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Abstract

As the 2019 novel coronavirus disease (COVID‐19) outbreak has evolved in each

country, the approach to the laboratory assessment of severe acute respiratory

syndrome coronavirus 2 (SARS‐CoV‐2) infection has had to evolve as well. This

review addresses the evolving approach to the laboratory assessment of COVID‐19
and discusses how algorithms for testing have been driven, in part, by the demand

for testing overwhelming the capacity to accomplish such testing. This review

focused on testing in the USA, as this testing is evolving, whereas in China and other

countries such as South Korea testing is widely available and includes both mole-

cular testing for SARS‐CoV‐2 as well as serological testing using both enzyme‐linked
immunosorbent assay methodology and lateral flow immunoassay methodology.

Although commercial testing systems are becoming available, there will likely be

insufficient numbers of such tests due to high demand. Serological testing will be the

next testing issue as the COVID‐19 begins to subside. This will allow immunity

testing as well as will allow the parameters of the COVID‐19 outbreak to be defined.
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1 | INTRODUCTION

As the world continues to cope with the 2019 novel coronavirus disease

(COVID‐19) pandemic,1‐5 testing methods and algorithms for their use

in the assessment of COVID‐19 are rapidly evolving. This update will

specifically address those testing methods and algorithms for the

assessment of COVID‐19 that are currently in use or will be available

for use in the near future. This review focused on testing in the USA, as

this testing is evolving, whereas in China and other countries such as

South Korea testing is widely available and includes both molecular

testing for severe acute respiratory syndrome coronavirus 2 (SARS‐
CoV‐2) as well as serological testing using both enzyme‐linked im-

munosorbent assay (ELISA) methodology and lateral flow immunoassay

methodology. The limitations of current testing methods will be dis-

cussed, as these limitations have led to the use of testing algorithms for

COVID‐19 testing. In addition, serological testing for the assessment of

immunity to COVID‐19 will be discussed as such serological results may

be useful for determining who can return to work in critical occupations.

Rapid, commercial COVID‐19 testing methods as well as algo-

rithms for their use are being developed and implemented through-

out the words. These will assist in the control and final resolution of

this outbreak. As the COVID‐19 public‐health emergency rapidly

evolves country by country, the responses in each country must meet

the emerging needs. But a common factor for every country is the

need for wide‐spread testing at the level of small communities.6 As

the COVID‐19 outbreak begins to subside, serological testing will be

needed to determine who is likely to be immune and thus might be

able to return to work, particularly if such work is a critical occu-

pation. Serological testing will also be needed to determine the epi-

demiological characteristics such as the true case fatality rate.

1.1 | Specific types of molecular testing

Wide availability at the community level for commercial molecular

testing instruments that can use approved SARS‐CoV‐2 test kits will be
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absolutely critical for controlling this COVID‐19 outbreak. As many

hospitals and clinics already are using such instruments, they would only

need to verify the SARS‐CoV‐2 testing on their instruments to be able

to offer such testing at the local community level. In the USA, this will

require the Food and Drug Administration (FDA) approval for “emer-

gency use authorization” (EUA) for in vitro diagnostic use tests. At the

time of writing, 39 kits, most of them are commercial except for the one

from the US Centers for Disease Control and Prevention (CDC) and the

NY State of Health, received EUA clearance (https://www.fda.gov/

medical-devices/emergency-situations-medical-devices/emergency-use-

authorizations#coronavirus2019. Accessed 18 April 2020). However,

the demand for these commercial COVID‐19 devices could easily ex-

ceed the capability of their respective manufacturers to supply a large

initial demand.

1.1.1 | Random‐access, integrated, and sealed
devices

Many of these random‐access devices are real‐time reverse‐
transcription polymerase chain reaction (RT‐PCR)‐based procedures

which do include a separate nucleic acid extraction procedure before

the procedure of simultaneous nucleic acid amplification and detec-

tion. However, several commercial testing instruments now offer

“sealed” systems that integrate nucleic acid extraction, amplification,

and detection; once the clinical sample in universal transport medium

is loaded into the instrument's cartridge in a biosafety cabinet,

the cartridge is “sealed.”7‐10 At the time of writing, Xpert Xpress

SARS‐CoV‐2 test (Cepheid, Sunnyvale, CA), Accula SARS‐CoV‐2 Test

(Mesa Biotech, San Diego, CA), and ID NOW COVID‐19 (Abbott,

Scarborough, ME) have been granted EUA CLIA‐waive category by

FDA. There are certain types of high priority testing algorithms for

SARS‐CoV‐2 testing; these include testing of health‐care workers11

as health‐care workers are at high risk and, if undiagnosed, could

infect their patients. Random‐access point of care instruments would

be very useful for such high priority testing algorithms in the clinical

microbiology laboratory, even if a high‐throughput instrument for

COVID‐19 testing is also being used.

