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Abstract

Background

The heterogeneous distribution of emphysema is a key feature of chronic obstructive pulmo-

nary disease (COPD) patients that typically is evaluated using high-resolution chest com-

puted tomography (HRCT). Oxygen-enhanced pulmonary magnetic resonance imaging

(OEMRI) is a new method to obtain information regarding regional ventilation, diffusion, and

perfusion in the lung without radiation exposure. We aimed to compare OEMRI with HRCT

for the assessment of heterogeneity in COPD patients.

Methods

Forty patients with stable COPD underwent quantitative HRCT, OEMRI, and pulmonary

function tests, including arterial blood gas analysis. OEMRI was also performed on nine

healthy control subjects. We measured the severity of emphysema (percent low attenuation

volume; LAV%) in whole lungs and the standard deviations (SDs) of the LAV% values of 10

isovolumetric partitions (SD-LAV) as an index of cranial-caudal heterogeneity. Similarly, rel-

ative enhancement ratios of oxygen (RERs) in whole lungs from OEMRI and SD-RER were

analyzed.

Results

COPD patients showed a lower mean RER than control subjects (12.6% vs 22.0%, p<0.01).

The regional heterogeneity of the RERs was not always consistent with the LAV distribution.

Both the HRCT (LAV% and SD-LAV) and the OEMRI (RER and SD-RER) indices were sig-

nificantly associated with the diffusion capacity (DLCO) and partial pressure of oxygen in
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arterial blood (PaO2). The PaO2 was associated only with the heterogeneity index of HRCT

(SD-LAV) (R2 = 0.39); however, the PaO2 was associated with both the mean RER and het-

erogeneity (SD-RER) in the multivariate analysis (R2 = 0.38).

Conclusions

OEMRI-derived parameters were directly associated with oxygen uptake in COPD patients.

Although the OEMRI-derived parameters were not identical to the HRCT-derived parame-

ters, the cranial-caudal heterogeneity in HRCT or OEMRI was complementary to that in

evaluations of oxygen uptake in the lungs. Functional imaging seems to provide new

insights into COPD pathophysiology without radiation exposure.

Introduction

Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation as a

result of parenchymal destruction and airway disease. Parenchymal destruction is patholog-

ically determined as pulmonary emphysema that includes loss of the alveolar surface area and

the vascular bed[1], which may cause decreased diffusion capacity[2] and hypoxemia[3,4]. Pul-

monary emphysema may be distributed heterogeneously, and this distribution pattern is a key

feature of COPD patients.

High-resolution computed tomography (HRCT) is a standard technique used to quantify

the severity of emphysema and its spatial distribution[5–9]. However, quantifying the spatial

distribution heterogeneity can be challenging[8–10]. We previously reported that a more

homogeneous cranial-caudal distribution of emphysema contributed to an accelerated pro-

gression of airflow limitation independent of the baseline whole-lung emphysema severity

determined using HRCT[11]. Martinez et al. reported that lower lung-dominant emphysema

predicted mortality in the medical therapy arm group of the National Emphysema Treatment

Trial[12]. Thus, evaluating the whole-lung emphysema severity as well as the distribution of

emphysematous changes is important.

However, quantitative CT analyses only assess regional morphological alterations in the

lung and may not precisely reflect regional functional changes. Although significant associa-

tions exist between the emphysema severity and the diffusing capacity of the respiratory sys-

tem (DLCO)[8], the correlation between respiratory functions and the emphysema severity on

CT images is often poor[13]. Ventilation-perfusion mismatch that cannot be assessed by

HRCT may play an important role in this discrepancy. Therefore, new functional imaging

techniques that can determine spatial respiratory dysfunction are required.

Oxygen-enhanced pulmonary MRI (OEMRI) is a new method to obtain the functional

index of the lung using inhaled oxygen as a contrast agent[14]. This method has advantages

for the assessment of a diseased lung compared to pulmonary function tests and chest CT anal-

ysis, because it can evaluate regional oxygen transfer across the alveolus without radiation

exposure. Recently, promising results have been reported by an investigation of the correla-

tions of the OEMRI index and pulmonary function tests among patients with various lung

diseases[15]; however, these OEMRI studies have evaluated whole-lung function, and no infor-

mation is available concerning the heterogeneous distribution of diseased lesions in the lung

in CT images. Therefore, we hypothesized that in addition to whole-lung image analysis, the

cranial-caudal heterogeneity of the OEMRI index would provide further information on the

relationship between regional lung parenchymal destruction and lung function. Specifically,
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we hypothesized that OEMRI might have advantages over HRCT for evaluating oxygen-trans-

fer function capacity and arterial blood oxygenation in the emphysematous lung.

