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Background: Novel biomarkers are needed to progress toward individualized patient
care in sepsis. The immune profiling panel (IPP) prototype has been designed as a fully-
automated multiplex tool measuring expression levels of 26 genes in sepsis patients to
explore immune functions, determine sepsis endotypes and guide personalized clinical
management. The performance of the IPP gene set to predict 30-day mortality has not
been extensively characterized in heterogeneous cohorts of sepsis patients.

Methods: Publicly available microarray data of sepsis patients with widely variable
demographics, clinical characteristics and ethnical background were co-normalized,
and the performance of the IPP gene set to predict 30-day mortality was assessed
using a combination of machine learning algorithms.

Results: We collected data from 1,801 arrays sampled on sepsis patients and 598
sampled on controls in 17 studies. When gene expression was assayed at day 1
following admission (1,437 arrays sampled on sepsis patients, of whom 1,161 were alive
and 276 (19.2%) were dead at day 30), the IPP gene set showed good performance to
predict 30-day mortality, with an area under the receiving operating characteristics curve
(AUROC) of 0.710 (CI 0.652–0.768). Importantly, there was no statistically significant
improvement in predictive performance when training the same models with all genes
common to the 17 microarray studies (n = 7,122 genes), with an AUROC = 0.755
(CI 0.697–0.813, p = 0.286). In patients with gene expression data sampled at day
3 following admission or later, the IPP gene set had higher performance, with an
AUROC = 0.804 (CI 0.643–0.964), while the total gene pool had an AUROC = 0.787 (CI
0.610–0.965, p = 0.811).

Conclusion: Using pooled publicly-available gene expression data from multiple
cohorts, we showed that the IPP gene set, an immune-related transcriptomics signature
conveys relevant information to predict 30-day mortality when sampled at day 1
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following admission. Our data also suggests that higher predictive performance could
be obtained when assaying gene expression at later time points during the course of
sepsis. Prospective studies are needed to confirm these findings using the IPP gene set
on its dedicated measurement platform.

Keywords: sepsis, transcriptomics, predictive modeling, gene expression analysis, mortality, biomarker
discovery

INTRODUCTION

Sepsis – a dysregulated immune response to severe infection
leading to acute organ dysfunction (1) – is the third leading
cause of death worldwide and the main cause of in-hospital
mortality (2, 3). Despite more than 100 randomized clinical
trials attempting to manipulate the host response to improve
sepsis outcomes, sepsis care remains mainly supportive, limited
to hemodynamic support, early antibiotic treatment and source
control (4). In contrast to what is seen in the treatment of cancer,
the aim of delivering precision medicine in sepsis remains far
from attained: new tools and strategies are urgently needed to
progress toward individualized patient care in sepsis (5, 6).

Why have all clinical trials in sepsis failed? (7). One reason
is that they have not taken into account the significant
heterogeneity in the epidemiology, microbiology and
immunology of this syndrome. The immune response in
sepsis is highly complex and dynamic, involving both pro- and
anti-inflammatory mechanisms, with substantial intra- and inter-
individual variability (8, 9). While its initial phase is characterized
by uncontrolled inflammation responsible for tissue injury, sepsis
patients also display markers of a profound immunosuppression
(10), linked to a high prevalence of secondary opportunistic
infections (11, 12) and contributing to significant mortality
in sepsis survivors (13). Thus, trials are investigating whether
immune-suppressing therapies such as interleukine (IL) 1
receptor antagonist (IL-1Ra) and anti–IL-6 could dampen
the early cytokine storm, and conversely whether immune-
stimulatory agents such as IL-7, granulocyte macrophage-colony
stimulating factor (GM-CSF), and interferon gamma (IFN-γ)
could reverse sepsis-induced immunosuppression (14).

To identify sub-groups of patients with reduced heterogeneity
and a higher likelihood to respond favorably to such targeted
therapies, it is crucial to use appropriate biomarkers (15, 16). For
example, a low expression of human leukocyte antigen–DR on
monocytes (mHLA-DR) can be used as a surrogate marker for
monocyte anergy and decreased antigen presentation (17), and
has been used as an inclusion criterion in the GM-CSF trial (18).
However, its dissemination at the point-of-care has been limited,
mainly because its accurate measurement is time-consuming and
requires dedicated specialized personnel and equipment, and also

Abbreviations: AUPRC, area under the precision recall curve; AUROC, area
under the receiving operating characteristics curve; COCONUT, COmbat CO-
normalization Using coNTrols; GE, gene expression; GM-CSF, granulocyte
macrophage-colony stimulating factor; IFN-γ, interferon gamma; IL, interleukin;
IPP, immune profiling panel; mHLA-DR, human leukocyte antigen–DR; ML,
machine learning; PCR, polymerase chain reaction.

because – as a univariate biomarker – it may fail to capture the
global complexity of sepsis immunology.

