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The human visual system is organized as a hierarchy of maps
that share the topography of the retina. Known retinotopic
maps have been identified using simple visual stimuli under
strict fixation, conditions different from everyday vision which
is active, dynamic, and complex. This means that it remains
unknown how much of the brain is truly visually organized. Here
I demonstrate widespread stable visual organization beyond the
traditional visual system, in default-mode network and hippocam-
pus. Detailed topographic connectivity with primary visual cortex
during movie-watching, resting-state, and retinotopic-mapping
experiments revealed that visual–spatial representations through-
out the brain are warped by cognitive state. Specifically, tradition-
ally visual regions alternate with default-mode network and hip-
pocampus in preferentially representing the center of the visual
field. This visual role of default-mode network and hippocampus
would allow these regions to interface between abstract mem-
ories and concrete sensory impressions. Together, these results
indicate that visual–spatial organization is a fundamental cod-
ing principle that structures the communication between distant
brain regions.

retinotopy | hippocampus | connective field | population receptive
field | naturalistic vision

Our experience of the world is ultimately based on impres-
sions arriving through the senses. In our dominant sensory

modality, vision, processing is retinotopic: organized according
to the layout of the retina (1). That is, neighboring locations
in the brain represent neighboring locations in the visual field.
Retinotopic mapping experiments leverage sparse visual stimu-
lation during fixation, allowing researchers to relate the elicited
brain responses to visual space and delineate retinotopic maps
in the brain (2, 3). Yet, in everyday life visual inputs are not
sparse, and naturalistic vision is characterized by continuous eye
movements and dynamic cognitive demands. It is therefore likely
that charting especially high-level visual function falls outside the
scope of traditional retinotopic mapping experiments.

Retinotopic processing throughout the brain can be identi-
fied based on topographically specific connectivity with V1 (4–6),
the first visual region of the cerebral cortex (Fig 1A). There
are several distinct advantages to assessing visual processing
by means of retinotopic connectivity (RC), in which responses
throughout the brain are explained in terms of the spatial pat-
tern of activation on the surface of V1. First, RC is robust
in the face of eye movements, because its reference frame is
fixed in the brain and not the outside world. Second, because
V1 harbors a map of visual space, RC patterns throughout the
brain can be translated back into visual space coordinates. In
effect, RC allows us to project the retinotopy of V1 into the
rest of the brain. Finally, since brain responses are explained
as a function of ongoing activations, RC can be estimated for
any experimental paradigm. Thus, RC can be used to com-
pare detailed visual–spatial processing across experiments and
cognitive states.

I performed RC analysis on the Human Connectome Project
(HCP) 7T dataset of 174 subjects in which data were col-

lected during retinotopic-mapping, resting-state, and movie-
watching experiments. This allowed the identification of previ-
ously unknown visual–spatial processing throughout the brain,
and the quantification of how visual space is represented—even
in brain regions not traditionally considered visual. Moreover,
these analyses reveal how visual representations depend on
cognitive state.

Results
A parsimonious computational model for RC posits that
responses arise from a localized Gaussian patch on the sur-
face of V1 (Fig. 1B), its connective field (CF) (5). One fits
the CF model by comparing model time-course predictions to
ongoing blood oxygenation level dependent (BOLD) response
time courses throughout the brain (Fig. 1C). To ensure that the
model captures only spatially specific topographic connectivity,
I correct cross-validated (CV) model prediction performance
for correlation with a nontopographic null model. This null
model prediction, V1’s average time course (Fig. 1D), corrects
for responses driven by arousal, overall contrast, or feature
energy. Translating the best-fitting CF parameters into visual
field locations reveals the structure of visual field maps in V2,
V3, and beyond (Fig. 1 E–G). Retinotopic maps resulting from
retinotopic-mapping, movie-watching, and resting-state acquisi-
tions are similar, with their borders in the same location. This
means that in low-level visual cortex the structure and strength
of this retinotopic connectivity are both stable across participants
and robust against variations in experimental task, stimulation,
and cognitive state.