Materials and methods

Subjects

Forty patients with stable COPD were recruited from the outpatient clinic at Kyoto University

Hospital between December 2012 and March 2014. The patients underwent CT scans, pulmo-

nary function tests, including arterial blood gas analysis, and OEMRI. Nine healthy subjects

were also enrolled in the present study as controls.

The detailed inclusion and exclusion criteria for the COPD patients are described in the

online material (see online supplemental materials). The healthy subjects exhibited normal spi-

rometry and had no current smoking habits. The ethics committee at Kyoto University

approved the study (approval No. C664), and all patients and healthy subjects provided written

informed consent for participation in the study.

Pulmonary function tests

Pulmonary function tests were performed after inhalation of short-acting bronchodilators

(400 μg of salbutamol and 80 μg of ipratropium)[11]. Spirometry, subdivisions of the lung vol-

ume, and DLCO were measured using a Chestac-65V (Chest MI Corp, Tokyo, Japan). All pro-

cedures were conducted following the standard procedures of the ATS/ERS guidelines[16].

Arterial blood gas analysis was performed after resting in room air for 15 min in a sitting posi-

tion using the RAPIDlab 1265 blood gas analyzer (Siemens Healthcare Diagnostics Inc., PA,

USA).

Quantitative HRCT

High-resolution CT scans at a slice thickness of 0.5 mm (Aquilion 64; Toshiba Medical Sys-

tems Co., Otawara, Japan) were acquired as previously reported[11,17,18]. A single CT scan-

ner was used to avoid inter-scanner variability. Patients held their breath at full inspiration

during acquisition of the chest CT scans. The CT images were acquired with 0.5-mm collima-

tion, a scan time of 500 ms, a 120-kV peak, and automatic exposure control. The reconstruc-

tion algorithm was a lung algorithm (FC56) with automatic correction of the beam hardening

effect. In addition to routine calibration using an air and water phantom, the CT values were

adjusted using the tracheal air density[17].

OEMRI

OEMRI was obtained with inhaled 100% oxygen as a T1 contrast agent during resting ventila-

tion with a pneumatic belt to detect the respiratory phase. T1-weighted images (TI = 900 ms)

were continually collected with a respiratory synchronized single shot FASE [Fast Asymmetric

Spin Echo, sequentially reordered half-Fourier reconstructed short TE long echo train length

FSE; TR, 5,500–11,000 ms depending on the respiratory cycle, TEeff, 8 ms, echo train length

65, and a 128x256 matrix with a filling factor of 50.8% (128x256 reconstruction matrix)] using

a 1.5 T scanner (EXCELART Vantage; Toshiba Medical Systems Co., Otawara, Japan).

To obtain a single coronal section, subjects inhaled room air for 5 min, followed by 100%

oxygen (15 L/min) using a non-rebreathing ventilation mask for 5 min and then room air

again for 5 min. We obtained three coronal sections at three different locations: the center of

the lung, including the carina and bilateral main bronchus, and 30 mm anterior and posterior

to that section (see S1 Fig). The scan time for the MRI sequence was 5 min, and the total
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examination time was approximately 30 min. These procedures were similar to previously

described methods[19,20].

Image analysis of chest HRCT

The percentages of the LAV in the entire lung (LAV%) were analyzed semi-automatically

according to a modified method using custom-made software as described elsewhere[11,21].

The cut-off level for LAV was defined as<-960 HU. The cranial-caudal heterogeneity of

emphysema was assessed by calculating the SD of the LAV% values in 10 partitions with equal

volumes (SD-LAV) as previously described[11,22]. Briefly, the lungs were divided into 12

equal volumes from the top to the bottom. The top and bottom parts were excluded because of

the partial volume effect. The LAV was measured in each partition, and the LAV% in each par-

tition was calculated by dividing the value by the partition volumes. Then, the SD of the LAV%

values in the 10 partitions was calculated to obtain the SD-LAV. A higher SD-LAV represents

a more heterogeneous distribution, and a lower SD-LAV represents a homogeneous distribu-

tion of emphysema[11].