More recent biotechnological and analytical advances have
prompted the use of -omics technologies - mostly transcriptomics
- to probe the immune response in sepsis, hoping that this
approach could uncover important mechanisms of immune
regulation and help identify biomarkers to inform targeted
therapeutic strategies in sepsis (16, 19). By assaying messenger
RNA (mRNA) transcripts in peripheral blood leukocytes and
using unsupervised machine learning (ML) methods, sub-
groups of sepsis patients whose distinct patterns of gene
expression (GE) can be linked to distinct immune states, so-
called « endotypes », have been identified. For instance, the Dutch
Molecular Diagnosis and Risk Stratification of Sepsis (MARS)
project identified four distinct sepsis endotypes named MARS 1
to 4, with patients in the MARS 1 cluster showing a pronounced
decrease in expression of genes corresponding to key innate
and adaptive immune cell functions and a decreased 28-day
survival (20); and the United Kingdom Genomic Advances in
Sepsis (GAinS) study identified two distinct sepsis response
signatures named SRS 1 and SRS 2, with SRS 1 patients having
an immunosuppressed status and higher 14-day mortality (21).

Importantly, there is only partial overlap in differentially
expressed genes of the MARS 1 and SRS 1 clusters, raising
the question of the generalizability of these signatures. This
could be explained by the limited sample size of both studies;
the redundancy in the information carried by multiples
genes belonging to common biological pathways; and the
sampling of patients from restricted ethnic backgrounds
and geographic areas. In order to increase the potential to
generalize transcriptomics studies in sepsis, one strategy
is to leverage biological and technical heterogeneity across
a large number of studies taken from diverse clinical
backgrounds and profiled using different platforms (22).
To this end, Stanford-based investigators have collected
publicly available GE data sets sampled from sepsis patients,
implemented a modified type of array normalization that
uses the ComBat empirical Bayes normalization method (an
algorithm called COCONUT, for COmbat CO-normalization
Using coNTrols) and used a supervised learning approach
to identify a gene signature predictive of 30-day sepsis
mortality (23).

However, while this approach has focused on finding
a gene signature with the broadest generalizability across
populations and the highest predictive performance, it does
not provide a mechanistic insight into the pathways involved
in disease trajectories. Further, none of the above-mentioned
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signatures have incorporated prior knowledge on immunological
abnormalities in sepsis, nor was devised precisely to discriminate
between sub-groups of sepsis patients that could be targeted by
specific immunomodulatory agents. Finally, they were devised
using microarray data, while a point-of-care device targeting
these gene sets would most likely use another technology
to measure gene expression, raising the question of the
transferability across platforms.

To circumvent these obstacles, we are working on an Immune
Profiling Panel (IPP) prototype, a multiplexed transcriptomic
assay that uses the FilmArray technology to quantify mRNA
expression in whole blood and deliver results in less than
an hour (24, 25). This prototype test, which has not been
submitted for regulatory review at the time of this writing, may
someday be able to provide clinicians with timely information
about the immune system of sepsis patients and potentially aid
in providing appropriate care. Selection of the IPP gene set
was based on existing knowledge on genes related to relevant
outcomes in sepsis (mortality prediction, sepsis-associated
immunosuppression, susceptibility to secondary infections);
technical performance of the selected targets in multiplex
quantitative polymerase chain reaction (qPCR); and the goal
to attain a balanced representation of pathways involved in
sepsis immunopathology (such as monocyte anergy, antigen
presentation, lymphocyte exhaustion, etc.) (26–29).

However, the performance of the whole IPP gene set to
predict 30-day mortality in sepsis has not been evaluated in
a large heterogeneous cohort of sepsis patients. To this end,
we decided to: 1) collect publicly available microarray data sets
of sepsis patients with patient-level information on mortality;
(2) co-normalize data sets using COCONUT; (3) optimize
ML models using the expression of the IPP gene set on day
1 following admission as input and 30-day mortality as the
outcome of interest to evaluate the predictive performance of
the IPP signature. Additional objectives were to evaluate if better
predictive performances could be attained either by using another
gene signature, or by using GE data sampled more than 2 days
after hospital admission.

