13:02/15:01; HLA-DQB1*06:02/06:09; HLA-DPB1*02:

01/04:01. (8) Human fibroblast cells as HLA-A*24:02/26:02; HLA-

B*40:02/52:01; HLA-C*03:04/12:02; HLA-DRB1*09:01/15:02;

HLA-DQB1*04:01/-; HLA-DPB1*02:01/05:01.
Preparation of T Cells and Antigen-Presenting Cells
T cells were established from autogenic or allogeneic T cells from

PBMCs. CD4+ T cells were prepared separately by using separation

beads (MACS cell isolation kit, Miltenyi Biotec). These cells were

more than 94% CD4-positive. These T cells were co-cultured

with RPMI-1640 medium containing 10% fetal bovine serum

(BioWhittaker), human recombinant IL-2 (Becton Dickinson),

10 mMHEPES (Sigma), 0.1 mM nonessential amino acids (Sigma),

1 mM sodium pyruvate (Sigma), penicillin-streptomycin (Gibco),

and 1 3 10�5 M 2-mercaptoethanol (Sigma). APCs from PBMCs

of healthy donors were also prepared. The X-irradiated APCs

(20 Gy) were cultured with T cells plus iPS-RPE cells in some

experiments.
Mixed Lymphocyte Reactions with iPS-RPE Cells
After informed consent was obtained, PBMCs were isolated from

healthy donors, and allogeneic immune responses were assessed

for proliferation by carboxyfluorescein succinimidyl ester (CFSE;

Cayman Chemical) incorporation by the PBMCs. CFSE-labeled

PBMCs were cultured with iPS-RPE cells (454E2, 453F2, Ff-I01,

and TLHD1) and ARPE-19 cell lines. As a positive control,

Epstein-Barr virus-transformed B cells from a healthy donor that

are HLA class I+, HLA class II+, CD40+, B7-1 (CD80)+, and B7-2

(CD86)+ were also prepared. The culture medium used was RPMI-

1640. Before the assay, the target RPE cells or B cells were irradiated

(20 Gy). After 96–120 hr, CFSE-labeled PBMCs were washed and

analyzed by flow cytometry. The PBMC-RPEMLR assay inmonkey

cells was also performed using similar methods (Kamao et al.,

2014).

In the Ki-67 proliferation assay by FACS analysis, the following

antibodies were used: anti-human CD4 (BioLegend, catalog
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Figure 6. Production of IFN-g in CD4+ T cells Exposed to Allogeneic iPS-RPE Cells
(A) Purified CD4+ T cells (TLHD1, left panel; TLHD3, right panel) were cultured with TLHD1 iPS-RPE cells for 48 hr, and the levels of IFN-g in
the supernatants were measured. The graph indicates data for IFN-g production by CD4+ T cells exposed to iPS-RPE cells. Left bar, RPE cells
only (RPE cells do not secrete IFN-g); middle bar, T cells only; right bar, T cells plus RPE cells.

(legend continued on next page)
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#317416), anti-human CD8 (eBioscience, #17-0088), anti-human

CD11b (Miltenyi Biotec, #130-091-241), anti-human CD19

(BD PharMingen, #561742), anti-human CD56 (BioLegend,

#304604), and anti-human Ki-67 (BioLegend, #350504). The

following isotype control antibodies were used: mouse immuno-

globulin 2a (IgG2a), k isotype control fluorescein isothiocyanate

(FITC) (BioLegend, #400208), mouse IgG1, k isotype control

APC, and mouse IgG1 (BioLegend, #400122), k isotype control

phycoerythrin (PE) (BioLegend, #400112). The harvested PBMCs

and PBMCs co-cultured with human iPS-RPE cells (or B cells)

were stained with these antibodies at 4�C for 30 min. For intracel-

lular staining by Ki-67, staining was performed after cell fixation

and permeabilization (BioLegend). All samples were analyzed on

a FACSCanto flow cytometer (BD). Data were analyzed by using

FlowJo software (version 9.3.1).
In Vitro CD4-RPE Rejection Assay
Effector T cells from PBMCs were collected from healthy

volunteers (n = 26, Table S1). Purified CD4+ T cells (5–8 3

105 cells/well in 96-well plates) from the PBMCs of healthy

donors were co-cultured with target iPS-RPE cells (5–8 3

103 cells/well: effector/target ratio = 100:1) for 48 hr. T cell activa-

tion was assessed for IFN-g production (R&D Systems) by the

CD4+ T cells. The target iPS-RPE cells were prepared from three

HLA homozygote cell lines, 454E2, 453F2, and Ff-I01, and three

HLA heterozygote cell lines, TLHD1, 836B1, and 101G26. As

controls, human iPSCs (454E2), human fibroblasts (454E2), and

human RPE cell lines (ARPE-19) were also prepared for the assay.