Image analysis of OEMRI

The relative enhancement ratio (RER) is the percentage change of the signal intensity in each

pixel between the enhanced and baseline conditions and is an index for oxygen uptake.[23]

The RER is calculated as follows:

RER ¼
jSIenhanced � SIbaselinej

jSIbaselinej
� 100

The mean relative enhancement ratio (MRER) is the average of the RERs measured from

regions of interest drawn to visually extract the lung parenchyma over both lungs on the coro-

nal section by the author (Y. F.). Similar to the SD-LAV analysis, the SD-RER is calculated as a

standard deviation of the MRER in 10 partitions of the overall MRER data (see S2 Fig). Higher

and lower SD-RERs represent more heterogeneous and homogeneous distributions of the dis-

eased lung, respectively (see S3 Fig).

Statistical analysis

All statistical analyses were performed using the JMP 10 software (SAS Institute, Cary, NC,

USA). Differences between the two groups were evaluated with Student’s t test or the Mann-

Whitney U test when the data did not pass the normality test (Shapiro-Wilk test). Pearson’s

bivariate correlation was used to determine the association between two variables, and Spear-

man’s test was used for non-parametric data. To reduce a risk for multiple comparison bias,

we focused on three representative parameters for lung function, such as FEV1, DLCO, and

PaO2. A multivariate regression analysis was performed to evaluate the relative contributions

of variables. p-values <0.05 were considered significant.

Results

The characteristics of the COPD patients and control subjects are shown in Table 1. The

COPD patients were older and had poorer lung function with the exception of %VC than the

control subjects. The COPD patients showed a significantly lower MRER than the healthy vol-

unteers (Fig 1, 12.6±4.4% vs 22.0±3.4%, p<0.0001). Representative RER maps are shown in

S1 Fig.
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Fig 2 shows a comparison of representative HRCT and OEMRI coronal images from the

COPD patients. In the case shown in Fig 2A, the coronal CT showed strong emphysematous

changes in the left lower lung field, and the OEMRI also showed low oxygen uptake in the left

lower lung. Both the coronal CT and OEMRI images indicated similar results. In another case

shown in Fig 2B, the coronal CT showed the same degree of emphysematous changes in both

upper lung fields, although the OEMRI showed lower oxygen uptake in the left upper lung

field.

Regarding the whole-lung evaluation, the MRER showed a significant but moderate corre-

lation with the LAV% (Fig 3A, r = -060, p<0.0001) in the COPD patients. The heterogeneity

indices (SD-RER and SD-LAV) were also significantly but moderately correlated in the COPD

patients (Fig 3B, r = -0.56, p = 0.0002). These results suggested that the LAV% and MRER as

well as the SD-LAV and SD-RER were not identical.

Bivariate and multivariate analyses between the LAV% or SD-LAV and the pulmonary

function tests, including the arterial blood analysis, are shown in Tables 2 and 3. The whole-

lung emphysema severity index (LAV%) was significantly associated with the forced expiratory

volume in 1 second (FEV1) (r = -0.58, p<0.0001), DLCO (r = -0.68, p<0.0001), and the partial

pressure of oxygen in arterial blood (PaO2) (r = -0.34, p = 0.03). The cranial-caudal emphy-

sema heterogeneity index (SD-LAV) was significantly associated with the DLCO (r = -0.53,

p = 0.0004) and PaO2 (r = -0.64, p<0.0001) but not the FEV1. The multivariate analysis

showed that the LAV% but not the SD-LAV was associated with the FEV1, whereas both the

Table 1. Characteristics of the study subjects.