1.1.2 | Large scale, high‐throughput molecular
testing instruments

There are multiple large scale, high‐throughput molecular testing in-

struments available.12 The best known include the Roche 6800/8800,

NeuMoDx Molecular Instrument, Luminex NxTAG, and Hologic Panther

Fusion Instruments.13‐16 These are larger platforms that can process

and test between several hundred and several thousand tests per day.

Because such large scale, high‐throughput molecular testing instru-

ments use batched testing, this testing takes longer. Some medical

centers are using random‐access point of care COVID‐19 testing kits for

priority testing while using the slower large scale, high‐throughput
COVID‐19 testing platforms for epidemiological purposes.

1.2 | Testing consumables

Access to COVID‐19 testing in many countries, including the USA,

continues to be inadequate, which greatly impedes the ability of

clinicians and public‐health authorities to accurately determine and

track the prevalence and transmissibility of this outbreak. Moreover,

inadequate testing capabilities and/or testing delays also may ham-

per the clinicians' ability to appropriately identify, isolate, and treat

these patients. One factor that has already been noted to limit the

ability of COVID‐19 testing is the scarcity of many testing consum-

ables. A number of these scarcities will be discussed in the following

subsections.

1.2.1 | Swabs with universal/viral transport medium

The molecular diagnosis of COVID‐19 typically begins with a naso-

pharyngeal swab (NP) or an oropharyngeal swab (OP) collected and

transported to the laboratory in universal/viral transport medium.17‐20

It is hard to imagine that these swabs, viral transport media, screw‐cap
tubes, plastic bags to transport the specimens, cold packs to cool the

specimen, and styrofoam containers would become scarce, but this is

happening in the USA as COVID‐19 testing efforts are increasing.

Several medical centers have resorted to making their own viral

transport medium to meet this need. Saline, phosphate buffered saline,

and minimum essential medium were even evaluated as potential

alternatives to viral transport media for SARS‐CoV‐2 testing.21

Needless to say, this outbreak was not anticipated, and manufacturers

of these specimen collection items require time to increase their

production. Readers are suggested to follow CLSI M40 (Quality

Control of Microbiological Transport Systems; Approved Standard) to

validate different collection matrixes.

A recognized limitation of the use of OP or NP swabs for col-

lecting upper respiratory tract specimens for COVID‐19 molecular

testing is that false‐negative results of these initial real‐time RT‐PCR
assays are known to occur22,23 (https://doi.org/10.1101/2020.04.16.

20066787. Accessed 23 April 2020). One approach to this issue with

false‐positive results from OP or NP swabs in both China and the

USA has been the use of self‐collected saliva24 (https://doi.org/10.

1101/2020.04.11.20062372. Accessed 23 April 2020). Indeed, in

one such study, the self‐collected saliva was more sensitive for

SARS‐CoV‐2 detection than was the NP swab (https://doi.org/10.

1101/2020.04.16.20067835. Accessed 23 April 2020).

1.2.2 | Extraction mix reagents

For these commercial devices in which nucleic acid extraction kits are

not provided, the users need to choose and purchase separate re-

agents. Extraction mix reagents also have become scarce as COVID‐19
testing demands increase. Currently, commercially available nucleic

acid extraction kits based on magnetic bead binding are widely

used and include bioMerieux easyMAG or EMAG13,25 or QIAGEN
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EZ1/QIAsymphony.26,27 The advantage to use these extraction

kits is laboratory safety as the buffers included in extraction sys-

tems do contain guanidinium/detergents and are able to inactivate

SARS‐CoV‐2.28‐30 However, these extraction mix reagents have

become difficult to obtain, thus limiting COVID‐19 testing.

1.2.3 | Reverse transcriptase and DNA polymerase
mix reagents

For these laboratories have validated and implemented laboratory‐
developed testing for COVID‐19, reverse transcriptase is combined

with DNA polymerase to amplify the positive‐sense RNA cor-

onavirus; these DNA polymerase mix reagents also have become

scarce as they have been consumed in early COVID‐19 testing. Some

laboratories have had to validate three different DNA polymerases

mix reagents and three different extraction mix reagents so that their

testing methods could easily shift and use whatever reagents are

currently available.