Significance

Vision is organized retinotopically—according to the reference
frame of the retina. How much of the brain is retinotopically
organized remains unknown, because traditional retinotopic
mapping experiments require strict fixation and sparse stim-
uli. Conversely, in everyday vision we use eye movements and
interaction, to derive meaning from our complex surround-
ings. Here, I discover retinotopic activations by explaining
brain-wide BOLD signals during several experiments in terms
of the pattern on the surface of primary visual cortex. This
revealed visually organized processing also in regions out-
side the visual system, in brain regions traditionally thought
devoted to memory. This visual organization in default-mode
network and hippocampus speaks to the joint operation of
sensations and memory in everyday vision and mental life.
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Fig. 1. (A) Visual processing in higher-order brain regions reveals itself through spatially specific retinotopic connectivity with V1. V1’s map of visual
space allows us to translate retinotopic connectivity to representations of visual space. (B) Retinotopic connectivity is quantified by modeling responses
throughout the brain as emanating from Gaussian connective fields on the surface of V1. Example Gaussian CF model profiles with different size (σ) and
location (v0) parameters are shown on the inflated surface. (C) Predictions are generated by weighting the ongoing BOLD signals in V1 with these CF kernels.
Estimating CF parameters for all locations throughout the brain captures significant variance also outside the nominal visual system (non-V1 time courses).
(D) Cross-validation procedure. CV prediction performance of the CF model is assessed on a left-out, test dataset and is corrected for the performance of
a nontopographic null model, the average V1 time course. (E–G) CF modeling results can be used to reconstruct the retinotopic structure of visual cortex.
Polar angle preferences outside the black outline are reconstructed solely based on their topographic connectivity with V1, within the black outline. CF
modeling was performed on data from retinotopic-mapping, resting-state, and movie-watching experiments separately. Visual field preferences are stable
across cognitive states, as evidenced by the robust locations of polar angle reversals at the borders between V2 and V3 field maps. Additional retinotopic
structure visualizations are in SI Appendix, Figs. S1 and S2.

Does this RC extend beyond the lower levels of the visual sys-
tem, and, if so, how does it depend on the different cognitive
states evoked in different experiments? Indeed, Fig. 2A shows
that significant portions of movie-watching BOLD fluctuations
throughout the cerebral cortex are explained as resulting from
RC. That is, more than half of the cerebral cortex, including large
swaths of the temporal and frontal lobes, shows significant topo-
graphically specific connectivity with V1. Interestingly, the local
strength of RC depends heavily on the experiment (Fig 2B). Dur-
ing movie watching, mainly ventral visual and temporal brain
regions exhibit RC. This retinotopic connectivity likely reflects
object identity-related processing and audiovisual integration
(7). Conversely, during resting-state scans the default-mode net-
work (DMN) shows stronger RC, which may reflect endogenous
mental imagery during mind wandering (8).

If retinotopic visual processing is a stable organizational prop-
erty, visual field preferences derived from one experiment should
predict RC from another. The detailed inspection of CF param-
eters can provide insights into the visual–spatial processing
embodied by RC, but also allows us to understand its modula-
tion by cognition. We can compare two regions, lateral–occipital
(LO) and angular gyrus (ANG), as exemplars of high-level visual
and DMN areas, respectively. In both regions, spatial sampling
extent, as quantified by CF size, is stable (9) and precise (5, 10)
during both retinotopy and resting state and becomes larger and
more variable during movie watching (Fig 2 C and D). Sampling
extent is strongly correlated between conditions (all linear cor-
relations ρ> 0.36, all P < 10−13 (LO), ρ> 0.75, all P < 10−37

(ANG)—full statistics in SI Appendix, Table S1). This points to
stable sampling of retinotopic space in both high-level visual and
DMN regions.

In LO, the preferred eccentricity of cortical locations (Fig. 2E)
is strongly correlated between experimental conditions (linear
correlations ρ> 0.48, all P < 10−19), confirming its well-known

retinotopy (9, 11) (Fig. 2C). The detailed differences in spatial
representations between conditions, however, show the flexibil-
ity of LO’s retinotopy: A very foveal bias during retinotopic
mapping (11) gives way to broader coverage of the visual field
during resting state and movie watching. The across-condition
robustness of ANG eccentricity (Fig. 2F) is greater than that
of LO (all linear correlations ρ> 0.75, all P < 10−40). How-
ever, ANG shows an opposite pattern of retinotopic flexibility,
with visual field preferences being more foveal specifically dur-
ing the resting state. These foveopetal and foveofugal changes
of eccentricity in both LO and ANG mimic the effects of top–
down attention (12, 13) and imagination (14) on visual field
representations. This pattern is also similar to what happens to
visual items of interest as they are foveated through eye move-
ments (15) and follows the topographic distribution of feedback
related to visual object information (16) in the absence of eye
movements.