Characteristics COPD patients (N = 40) Healthy controls (N = 9) p-value

Age 70.5 (65.0, 76.8) 34.0 (31.5, 36.5) <0.0001

Height, m 1.67 (1.62, 1.71) 1.70 (1.66, 1.76) 0.051

Weight, kg 61.5 (55.3, 67.0) 59.0 (58.4, 66.5) 0.53

BMI, kg/m2 21.5 (20.3, 23.7) 20.9 (19.9, 23.5) 0.71

Smoking status,

current:former:never

13:27:0 0:2:7

Smoking history,

pack-years

50.0 (41.3, 72.5) 7.0 (4.0, 10.0) 0.018

FEV1, L 1.80 (1.19, 2.19) 3.91 (3.79, 4.06) <0.0001

%FEV1, % 64.8 (45.3, 73.7) 96.9 (95.4, 105.6) <0.0001

FEV1/FVC, % 54.9 (40.9, 63.3) 88.7 (78.7, 92.4) <0.0001

GOLD classification,

1/2/3/4

7/19/11/3 -

VC, L 3.56 (3.01, 3.83) 4.57 (4.13, 4.86) 0.0002

%VC, % 98.6 (89.1, 109.2) 97.9 (89.8, 107.5) 0.87

RV/TLC, % 39.3 (34.3, 45.3) 27.6 (23.0, 36.7) 0.0016

DLCO, mL/min/mmHg 12.2 (8.8, 17.6) 31.1 (27.0, 32.9) <0.0001

%DLCO, % 53.1 (37.6, 73.7) 101.2 (90.9, 110.3) <0.0001

pH 7.42 (7.41, 7.45) - - -

PaO2, Torr 76.3 (72.6, 85.1) - - -

PaCO2, Torr 39.5 (37.2, 41.9) - - -

The data are presented as medians (25th, 75th percentiles) unless otherwise indicated.

BMI, body mass index; FEV1, forced expiratory volume in 1 second; %FEV1, percentage of FEV1 predicted; FVC, forced vital capacity; VC, vital capacity; RV, residual

volume; TLC, total lung capacity; DLCO, diffusing capacity to alveolar ventilation; PaO2, partial pressure of oxygen in arterial blood; PaCO2, partial pressure of arterial

carbon dioxide.

https://doi.org/10.1371/journal.pone.0203273.t001
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LAV% and SD-LAV were significant factors for estimation of the DLCO. Interestingly, the

SD-LAV was the only association factor for the PaO2 estimation.

Bivariate and multivariate analyses of the MRER or SD-RER and the pulmonary function

tests are shown in Tables 4 and 5. The whole-lung oxygenation index (MRER) was significantly

associated with the FEV1 (r = 0.35, p<0.03), DLCO (r = 0.59, p<0.0001), and PaO2 (r = 0.52,

p = 0.0006). In contrast to the MRER, the SD-RER was not significantly associated with any

pulmonary function test. However, the multivariate analysis demonstrated that the SD-RER

was associated with the PaO2 independent of the MRER. The MRER but not the SD-RER was

significantly associated with the DLCO.

Discussion

In the present study, we found that the cranial-caudal emphysema heterogeneity detected by

both HRCT and OEMRI had a significant influence on the overall lung diffusion capacity

(DLCO) and PaO2. We also found that the cranial-caudal heterogeneity of the oxygen-transfer

Fig 1. The MRERs of the COPD patients and healthy volunteers. The data are presented as medians (bar).

https://doi.org/10.1371/journal.pone.0203273.g001
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function (SD-RER) provided additional information about the PaO2 independent of the

whole-lung oxygen-transfer function index assessed by OEMRI (MRER).

In addition, we found that the cranial-caudal emphysema heterogeneity detected by HRCT

(SD-LAV) but not the LAV% was associated with the PaO2 in the multivariate analysis.

Although studies have shown the influence of the heterogeneous distribution of emphysema

on lung function by CT[6,11,22], the present study is the first to successfully identify a signifi-

cant association between whole-lung pulmonary function, including PaO2, and cranial-caudal

heterogeneity by comparing indices derived from both OEMRI and HRCT.

COPD is the leading cause of respiratory failure. Oxygenation is a critical matter for COPD

patients, and hypoxemia is associated with a poor quality of life and prognosis[4,24–26]. In

this study, we assessed arterial blood gases (PaO2) and elucidated a strong association with an

oxygen-transfer function derived from a new functional imaging technique (OEMRI).

Our colleague previously showed that the whole-lung averaged RER (MRER) of COPD

patients exhibited a good correlation with indices obtained from quantitative CT analysis[20].

Similarly, we showed a significant correlation (Fig 2A) and found that COPD patients had a

Fig 2. Examples of CT and OEMRI coronal images from COPD patients. LAV (~-960 HU) is indicated in yellow in

the CT image. A. In this case, the coronal CT showed strong emphysematous changes in the left lower lung field, and

the OEMRI also showed low oxygen uptake in the left lower lung. Both the coronal CT and OEMRI indicated similar

results. B. In this severe emphysematous case, the coronal CT showed the same degree of emphysematous changes in

both upper lung fields, although the OEMRI showed lower oxygen uptake in the left upper lung field. The low RER

regions in the OEMRI did not necessarily match the low attenuation regions in the CT images.

https://doi.org/10.1371/journal.pone.0203273.g002
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significantly lower MRER than control subjects (Fig 1). We also found a strong association

between the MRER and important indices related to O2 transfer, such as DLCO and PaO2, in

COPD patients (Tables 4 and 5). However, the MRER was not associated with the severity of

airflow limitation (r = 0.30, p = 0.06) in COPD patients. These findings suggest that OEMRI

has an advantage in the assessment of lung gas transfer impairment as a result of parenchymal

destruction and ventilation-perfusion mismatch rather than airflow limitation, which is a con-

sequence of airway lesions and parenchymal destruction.