In company experiments, blocking antibodies for MHC-II

(HLA-DR, DQ, DP: 10 mg/mL; BD PharMingen, #555557) or

isotype control (mouse IgG2a: 10 mg/mL; BD PharMingen,

#555571) were used in some cultures of T cells plus iPS-RPE

cells. Anti-human CD3 antibody (1 mg/mL; Ancell, #144-020)

was also used in the CD4-RPE rejection assay.
Flow Cytometry
Expression of MHC-I (HLA-A, -B, -C) and MHC-II (HLA-DR, -DQ,

-DP) on several human iPS-RPE cells and control human cells

(ES-RPE cells, ARPE-19 cell lines, primary fetal RPE cells, cornea

endothelial cells, fibroblasts, and 836B1 or 454E2 iPSCs) was exam-

ined by FACS analysis. Before staining, these cells were incubated
(B) TLHD1 CD4+ T cells were cultured with MHC homozygote 454E2 iPS-R
Anti-human CD3 antibody was used to block the first signal between
(C) TLHD10 CD4+ T cells were cultured with MHC homozygote 454E2 i
Data are the mean ± SEM of three ELISA determinations. *p < 0.05, **p
alone, open bar).
(D) Purified CD4+ T cells (TLHD24) were cultured with 453F2 MHC hom
were measured. Anti-human CD3 antibody was used to block the first
(E) TLHD1 CD4+ T cells were cultured with ARPE-19 heterozygote RPE
anti-CD3 antibodies.
(F) For determination of the RPE cell number, CD4+ T cells (TLHD1) w
dependent manner.
Data represent the means ± SEM of three or four independent experi
control (CD4+ T cells alone, open bar). n.s., not significant.
with a human Fc block (Miltenyi Biotec) at 4�C for 15 min. The

cells were stainedwith anti-HLA class I antibody (FITC anti-human

HLA-A, -B, -C; Sigma-Aldrich, #F 5662), anti-HLA class II antibody

(FITC anti-humanHLA-DR, -DP, -DQ;DakoCytomation, #F0817 or

BD PharMingen, #555558), anti-HLA-DR antibody (FITC;

eBioscience, #11-9956), or isotype controls (mouse IgG2a, k iso-

type control, FITC; BD PharMingen, #555573 or mouse IgG2b,

k isotype control, FITC; eBioscience, #11-4732) at 4�C for

30min. iPS-RPE cells or control cells co-culturedwith recombinant

IFN-g (100 ng/mL) for 48 hr were also prepared. RPE cells were also

treated with other recombinant proteins and supernatants of

T cells (agonistic anti-human CD3 antibody-treated activated

T cells or naive untreated T cells). We used recombinant human

proteins such as IL-1b (50 ng/mL; R&D Systems), IL-2 (100 U/ml;

BD Biosciences), IL-6 (50 ng/mL; BD PharMingen), IL-8/CXCL8

(50 ng/mL; R&D Systems), IL-10 (50 ng/mL; R&D Systems), IL-12

(50 ng/mL; R&D Systems), IL-17A/F (50 ng/mL; R&D Systems),

IL-21 (100 ng/mL; R&D Systems), IL-22 (50 ng/mL; eBioscience),

IL-23 (50 ng/mL; R&D Systems), IL-27 (50 ng/mL; R&D Systems),

IFN-g (0.1–100 ng/mL; R&D Systems), TNF-a (100 ng/mL; R&D

Systems), TNFR1 (50 ng/mL; R&D Systems), TGF-b1 (50 ng/mL;

R&D Systems), TGF-b2 (50 ng/mL; R&D Systems), GM-CSF

(50 ng/mL; R&D Systems), MIG/CXCL9 (50 ng/mL; BD

PharMingen), MCP-1/CCL2 (50 ng/mL; R&D Systems), MIP-3a/

CCL20 (50 ng/mL; R&D Systems), macrophage migration inhibi-

tory factor (50 ng/mL: R&D Systems), thrombospondin-1

(50 ng/mL: R&D Systems), and lipopolysaccharide (1,000 ng/mL:

Sigma-Aldrich).