METHODS

Data Collection and Pre-processing
We searched NCBI GEO and EMBL-EBI ArrayExpress databases
for studies with the following inclusion criteria: (1) publicly
available GE data from micro-array experiments collected by
whole blood sampling, with at least one sample collected at day
1 following hospital or intensive care unit (ICU) admission; (2)
adult or pediatric patients with sepsis, according to Sepsis-1 (30),
Sepsis-2 (31) or Sepsis-3 (32) definitions; (3) individual patient
data on mortality (assessed between 28 and 30 days after blood
sampling); (4) at least 5 control patients (healthy volunteers or
patients with non-septic inflammation), which was mandatory
for co-normalization across studies. Data sets using endotoxin
or lipopolysaccharide infusion as a model for inflammation or
sepsis, as well as datasets derived from sorted cells and RNAseq
experiments were excluded.

We collected normalized GE data from selected studies when
it was available, and inspected normalization visually by plotting
individual patient data for each study. In case normalized data
was not available, raw GE data was downloaded and normalized
using the gcRMA method (R package affy) for Affymetrix chips,
and normal-exponential background corrected and quantile
normalized (R package limma) for Agilent and Illumina chips.
When several microarray probe sets pointed toward one common
gene under the HUGO gene nomenclature data base, we used the
collapseRows function in the R package WGCNA to select the
probe set with the highest mean value (MaxMean method) (33).

Individual patient data related to demographics and clinical
characteristics were also extracted when available, including data
on age, gender, ethnicity, clinical severity scores, and bacterial vs.
viral origin of sepsis.

Co-normalization Using COCONUT
Comparison of GE data from different microarray studies is
limited by different background measurements for each gene
between microarrays, and potential batch effects among studies
using the same types of microarrays. To analyze pooled data from
different studies, co-normalization methods must be applied in
such a way that: (1) no bias is introduced that could influence final
classification; (2) there should be no change in the distribution
of a gene within a study; and (3) a gene should show the
same range of distributions between studies after normalization
(34). To this end, we used the R package COCONUT (35),
which implements a modified version of the ComBat empirical
Bayes normalization method (36), using the assumption that
all healthy/control patients from different studies come from
the same distribution. All cohorts are split into healthy/control
and diseased (sepsis) patients; the healthy components undergo
parametric ComBat co-normalization without covariates; the
ComBat estimated parameters are obtained for each data set
for the healthy/control component and then applied to the
diseased component.

Model Selection, Performance Metrics,
Hyperparameter Tuning
Prior to model training, we randomly split the ComBat-corrected
GE data into a discovery data set (70%) and a validation data set
(30%). The discovery set was used to train several classification
algorithms, taking GE data related to the IPP genes as input and
30-day mortality as outcome: logistic regression with L1 (lasso),
L2 (ridge) and mixed (elastic net) regularization, random forest,
support vector machines with linear and radial kernels and partial
least squares-discriminant analysis. Mortality was considered as a
binary variable because time-to-event data were not available in
most public data sets.

Hyperparameter optimization was performed to select models
with the highest mean area under the receiver operating
characteristic (ROC) curve (AUROC) using 5 repetitions of 10-
fold cross-validation. Alternatively, the area under the precision
recall curve (AUPRC) was used as a performance scoring metric
because our discovery data set had an imbalanced distribution
of the outcome (with ∼19% mortality) (37). Furthermore, to
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mitigate the negative impact of data imbalance on model training,
we used several oversampling strategies, including the Synthetic
Minority Oversampling Technique (SMOTE) on the discovery
data set prior to hyperparameter tuning (38).

For each optimized model, we evaluated performance by
computing the AUROC and its confidence interval (DeLong
method) on the validation set.