Although our control subjects were not age matched with the COPD patients, normal

elderly subjects with normal oxygenation may have similar or better distributions than COPD

patients.

Numerous studies have shown that the extent of the emphysematous lesion in whole lungs

is important for assessment of COPD in clinical practice[2,3,5–8,11,18,21,27, 28]. For example,

we reported that emphysematous changes assessed by a CT scan predicted respiratory mortal-

ity in COPD patients[28]. Because CT can simultaneously measure the spatial distribution of

emphysema, recent reports have also focused on the heterogeneous distribution of emphy-

sema[10,11,13]. We reported that upper lung-dominant emphysema was associated with a

Fig 3. The relationship between quantitative CT and OEMRI. A. The MRER showed a significant correlation with the LAV%. B. The SD-RER and

SD-LAV were significantly correlated in the COPD patients.

https://doi.org/10.1371/journal.pone.0203273.g003

Table 2. Bivariate analyses between the CT and pulmonary function test indices.

LAV% SD-LAV

r p-value r p-value

FEV1 -0.60 <0.0001 -0.20 0.2

DLCO -0.64 <0.0001 -0.44 0.004

PaO2 -0.39 0.01 -0.62 <0.0001

Pearson’s bivariate correlation

https://doi.org/10.1371/journal.pone.0203273.t002
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specific genetic background[29] and that a cranial-caudal homogeneous distribution of

emphysema contributed to further longitudinal changes in the FEV1[11]. In this cross-sec-

tional study, we found that the SD-LAV had additional effects on the DLCO estimation and

was significantly associated with the PaO2. Therefore, we argue that a highly heterogeneous

distribution of structural destruction may have an important negative impact on oxygenation

in the respiratory system, probably due to severe ventilation-perfusion mismatch. In fact, the

SD-RER showed a weak but significant association with the SD-LAV (Fig 2B).

Interestingly, the CT-derived parameters (the LAV% and SD-LAV) were associated with

the DLCO in the multivariate analysis, whereas the SD-LAV but not the LAV% was associated

with the PaO2 (Table 3). Since the COPDGene results showed that emphysema severity on a

quantitative chest CT scan did not predict hypoxemia[30], we naturally assumed that LAV

alone was not sufficient to explain gas transfer and arterial oxygenation. LAV simply reflects

airspace enlargement and the morphologic alveolar destruction index but not perfusion. We

speculate that the SD-LAV may somehow reflect the mismatch or uneven distribution of venti-

lation in diseased lungs.

In contrast, since both the DLCO and PaO2 are strongly associated with ventilation, perfu-

sion, and their ratios[31], the OEMRI-derived parameter may represent DLCO and PaO2 with

some cooperation. In a diseased lung, the regional distribution and heterogeneity of destruc-

tion may have complementary information for these functional data[32,33]. Therefore,

SD-LAV may be associated with the DLCO in addition to the LAV%. These speculations need

to be further investigated; however, the present study suggests that evaluating both the overall

emphysema severity and the distribution of emphysema is important for predictions of gas

transfer and hypoxemia, whereas assessment using functional imaging may be a better investi-

gative method for gas transfer and hypoxemia.

Considering the overall assessments and heterogeneity, different mechanisms could be

applied to the OEMRI parameters compared to those obtained with HRCT. The overall

Table 3. Stepwise multivariate regression analysis showing the relative contribution of each CT variable to the prediction of the pulmonary function test results.

FEV1 DLCO PaO2

Variables β p-value R2 β p-value R2 β p-value R2

LAV% -0.49 0.0004 -0.46 0.001 0.2

SD-LAV 0.9 -0.25 0.046 -0.62 <0.001

Age -0.34 0.01 -0.26 0.04 0.4

BMI 0.2 0.2 0.4

Cumulative R2 0.46 0.52 0.39

Age, BMI, LAV%, and SD-LAV were included as candidate independent variables.

FEV1, forced expiratory volume in 1 second; DLCO, diffusing capacity to alveolar ventilation

PaO2, partial pressure of oxygen in arterial blood; LAV, low attenuation volume; SD, standard deviation; BMI, body mass index

https://doi.org/10.1371/journal.pone.0203273.t003

Table 4. Bivariate analyses of the oxygen-enhanced MRI and pulmonary function test indices.