The expression of Th1 cytokines, such as IFN-g, IL-2, and

TNF-a, in CD4+ T cells exposed to allogeneic iPS-RPE cells was as-

sessed by intracellular staining (BD Cytofix/Cytoperm kits, BD

PharMingen) followed by flow cytometry. Before staining for

these cytokines, cells were pre-stimulated with T cell-stimulation

materials (CytoStim, Miltenyi Biotec) for 1–2 hr, and cells were

incubated for an additional 5 hr in the presence of a protein

transport inhibitor (BD GolgiStop, BD). After Fc block staining,

the T cells were stained with anti-human IFN-g (PE-labeled;

R&D Systems, #25723), anti-human IL-2 (PE-labeled; BD

PharMingen, #560902), and anti-human TNF-a (PE-labeled;

R&D Systems, #IC210P) at 4�C or room temperature for

30 min. T cells were also stained with anti-human CD4 antibody

(APC-labeled; eBioscience, #17-0049) or isotype control antibody
PE cells, and the levels of IFN-g in the supernatants were measured.
RPE cells and T cells (right panel).
PS-RPE cells (HLA-A, -B, -DRB1 matched).
< 0.005, ***p < 0.0005 compared with positive control (CD4+ T cells

ozygote iPS-RPE cells, and the levels of IFN-g in the supernatants
signal between RPE cells and T cells (right panel).
cell lines in the presence (right panel) or absence (left panel) of

ere cultured with allogeneic 454E2 iPS-RPE cells in a cell number-

ments. *p < 0.05, **p < 0.005, ***p < 0.0005 compared with the
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Figure 7. Recognition of MHC-II Molecules on Allogeneic iPS-RPE Cells by CD4+ T Cells, but Not iPSCs
(A) The graph depicts data for IFN-g ELISA by CD4+ T cells (TLHD1) exposed to 454E2 iPS-RPE cells. Anti-MHC-II (HLA-DR, -DP, -DQ) or
isotype control antibody (mouse IgG) was used for the T cell RPE culture. Anti-human CD3 antibody was also used (right panel). Data
represent the mean ± SEM of three independent experiments.
(B) FACS data for IFN-g by CD4+ T cells (TLHD1) exposed to 454E2 iPS-RPE cells in the presence of anti-MHC-II blocking antibodies.
(C) 454E2 human iPSCs were stained with anti-MHC-II antibody. Cells were also cultured with recombinant IFN-g for 48 hr. Red curve
represents data for MHC-II molecules. Blue curve represents data for isotype controls.
(D) Purified CD4+ T cells (TLHD1) were cultured with 454E2 iPSCs, 454E2 iPS-RPE cells, and 454E2 fibroblasts for 48 hr, and the supernatants
were measured for IFN-g production by T cells.
Data represent the mean ± SEM of four independent experiments. *p < 0.05, **p < 0.005 compared with the positive control (open bars).
n.s., not significant.
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(mouse IgG2b, isotype control, PE; R&D Systems, #IC0041P) at

4�C for 30 min. All samples were analyzed on a FACSCanto

flow cytometer.

Multiplex Cytokine Array
Supernatants of CD4+ T cells (from TLHD1 or TLHD21 donors)

exposed to TLHD1, 454E2, or 453F2 iPS-RPE cells were prepared

for multiplex cytokine array assay (Procarta Immunoassay Kit,

Filgen). The following 16 factors were measured: IL-1a, IL-1b,

IL-1RA, IL-4, IL-5, IL-6, IL-7, IL-12p70, IL-13, IL-15, IL-31, GM-CSF,

TNF-a, TNF-b, IFN-a, and IFN-g. A significant concentration

for each cytokine is >10.0 pg/mL, and the undetectable level is

<1.0 pg/mL. The assay was performed twice, and the supernatants

were measured in triplicate each time that the assay was

performed.

qRT-PCR
mRNA expression for Th1-related genes such as T-bet, Stat1, IFN-g,

and CXCR3 in PBMCs in the presence of iPS-RPE cells was evalu-

ated by qRT-PCR. Total RNA was isolated from PBMCs with and

without exposure to iPS-RPE cells (453F2 or 836B1). After cDNA

synthesis, the expression of Th1-related genes and b-actin in

triplicate samples was analyzed by qRT-PCR. The primers were as

follows: tgtggtccaagtttaatcagca (left) and gacaggaatgggaacatcc

(right) for T-bet; tgagttgatttctgtgtctgaagtt (left) and acacctcgt

caaactcctcag (right) for Stat1; ggcattttgaagaattggaaag (left) and

tttggatgctctggtcatctt (right) for IFN-g; and ccatggtccttgaggtgag

(left) and tccatagtcataggaagagctgaa (right) for CXCR3. The probes

(Universal Probe Library) were #9 for T-bet, #32 for Stat1, #21 for

IFN-g, and #79 for CXCR3. The results indicate the relative

expression of the molecules (DDCt for control cells = 1).

Statistical Evaluation
At least three independent experiments were performed for all

in vitro assays. All statistical analyses were performed with the

Student’s t test (paired or unpaired, as appropriate). Values were

considered statistically significant if p was less than 0.05.
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