V1 represents contralateral visual field locations, allowing us
to use the hemisphere of the best-fitting CF as a proxy for visual
field representation laterality. In LO, visual representations are
strongly contralateral and strongly correlated between experi-
mental conditions (t test between hemispheres: all T (> 123)>
10, P < 10−19). In the ANG region of the DMN, there is a
significant contralateral bias of visual field representations dur-
ing retinotopic mapping and movie watching (all T (199)> 6,
P < 10−9), but, presumably due to the strong foveal bias of visual
field representations, not during resting state (T (199)= 0.14,
P =0.9). These findings confirm previous reports that the DMN
represents visual space similarly to high-level visual brain regions
in situations of visual stimulation (17).

Although it is not generally implicated in traditional vision
science experiments, tracer-based connectivity studies place the
hippocampal formation at the top of the visual-processing hier-
archy (18). Hippocampus is thought to implement the interaction
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Fig. 2. (A) Retinotopic connectivity during movie watching explains significant amounts of variance throughout the brain. The gray region contains all
possible CF center locations; all vertex locations outside V1 that are not black have significant best-fitting cross-validated correlations. (B) Retinotopic
connectivity is modulated by cognitive state. The local strength of topographic connectivity to V1 depends on whether participants were engaged in
movie watching or endogenous thought. Ventral and lateral visual regions sensitive to object identity and responsible for audiovisual integration are more
strongly connected to V1 during movie watching. Topographic connectivity between default-mode network regions and V1 is strongest during resting
state. Colormap for resting state vs. movie watching represents normalized correlation ratio (Materials and Methods) and ranges from 0.1 to 0.9. Vertical
color scale axis represents P values. (C–H) Scatter plots show CF and CF-derived visual field parameters for three experimental conditions. Horizontal and
vertical axes represent movie-watching and resting-state results, respectively. Marker color represents parameter values from the retinotopy experiment and
is defined on the same range as the scatter plots. Marker opacity linearly relates to null-model–corrected correlation values averaged across experimental
conditions. (C) In the high-level visual system, CF size correlates strongly between conditions. Specifically, CF size is fixed and similar during resting-state
and retinotopic-mapping experiments, with CF size variation during movie watching showing a strong correlation in CF size between conditions. (D) Like
in LO, in the DMN the degree of spatial integration quantified by CF size is stable, with high correlations between conditions. (E) In LO, CF-derived
eccentricity correlates strongly across conditions, and we see marked foveal biases in visual field preference for movie-watching and retinotopic-mapping
experiments relative to resting state. (F) During resting state, CFs in the ANG DMN region become more foveal—a pattern opposite to the cognition-driven
shifts of CF spatial positions in LO. During visual stimulation, the DMN represents visual space similarly to high-level visual regions (17). (G) In LO, visual
representations are strongly contralateral and highly similar between experimental conditions (L/R: left/right). (H) During retinotopic-mapping and movie-
watching experiments, ANG maintains a contralateral visual field preference. During resting state this tendency disappears, likely as a result of the large
foveal bias in its sampling of the V1 surface.

between memory-related and sensory processing or imagery (19–
22), leading me to reason that both narrative understanding
of naturalistic inputs and internally generated thought should
evoke strong RC in hippocampus, over and above its recently dis-
covered contralateral visual field preference during retinotopic
mapping (23) (SI Appendix, Fig. S4).

Applying CF modeling to hippocampus BOLD time courses
(Fig. 3A) reveals significant hippocampal–V1 RC in all experi-
mental conditions. The most striking feature in the hippocampus
is a gradient of movie-watching vs. resting-state RC preference
along both the medial/lateral and the long, anterior/posterior
axes of the hippocampus. This RC gradient corresponds in detail
to previously found microstructural and functional connectivity
gradients (24–26). The high power, quality, and spatial resolu-
tion of both functional and anatomical HCP images allow the
quantification of cognitive state-dependent RC per hippocam-
pal subfield. A strong prediction based on earlier findings in
both mice (22) and humans (27) is that the Cornu Ammonis
(CA) region and uncus of the hippocampus should subserve its
connectivity with visual cortex during visual stimulation.