Models and Feature Sets Comparisons
The IPP gene set contains 26 immune-related genes and 3 genes
used for normalization, and we used those the total of 29 as input
in the IPP models (Supplementary Table 1). To compare the
predictive performance of the IPP gene set to that of the best
possible signature derived from the pooled data set assembled
from publicly available microarray data, we trained the same
machine learning (ML) models, taking all genes common to all
included studies as input (“all genes” models, n = 7,122 genes). To
see if improvement in predictive performance from the IPP gene
set to the total gene pool was due to the fact that the IPP gene set
did not contain the best set of predictors, or solely a consequence
of it having a limited number of predictors, we selected the 29
genes with the highest feature importance in the best performing
“total gene pool” model and re-ran ML models using the “top
29 genes” set as input. Finally, we compared the IPP gene set to
the “all genes” and “top 29 genes” sets by comparing ROC curves
obtained by prediction on the validation set.

To determine if gene expression data could yield different
predictive information on mortality if mRNA is sampled at time
points beyond patient admission, we trained models on 2 data
sets: (1) the “day 1” data set was a subset of the whole co-
normalized data set, restricted to cohorts with available GE data
for all the IPP genes, sampled at day 1 following enrolment; (2)
the “day > 2” data set was a subset of the whole co-normalized
data set, restricted to cohorts with available GE data for all the IPP
genes, sampled at time points 3 to 7 days following enrolment.
Each of these 2 data sets were split in discovery and validation
sets as described above.

Finally, we sought to assess how IPP could be used as a tool
for prognostication at the patient level. We used IPP models and
found optimal thresholds of sensitivity and specificity using the
top-left method on the “day 1” and “day > 2” data sets, enabling
us to define 2 groups based on the predicted probability of death
(low- and high-risk groups). Finally we computed and compared
observed 30-day mortality rates in the low- and high-risk groups
using appropriate statistical tests (see below).

Statistical Analysis and Software
To compare demographics and clinical features in the discovery
and validation data sets, we used the Wilcoxon rank sum test. To
compare predictive performance between models, we compared
ROC curves computed using the same test set with DeLong’s
test for correlated data. To compare proportions of dead patients
between different risk groups obtained with IPP genes, we
used the chi-squared test or Fisher’s exact test, as appropriate.
Significance levels for p-values were set at 0.05 and analyses were
two-tailed. Statistical analyses were performed using R (v3.6.2)
with packages from the BioConductor library, the tidyverse

collection, caret and COCONUT, as well as on Python 3 with the
scikit-learn machine learning library.

RESULTS

Studies Included in the Analysis,
Discovery and Validation Sets
Twenty studies fulfilled our inclusion criteria (20, 39–58). Of
these, three studies (40, 48, 56) did not contain data on three
genes included in the IPP gene set (TDRD9, CD274 and
ARL14EP) because associated probes were not on the chip used
in these studies (Affymetrix Human Genome U133A 2.0 Array),
and were subsequently removed from analysis.

The remaining 17 studies included 2,399 arrays, with 1,801
arrays from sepsis patients and 598 arrays from controls
(Table 1). The “day 1” data set included 1,437 arrays sampled on
sepsis patients at day 1, of whom 1,161 were alive and 276 (19.2%)
were deceased at day 30 following enrolment. As presented in
Table 2, demographics and clinical characteristics were similar in
the discovery (n = 1,007) and validation (n = 430) sets obtained
after random splitting of the “day 1” data set.

In the 7 studies (43, 45, 46, 51–53, 58) with GE data collected at
time points 3 to 7, there were 270 arrays sampled on 173 patients,
of whom 134 were alive and 39 (22.5%) deceased at day 30; 122
were used for training and 51 for testing models (Supplementary
Tables 2, 3).

We ran the COCONUT algorithm on the 17 studies
selected for analysis and assessed the effect of co-normalization:
(1) on patient-level GE data across studies (Figure 1 and
Supplementary Figure 1); (2) at the gene level in controls and
cases (Supplementary Figure 2 presenting data for CD3D);
(3) for 2 genes in controls and cases, here with CLDN8
(a housekeeping gene, with minimal difference in mean GE
between controls and cases and minimal overall GE variance)
and CEACAM1, up-regulated during sepsis (Supplementary
Figure 3). As expected, visual inspection of these plots confirmed
the effect of COCONUT to attenuate the “batch effect” across the
selected 17 studies.