MRER SD-RER

r p-value r p-value

FEV1 0.30 0.06 -0.14 0.4

DLCO 0.58 <0.0001 -0.067 0.7

PaO2 0.54 0.0003 -0.28 0.08

Pearson’s bivariate correlation

https://doi.org/10.1371/journal.pone.0203273.t004

Oxygen-enhanced MRI in the assessment of heterogeneity in COPD patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0203273 August 30, 2018 9 / 13

https://doi.org/10.1371/journal.pone.0203273.t003
https://doi.org/10.1371/journal.pone.0203273.t004
https://doi.org/10.1371/journal.pone.0203273


average RER (the MRER) already represents much of the overall transfer function of oxygen in

the lung[34], because OEMRI can measure tissue oxygenation. This possibility may be a reason

for the lack of significant associations between the SD-RER and the DLCO or PaO2 in the bivar-

iate analyses, whereas the SD-LAV showed significant associations with these variables (Tables

2 and 4). However, because a high SD-RER indicated severe spatial heterogeneity (mismatch)

of oxygenation, the multiple regression analysis showed that the SD-RER had a negative

impact on the PaO2 (Table 5). This finding suggests that severe heterogeneity of emphysema

diminishes overall oxygenation of the lungs.

Moreover, the RER may more accurately reflect O2 behavior than CO. This possibility

could explain why the relationship between the SD-RER and the PaO2 or DLCO was not identi-

cal and suggested that OEMRI had a distinct advantage in evaluating the lung capacity for

blood oxygenation compared to pulmonary function tests or HRCT. Another possible mecha-

nism underlying the differences between the HRCT and OEMRI indices may be small airway

narrowing, which cannot be assessed using HRCT. OEMRI can detect the normal lung paren-

chyma in CT images where ventilation is poor due to small airway narrowing, because these

areas have low oxygen uptake. These speculations should also be elucidated in a future study.

The present study has some limitations. First, the present study enrolled a smaller number

of subjects than previous studies; however, we found similar and consistent results with our

previous larger study using only HRCT[11]. This small size is an institutional limitation; how-

ever, we minimized the variation of machines and procedures during imaging and successfully

obtained similar results. Therefore, this issue may not be a true limitation. The second problem

is that OEMRI is time consuming. However, since OEMRI involves no radiation exposure, it

is a potential alternative to a chest CT examination. Third, we could not use the same imaging

method to evaluate cranial-caudal heterogeneity in HRCT and OEMRI. We obtained only 3

coronal sections from OEMRI, whereas the entire lung field was evaluated by HRCT. More-

over, we found a tendency for the MRER to be higher in the posterior section than in the ante-

rior section, which might have resulted from a gravity effect. We are hopeful that this effect

can be resolved in the future. Nevertheless, we successfully found similar results using both

HRCT and OEMRI; moreover, OEMRI may have distinct advantages in estimating whole-

lung oxygenation functions that reflect ventilation and perfusion without radiation exposure.

In the future, with development of higher resolution and increased accessibility, OEMRI

will become available to assess regional functions of patients with severe breathlessness and/or

hypoxemia. Then, this information will help in evaluation of patients with COPD and other

chronic pulmonary diseases.

Table 5. Stepwise multivariate regression analysis showing the relative contribution of each variable of the oxygen-enhanced MRI for the prediction of the pulmo-

nary function test results.

FEV1 DLCO PaO2

Variables β p-value R2 β p-value R2 β p-value R2

MRER 0.1 0.58 <0.0001 0.55 0.0001

SD-RER 0.9 0.8 -0.30 0.03

Age -0.37 0.01 -0.43 0.0006 0.4

BMI 0.40 0.005 0.07 0.5

Cumulative R2 0.39 0.53 0.38

Age, BMI, MRER, and SD-RER were included as candidate independent variables.

FEV1, forced expiratory volume in 1 second; DLCO, diffusing capacity to alveolar ventilation

PaO2, partial pressure of oxygen in arterial blood; MRER, mean relative enhancement ratio; RER, relative enhancement ratio; SD, standard deviation; BMI, body mass

index

https://doi.org/10.1371/journal.pone.0203273.t005
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Conclusions

OEMRI has the advantage of providing visual information regarding the regional transfer

function of the lung. The heterogeneous distribution of emphysematous lesions assessed by

HRCT and OEMRI can provide a deeper understanding of the pathophysiology of COPD

patients.
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