The strength and cognitive-state dependence of RC varies
strongly across hippocampal subfields (Fig. 3B). Specifically, RC

driven by movie watching is strongest in parasubiculum, CA1,
CA3, dentate gyrus (DG), and the hippocampal–amygdalar tran-
sition area (HATA) which principally represents the hippocam-
pal uncus. Conversely, resting-state–driven RC is strongest in
the presubiculum and the hippocampal tail. Focusing on the
visual space representations of hippocampus, as quantified by CF
model parameters, reveals strong correlations between exper-
imental conditions (Fig. 3 C– E). Specifically, the detailed
patterns of differences in visual field representations between
experimental conditions closely resemble those that occur in the
DMN (Fig. 2 and SI Appendix, Figs. S3 and S5).

Discussion
CF modeling reveals retinotopic connectivity throughout the
human brain, which can be quantified in terms of visual space
representations. Moreover, as CF modeling can be applied to any
ongoing timeseries data, it can be used to reveal changes in visual
space representations across experiments.

Connective field models are driven by topographically spe-
cific BOLD responses, but do not distinguish between the many
possible bottom–up and top–down sources of those responses.
This is the power of the approach, but also causes interpretative
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Fig. 3. RC is pervasive throughout the hippocampal formation. (A) Like the cerebral cortex, the hippocampus also displays a gradient of endoge-
nous/exogenous processing, with stronger topographic connectivity in rostral/medial/inferior regions during movie watching, and in caudal/lateral/superior
regions during resting state. Colormap for resting state vs. movie watching represents normalized correlation ratio ranges from 0.35 to 0.65: a narrower
range than that used for cortex in Fig. 2. Full lightbox visualization of RC connectivity gradient and visual field parameters are in SI Appendix, Fig. S4. We
see RC in both the anterior and posterior portions of the hippocampus in both experiments, rendering it unlikely that signal-to-noise-ratio (SNR) differences
between anterior and posterior hippocampus (23) impact these specific findings. (B) Strength and stability of RC for different cognitive states, for separate
hippocampal subfields. Inset shows a sagittal section of a hippocampal subfield segmentation for a single subject. (GC-DG, granule cell layer of the dentate
gyrus; HC, hippocampus.) Full statistics are given in SI Appendix, Tables S2–S4. (C and D) Eccentricity (C) and size (D) of hippocampal CFs are stable between
different cognitive states, with strong correlations between all three conditions (linear CF eccentricity and size correlations>0.55, P< 10−26). (E) Hippocam-
pal visual field representations are significantly biased to represent the contralateral visual hemifield in movie watching, resting state, and retinotopy (t
test between hemispheres, T =−4.3, P<2 · 10−5, df = 173, T =−3.4, P<10−3, df = 173, and T =−10.3, P<10−20, df = 173, respectively). These small yet
significant contralateral biases are similar in scale to the contralaterality of visual field representations in the DMN. Detailed visualization of visual field
representations in hippocampal and thalamic subregions is in SI Appendix, Fig. S5.

challenges. Could these patterns of retinotopic connectivity be
due to the complex spatiotemporal correlations that characterize
the naturalistic visual inputs of, and engagement with, the movie-
watching experiment? Indeed, based on just the movie-watching
results, we cannot definitively assert that topographic connectiv-
ity is evidence for visual–spatial processing. But in the resting
state, topographic connectivity arises from the brain’s internal
organization. Finding similar RC patterns in resting state and
movie watching thus hints strongly at a consistent visual–spatial
structure that the brain has internalized and that is used in
ongoing thought. Moreover, many of these spatiotemporal cor-
relations in visual input and behavior that characterize movie
watching are explicitly avoided by the retinotopic-mapping stim-
ulus material and paradigm (for example, the fact that usually,
human heads occur on top of bodies). I construe the similar pat-
terns of RC between movie-watching and retinotopy experiments
as evidence for a joint visual frame of reference used throughout
the brain.