Predictive Performances of the IPP Gene
Set at Day 1 Following Admission
First, we sought to determine the performance of the IPP gene
set to predict 30-day mortality using GE data sampled on the
day of patient admission. As shown in Figures 2, 3, the highest
predictive performance was obtained by training of a random
forest classifier, with an AUROC computed on the validation
set of 0.710 (CI 0.652–0.768). Next, to determine if better
predictive performance could be extracted from other genes, we
ran the same models using all the genes common to the 17
selected studies as input. We found that the highest predictive
performance of the “all genes” set (n = 7,122 genes) was obtained
by training of an L2-penalized logistic regression classifier, with
an AUROC computed on the validation set of 0.755 (CI 0.697–
0.813), which was not statistically different from the performance
obtained with the IPP gene set (p = 0.286). In such a logistic
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TABLE 1 | Characteristics of the cohorts, patients and microarray data included in the study.

Dataset
accession

First
author

Country CA vs.
HCA**

Time
points

Age Sex
(%males)

Arrays Patients Controls Sepsis Bacterial Viral Alive Deceased Chip Normalization
method

GSE27131 Berdal Norway CA d1 d6
d7

41.1 85.7 21 14 7 7 0 7 5 2 Affymetrix RMA

GSE32707 Dolinay United
States

CA d1 57.1 54.2 103 103 55 48 NA NA 86 17 Illumina Quantile

GSE40586 Lill Estonia CA d1 46.1 NA 39 39 18 21 21 0 19 2 Affymetrix RMA

GSE66099 Wong United
States

CA d1 3.7 63.1 276 276 77 199 NA NA 248 28 Affymetrix gcRMA

GSE21802 Bermejo-
Martin

Canada CA d1 NA NA 15 15 4 11 0 11 7 4 Illumina Quantile

GSE54514 Parnell Australia CA d1-d5 59.8 41.7 163 54 18 36 36 0 26 10 Illumina Quantile

GSE20346 Parnell Australia CA d1-d7 NA NA 55 22 18 4 0 4 22 0 Illumina Cubic spline

GSE40012 Parnell Australia CA d1-d5 NA 45.5 129 42 31 11 3 11 42 0 Illumina Quantile

GSE57065 Cazalis France CA
HCA

d1 d2
d3

62.7 67.9 107 53 25 28 28 0 22 6 Affymetrix RMA

GSE60244 Suarez United
States

CA d1 62.1 41.5 158 158 40 118 47 96 158 0 Illumina Quantile*

GSE65682 Scicluna Netherland CA
HCA

d1 61 56.8 521 521 42 479 NA NA 365 114 Affymetrix RMA + quantile

GSE95233 Tabone France CA d1 d2
d3

62.1 64.7 124 71 20 51 NA NA 56 17 Illumina Quantile

E-MEXP-
3589

Almansa Spain CA d1 NA 50 16 16 4 12 5 3 16 0 Agilent Normexp

E-MTAB-
1548

Almansa Spain HCA d1 69.2 67.1 155 155 73 82 NA NA 138 17 Agilent Normexp

E-MTAB-
5273/5274

Burnham United
Kingdom

CA d1 d3
d5

65.4 53 337 253 10 243 NA NA 204 39 Illumina VSN

GSE13015 Planka Thailand CA
HCA

d1 53.7 54.7 92 92 29 63 63 0 52 20 Illumina Quantile*

GSE25504 Smith United
Kingdom

CA
HCA

d1 0.25 56.8 88 88 44 44 37 5 84 4 Illumina +
Affymetrix

Spline

Total 2,399 1,972 515 1,457 240 137 1,181 276

*Normalization method was not specified in the original study but was verified graphically and assumed to follow the method specified in the table based on usual methods for the associated chip.
**Community- vs. healthcare associated sepsis cases: CA is for community-acquired and HCA for healthcare-associated infections.
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regression classifier, it is possible to extract the genes with
the highest absolute value of regression coefficients, indicative
of the highest predictive performance. Thus, we subsequently
trained ML algorithms with the 29 genes with the highest feature
importance in the “all genes” model, and obtained an AUROC
of 0.727 (CI 0.670–0.785, p = 0.610 in comparison to the IPP
gene set). In conclusion, we found that the IPP gene set conveyed
useful information to predict 30-day mortality with GE data
assayed upon patient admission. Furthermore, we found evidence
that the predictive power of the IPP gene set was equivalent to the
best performing signature extracted from the 17 studies included
in our multi-cohort ComBat-normalized data set.