This also suggests that the degree of similarity in RC patterns
between all three experiments can be seen as a gauge for how
“visual” a brain region is. The gradient of RC similarity across
experiments in both cortex and hippocampus (Figs. 2 and 3)
aligns surprisingly well with a combination of functional connec-

tivity gradients found previously in the resting state. Specifically,
resting-state–movie-watching preferences behave as a combina-
tion of the primary sensory-transmodal and the multiple-demand
gradients (24)—both in cortex and within the hippocampus (26).
These large-scale gradients result from the push–pull between
sensory and attentional brain systems on the one hand and the
DMN on the other (28). Such countervailing activations and
deactivations are thought to mediate a dynamic balance between
outward-oriented, stimulus-driven processing on the one hand
and memory-related, endogenously generated processing on the
other (29, 30). Importantly, the present work identifies a con-
sistent mode of organization across both memory-related and
stimulus-directed processing: In both cognitive states, connec-
tivity is retinotopically organized. Furthermore, these results
demonstrate that the push–pull between DMN and sensory
regions in terms of signal amplitude (28) also involves a trade-off
in foveally biased processing between regions, possibly related
to recent findings of retinotopic traveling waves in visual cor-
tex during resting state (31, 32). On the basis of these findings, I
propose that the detailed structure of concurrent retinotopically
organized activations in visual system, DMN, and hippocam-
pus gives rise to interactions between attentional and mnemonic
processing (33).
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The present finding, that the hippocampus shares a retino-
topic mode of organization with much of the rest of the brain,
is in line with canonical tracer-based network findings (18). As
hippocampus also entertains world-centric coding of space (34),
this solidifies the notion (19) that hippocampus is a nexus for the
conjunctive coding of both world-centric and sensory reference
frames (20, 35).

The stability of RC structure across experiments points to
the brain’s use of sensory topography as a fundamental organiz-
ing principle to facilitate neural communication between distant
brain regions. By casting ongoing brain responses into a com-
mon reference frame, topographic connectivity can facilitate our
understanding of neural processing as resulting from canonical
computational mechanisms such as divisive normalization (36).
Future work will be able to leverage topographic connectivity to
investigate the computational hierarchy that generates increas-
ingly world-centric representations of space (37) and culminates
in the medial temporal lobe (34, 38).

Materials and Methods
Human Connectome Project Data. HCP 7T functional MRI (fMRI) data were
used, in conjunction with 3T anatomical MRI images (39). In total, 2.5 h
from 174 subjects with full data of all 7T experiments were used, sampled
at 1.6 mm isotropic resolution and a rate of 1 Hz (40). For all functional
analyses, the Fix independent component analysis-denoised time-course
data, sampled to the 59,000 vertex-per-hemisphere areal feature-based
cross-subject alignment method (MSMAll) surface and 1.6-mm Montreal
Neurological Institute (MNI) volume formats, were used. These data are
freely available from the HCP project website.

Analysis. Hippocampal subfield segmentation was performed using
FreeSurfer, after which the individual subfields were warped to the
functional data’s MNI space using the existing HCP warp fields with
nearest-neighbor interpolation. High-resolution subfield segmentations
were smoothed with a Gaussian of 0.8 mm σ to ensure representation of
all subfields when resampled to the 1.6-mm resolution of the functional
images. Anatomical region of interest (ROI) definitions were taken
from the multimodal parcellation atlas (41) for surface data and FMRIB
Software Library’s Jülich histological atlas (42) for hippocampal ROIs in MNI
volumetric space.

Functional data of all three experiments [movie (approximately 1 h),
retinotopy (43) (30 min), and resting state (1 h)] were preprocessed identi-
cally, by means of high-pass filtering (third-order Savizky–Golay filter, 210-s
period) and z scoring over time.

To create a template of retinotopic spatial selectivity, I averaged the time
courses of the retinotopic-mapping experiment (bar and wedge conditions)
across participants and estimated linear Gaussian population receptive field
(pRF) model parameters from

g(x0, y0,σ) = exp

(
−

(x− x0)2 + (y− y0)2

2σ2

)
, [1]

where x0, y0, and σ are the parameters that define the location (in the Carte-
sian {x, y} plane) and size of the pRF, respectively. The fitting procedure
consisted of an initial grid fit stage, followed by an iterative fitting stage
using the L-BFGS-B algorithm as implemented in scipy.optimize. The identi-
cal fitting procedure was performed on the hippocampus to create figures
of visual–spatial representations shown in SI Appendix, Fig. S4.