Predictive Performances at Time
Points > Day 2 Following Admission
Because most of the existing literature on sepsis immunology
has shown that more relevant information can be obtained when
assessing biomarkers later in the course of disease, we sought to
investigate the predictive performance of the IPP gene set when
GE data is measured on day 3 following admission or later. As
shown in Figure 4, the highest performance of the IPP gene
set at days > 2 following admission to predict 30-day mortality
was obtained by training of a random forest classifier, with an

TABLE 2 | Demographics and clinical characteristics in the discovery and
validation sets computed with microarray data sampled at day 1 following
study enrolment.

Discovery set
(n = 1007)

Validation set
(n = 430)

P-value

Age [mean (SD)] 52.09 (26.35) 49.79 (26.83) 0.138

Gender (n,%) 0.142

Female 419 (41.6) 189 (44.0)

Male 566 (56.2) 225 (52.3)

NA 22 (2.2) 16 (3.7)

Infection setting (n,%) 0.133

Community-associated 685 (68.0) 313 (72.8)

Healthcare-associated 69 (6.9) 30 (7.0)

NA 253 (25.1) 87 (20.2)

Microbiology (n,%) 0.972

Viral sepsis 79 (7.8) 33 (7.7)

bacterial sepsis 143 (14.2) 63 (14.7)

NA 785 (78.0) 334 (77.7)

Ethnic background (n,%) 0.976

Asian 46 (4.6) 19 (4.4)

Black 17 (1.7) 6 (1.4)

Latino 13 (1.3) 7 (1.6)

White 52 (5.2) 21 (4.9)

NA 879 (87.3) 377 (87.7)

Platform (n,%) 0.708

Affymetrix 552 (54.8) 226 (52.6)

Agilent 66 (6.6) 28 (6.5)

Illumina 389 (38.6) 176 (40.9)

Survival (n,%) 816 (81.0) 349 (81.2) > 0.999

NA indicates values missing in the original studies.

AUROC computed on the validation set of 0.804 (CI 0.643–
0.964). Here again, we found that the IPP gene set yielded similar
information to the total gene pool, as we obtained an AUROC on
the validation set of 0.787 (CI 0.610–0.965, p = 0.811) in the “all
genes” best model.

Interest of IPP for Prognostic Enrichment
The ROC curve provides generic information on the
performance of a binary classifier over a range of possible
thresholds, but this information might be of limited relevance
to clinicians aiming to determine the probability of an event
for a specific patient, given the result of the test. To investigate
how IPP could be used for prognostic enrichment, we used the
optimized ML models obtained with the “day 1” and “days > 2”
discovery data sets, computed ROC curves based on predictions
on the validation sets, extracted thresholds based on the closest
top-left method, and calculated the mortality rates in patients of
the validation sets below (low-risk group) and above (high-risk
group) this threshold.

As shown in Figure 5, using gene expression data from the
“day 1” data set, 30.2% (CI 24.2–36.8%) of patients in the high-
risk group were dead at day 30, as compared to 7.4% (CI 4.3–
11.8%, p-value < 10E-8) in the low-risk group. Furthermore,
using gene expression data from the “days > 2” data set, we
found that 63.6% (CI 30.8–89.1%) of patients in the high-risk
group were dead at day 30, compared to 8.5% (CI 2.8–18.7%, p-
value < 10E-4) in the low-risk group. This indicated that using
IPP at the bedside could help clinicians identify a sub-group of
patients with higher 30-day mortality early-on during the course
of sepsis.

DISCUSSION

The main finding of our study is that the IPP gene set
has good overall performance to predict 30-day mortality, as
assessed using microarray data sampled at day 1 following
admission in a large and heterogeneous cohort of sepsis
patients, with best model showing an AUROC of 0.710 (95%
CI 0.652–0.768). IPP was designed using existing knowledge
on sepsis immunology and pathophysiology, with the aim to
assess the immune system of sepsis patients in a multifaceted
manner, and this study demonstrates that the selected immune-
related genes also provide predictive information on all-cause
mortality. Furthermore, this information can be captured
using retrospective and highly heterogeneous data collected on
microarrays, even though the IPP tool is based on a PCR assay.