Gaussian connective field profiles on the surface are defined for each
vertex v on the cortical manifold as

CF(v0, v,σ) = exp

(
−
|v− v0|2

2σ2

)
, [2]

where v0 is the center location of the connective field, and σ is the Gaus-
sian spread in millimeters on the cortical surface. Diffusion of heat along
the fiducial, or midgray, surface mesh was simulated and then used to
infer geodesic distances |v− v0| between all V1 vertices, as implemented
in pycortex (44) (which was also used for all surface-based visualization).
As the two hemispheres are two separate surface meshes, this distance
matrix was calculated for each hemisphere separately. Only V1 vertices
with a pRF-fit within-set R2 of >0.2, a peak pRF position inside the

stimulus aperture used in the retinotopy experiment, and a positive pRF
amplitude in the above pRF analysis served as the center of a candidate
CF. These conservative selection criteria were chosen to ensure that CFs
are centered on visually responsive vertices within V1 and improves the
interpretability of the relation between CF parameters and visual field
coordinates. Separate analyses (results not reported here) served to ver-
ify that using the full V1 map as a possible CF center yielded similar
RC results on the whole. Grid-fit candidate CF sizes ranged from very
small (biased to the center vertex only) to evenly spanning almost the
entirety of V1: [0.5, 1, 2, 3, 4, 5, 7, 10, 15, 20, 30, 40, 80] mm σ for the
Gaussian CF.

The predicted time course for each of the resulting 14,287 CF models
was generated by taking the dot product between the CF’s vertex pro-
file and the vertex by time-courses matrix in V1. In this operation I did
not apply the conservative selection criteria used for CF center vertices;
all vertex time courses in V1 were used regardless of eccentricity, pRF-
fit R2, etc. Additionally, I ensured that CF models were based on only
V1 time courses. That is, if the CF extended into V2, these time courses
were not used to generate the CF model time course. The resulting CF
model time courses were z scored and correlated with the time courses
throughout the brain, without convolution with a hemodynamic response
function. For each location in the brain, the connective field resulting in
the highest squared correlation was selected. Subsequently, this specific
connective field was used to generate model time courses for out-of-set pre-
dictions of left-out data. A fourfold scheme was used for cross-validation.
As both the resting state and movie watching consist of four separate
runs of approximately 15 min each, this scheme was implemented to
be identical to a leave-one-run-out cross-validation pattern. CF parame-
ters and correlation measures were then averaged across runs for further
analysis.

The resulting out-of-set correlation was referenced against the correla-
tion with a nonspatial null model, in which the time courses throughout the
brain were predicted by the average V1 time course. This correction means
that although corrected correlation values are no longer interpretable as
correlations, they can serve to conservatively assess the presence of true
topographic connectivity. Moreover, comparisons between conditions based
on these corrected correlation values explicitly discount changes in non-
topographic correlations between brain regions. One-sample t tests were
used to compare corrected out-of-set prediction performance against 0,
and reported P values are two sided. Correlations across vertices between
CF parameters, as well as t tests of the differences in CF parameters across
experiments (SI Appendix, Table S1), were calculated weighted by the null-
model–corrected correlation values using the statsmodels.stats.weightstats
package, which adjusts the degrees of freedom based on the applied
weighting. To quantify a location’s RC preference during resting state vs.
movie watching, a normalized ratio of the null-model–corrected CV correla-
tion values was used for the respective experimental conditions ρRS

ρRS+ρMW
,

where RS and MW stand for resting state and movie watching, respectively.
This measure takes a value between 0 and 1, where 0.5 signifies equal RC
in both experimental conditions. Because the constituent parts of this ratio
are corrected for null-model performance, this measure is not sensitive to
possible nontopographic differences in V1 connectivity between conditions,
such as arousal.

Pilot analyses revealed that the presented results are robust to drastic
changes in the employed modeling procedure: Penalized regression using
V1 time courses as the design matrix (45) produces highly comparable
results. That is, CF fitting is also possible when releasing the Gaussian con-
straint that is based on the known topographic organization in the source
region. CF modeling and RC estimation in general exemplify a broader cat-
egory of analysis techniques in which decomposition of signals based on
their local structure represents a very efficient manner of mapping all-to-
all correlations between brain activations into a subspace relevant to local
neural processing (46). Explicit CF modeling following the methods from
Haak et al. (5) was chosen here because it performs direct estimation of
meaningful CF parameters.

Data Availability. All in-house analyses were implemented in python,
using scientific python packages. The full list of dependencies for run-
ning the analyses, and the code itself, are available on GitHub, https://
github.com/tknapen/HCP Connective Fields. The notebooks in this reposi-
tory allow users to recreate all data visualizations presented here. Subcor-
tical atlases for hippocampus (47) and thalamus (48) are available through
their respective publications.

fMRI/MRI data have been deposited in the Human Connectome Project
(https://wiki.humanconnectome.org).
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