Importantly, predictive performance obtained with all the
genes common to all microarrays (>7,000 genes) was not
statistically different from that obtained with the IPP genes. It
is still possible that the IPP gene set does not capture all the
information available in GE data to predict 30-day mortality, but
for important technical reasons (e.g., the limited multiplexing
capabilities of most commercially available PCR-based assays),
models including a large feature set would not be easy to
implement at the bedside. This would mandate finding the
optimal trade-off between statistical performance and technical

Frontiers in Medicine | www.frontiersin.org 6 June 2022 | Volume 9 | Article 930043

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-930043 June 28, 2022 Time: 12:9 # 7

Kreitmann et al. Immune Profiling for Mortality Prediction in Sepsis

FIGURE 1 | Effect of ComBat co-normalization on patient-level gene expression data assessed by principal component analysis (PCA) across 17 microarray studies.
We computed a 2-dimensional PCA plot of individual gene expression data from sepsis patients at day 1 following admission (7,122 genes assessed on 1,437 arrays
sampled on 1,437 patients) before (left panel) and after (right panel) ComBat co-normalization using controls with the COCONUT R package. Each of the 17 studies
maps to one color, showing how co-normalization attenuates the segregation of individual data points in clusters determined by the study to which they belong.

constraints to identify the best number of features to include in
the assay. Furthermore, models with a high number of predictors
are prone to overfitting, which could limit the prognostic
accuracy of gene sets across different technological platforms or
in different clinical settings. Overall, these results demonstrate
that the IPP gene set can capture similar information on 30-
day mortality in sepsis as the total gene pool common to 17
microarrays, but with the potential to deliver actionable results
in less than an hour, directly at the point of care.

One key aspect of our analysis pipeline is the use of publicly
available GE data and batch-effect correction using the ComBat
algorithm, which follows a strategy developed by a group from
Stanford University (22, 34, 39, 59). Conceptually, pooling
together highly heterogeneous data collected in different clinical
settings has the potential to increase the generalizability of gene
signatures to populations with different ethnic backgrounds and
disease phenotypes. However, one can question the relevance
of this approach when looking in detail at the wide variability
in the demographics and clinical characteristics of the patients
included in our multi-cohort analysis. Whether or not there
are in fact shared pathophysiological mechanisms and common
immunological pathways in children vs. adults, in viral vs.
bacterial sepsis, or in ICU vs. ward patients, remains to be fully
investigated to demonstrate the usefulness of this strategy.

The IPP prototype has been designed to be run on a
dedicated real-time multiplex PCR platform, whereas GE data
used in our analysis was collected on microarrays, which raises
the question of cross-platform transferability of transcriptomics
assays. Given the sometimes weak correlation in expression levels
of the same gene target measured on one given sample but
different technology, it is highly possible that the real association
between our gene signature (as measured with the IPP tool)
and 30-day mortality might not be accurately recapitulated in
our study. While many gene signatures have been devised for
diagnosis and prediction in sepsis, none so far has been proven

robust enough to be translated into a clinically usable tool,
in part because good statistical performance seen during the
conception phase was not reproduced on prospectively collected
new patient data, especially if analyzed on a different platform
(60). In recent studies for instance, a gene signature devised
using microarray data did not show major improvement in
predictive power compared to usual severity scores (SAPS 3
and APACHE II) when tested on prospectively collected patient
samples processed on the NanoString nCounter platform (60,
61). In line with this, a prospective multicenter study [IMPACCT
(62)] is currently enrolling sepsis patients to better evaluate the
predictive performance of the IPP gene set when used on its
dedicated platform.

Independent of the question of cross-platform transferability,
transcriptomics-based diagnostic tools in sepsis might fail to
take into account all the relevant information available to
predict key outcomes. For instance, there are validated and
widely-used clinical severity scores that can predict mortality
in intensive care patients with moderate discrimination but
wide generalizability and at virtually no added cost. Thus,
when evaluating a transcriptomics-based tool, we should verify
that GE data provide information independently of the clinical
scores. This question was assessed in the Stanford multi-cohort
analysis on mortality prediction by running models including
both clinical and transcriptomics data, and evaluating the
independent effect of GE data on mortality prediction. These
analyses showed a consistent (yet not always large) improvement
in AUROCs when using genes in addition to clinical data as
input (23). Unfortunately, we were not able to run the same
analyses, as the majority of publicly available data sets we used
did not report patient-level clinical severity data (and because
studies that did report data on clinical severity used a wide
range of severity scores, limiting their use in our multi-cohort
analysis framework). In the same line, it can be argued that for
both, clinical and methodological considerations, it would be
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FIGURE 2 | Predictive performance of the IPP gene set on “day 1” discovery and validation sets. We trained machine learning models on the “day 1” discovery
(n = 1,007) and validation (n = 430) data sets by 5 repeats of 10-fold cross-validation, and computed areas under the receiver operating characteristic (AUROC, right
panel) and precision-recall curves (AUPRC, left panel) on the resampled discovery set (box plots) and by prediction on the validation set (gray diamonds). Gray
dashed line on the AUPRC facet indicates baseline probability of the outcome (death).

FIGURE 3 | Comparison of predictive performances of the IPP gene set with that obtained with other genes on the “day 1” data set. We compared the predictive
performance of the IPP gene set to that obtained with other genes common to the 17 microarray studies by computing ROC curves obtained by prediction on the
validation set with IPP, “all genes” and “top 29 genes” models trained on GE data collected at day 1 following admission. Gray areas indicate 95% confidence
intervals of corresponding AUROCs.
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FIGURE 4 | Predictive performance of the IPP gene set on the “days > 2” data set. We assessed the predictive performance of the IPP and “all genes” set by
computing ROC curves on the validation set.

FIGURE 5 | Prognostic enrichment with the IPP tool. We used the best IPP models (trained on the “day 1” and “days > 2” discovery sets) and computed a test
threshold using the top-left method on corresponding validation sets. This enabled us to divide the validation sets in 2 sub-groups with a low and a high predicted
risk of death. Then, we compared the actual proportion of sepsis patients deceased at day 30 in both sub-groups, to assess if IPP could be used for prognostic
enrichment at the bedside.
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interesting to include in our prediction models patient-level data
on demographics, clinical characteristics and therapeutics (such a
steroids, which are known to influence shock severity and sepsis
mortality (63), and are also potentially responsible for a change in
immune-related GE profile). This argues in favor of prospectively
collecting more high quality data on sepsis patients to refine
prediction models that would include all relevant information,
including clinical and biological, but also genetic, epigenetic,
microbiological (etc.), data.

Another inherent limitation of this work is that even though
mortality is widely considered an important patient-centered
outcome, it is influenced by myriad factors, including many
that are not easily modified through medical intervention, which
makes it difficult to predict accurately using easily available
patient data. Furthermore, it can be argued that even a perfectly
calibrated mortality prediction model would fall short of having a
positive impact on an individual patient’s care if not coupled with
a set of clinical measures meant to improve patient outcomes. In
line with this, models designed to predict healthcare-associated
infections (HAIs) may be more valuable to clinicians, as they
could enable identification of high-risk patients that could be
targeted by preventive bundles of cares [e.g., early removal of
invasive devices, which are associated with the occurrence of
HAIs (12)]. Maybe even more importantly, models designed
to identify sepsis endotypes could lead to targeted immune
stimulating therapies (10, 64).

Finally, our study suggests that GE data has better
performance to predict mortality when mRNA is sampled
on day 3 or later following hospital admission. This finding is in
line with numerous reports on sepsis biomarkers used to predict
mortality or hospital-acquired infections, which consistently
show higher performances when biomarkers are assayed after
day 3–4 (17, 65). This is also consistent with accumulating
data on sepsis immunology, indicating that sepsis-acquired
immunosuppression develops in a subset of patients with a
worse prognosis only after a few days of acute inflammation (10,
66, 67). Thus, our findings confirm that a transcriptomics tool
assessing the host response of sepsis patients to predict mortality
could yield more reliable information if assayed at later time
points. However, our data must be interpreted with caution, as
there were a limited number of patients with GE data available
at time points > 2 days, with only 122 patients in the discovery
set and 51 (including 11 deaths) in the validation set. In line
with this, evaluating if serial measurements of biomarkers can
be used to recapitulate disease trajectories in sepsis, and whether
this information can be helpful in refining the definition of sepsis
endotypes, is the subject of active research (68).

CONCLUSION

Through multi-cohort analysis using ComBat co-normalization
on microarray data in a heterogeneous group of sepsis patients,
we found that the IPP gene set, when assayed at day 1
following hospital admission, can reliably predict all-cause 30-
day mortality. Our data also suggest that more information could
be extracted from mRNA data if sampled at later time points,

when immunological trajectories begin to diverge between sepsis
survivors and patients who will eventually die. Since mortality
prediction in sepsis is of limited interest to clinicians if not
coupled with specific interventions meant to influence disease
trajectory and prognosis, using IPP to identify sepsis endotypes
or predict HAI is more likely to have a positive impact on the
care of patients with sepsis.
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