1.3 | Testing algorithms and interpretation

Because availability of COVID‐19 diagnostic testing is limited,

the Infectious Diseases Society of America (IDSA) had developed

a testing algorithm to help clinicians test wisely as well as for the

laboratory reporting of these results (https://www.idsociety.org/

globalassets/idsa/public-health/covid-19-idsa-testing-intro.pdf.

Accessed 26 March 2020). Importantly, the IDSA has re-

commended that the CDC should publicly disclose the number of

cases tested in any one location or state to better gauge the

significance of the number of positive results. The number of

positive results in locations or states that have few or no re-

ported cases may signify low or no prevalence of COVID‐19 or

may mean that such low‐positive results are due to undertesting.

This, in turn, will determine how aggressive testing needs to be in

these locations or states. At the time of writing, the IDSA re-

commends a four‐tier approach to COVID‐19 diagnostic testing

as shown in Table 1.

1.4 | Serological assays

1.4.1 | SARS‐CoV‐2 antigens

Members of the coronavirus family have four major structural

proteins: the spike (S), membrane (M), envelope (E), and nucleo-

capsid (N) proteins. Two of these proteins appear to be important

antigenic sites and thus have been utilized for the development of

serological assays to detect COVID‐19.22,31 The N protein of cor-

onaviruses is a structural component of the helical nucleocapsid and

has an important function in viral pathogenesis, replication, and

RNA packaging. Antibodies to the N protein are frequently detected

in COVID‐19 patient32 (https://doi.org/10.1101/2020.03.18.

20038018. Accessed 6 April 2020), suggesting that the N protein

may be one of the immunodominant antigens in the early diagnosis

of COVID‐19.33 The second antigenic site is the S protein and the

S1 protein. The entry of coronavirus into host cells is accomplished

by the transmembrane S glycoprotein that forms homotrimers

protruding from the viral surface.34

TABLE 1 IDSA four‐tier approach to COVID‐19 diagnostic testing

Tier level Population

1 • Critically ill patients receiving ICU level care with unexplained viral pneumoniae or respiratory failure, regardless of travel history or

close contact with suspected or confirmed COVID‐1 patients

• Any person, including health‐care workers, with fever or signs/symptoms of a lower respiratory tract illness and close contact with a

laboratory‐confirmed COVID‐19 patient within 14 d of symptom onset (including all residents at a long‐term care facility that has a

laboratory‐confirmed COVID‐19 case)

• Any person, including health‐care workers, with fever or signs/symptoms of a lower respiratory tract illness and a history of travel

within 14 d of symptom onset to geographical regions where sustained community transmission has been identified; (iv) individuals

with fever or signs/symptoms of a lower respiratory tract illness who are also immunosuppressed (including patients with HIV),

elderly, or have underlying chronic health conditions

• Individuals with fever or signs/symptoms of a lower respiratory tract illness who are critical to pandemic response, including

health‐care workers, public‐health officials, and other essential leaders

2 • Hospitalized (non‐ICU) patients and long‐term care residents with unexplained fever and signs/symptoms of a lower respiratory

tract illness. The number of confirmed COVID‐19 cases in the community should be considered. As testing becomes more widely

available, routine testing of hospitalized patients may be important for infection prevention and management of discharge

3 • Patients in outpatient settings who meet the criteria for influenza testing. This includes individuals with comorbid conditions

including diabetes, COPD, congestive heart failure, age more than 50, immunocompromised hosts among others. Given limited

available data, testing of pregnant women and symptomatic children with similar risk factors for complications is encouraged.

The number of confirmed COVID‐19 cases in the community should be considered

4 • For community surveillance as directed by public‐health and/or infectious diseases authorities

Abbreviations: COPD, chronic obstructive pulmonary disease; COVID‐19, 2019 novel coronavirus disease; ICU, intensive care unit; IDSA, Infectious

Diseases Society of America.
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1.4.2 | Serological assay methods

The development of serological assays such as ELISA took a significant

amount of time after the 2002 to 2003 SARS‐CoV outbreak because

creation of these assays was not a trivial process.33 Recombinant

antigens may allow serological assays for COVID‐19 to be developed

on a faster timeline. Several serological tests have been commercially

available for COVID‐1932,35 (https://doi.org/10.1101/2020.03.17.

20036954; https://doi.org/10.1101/2020.03.18.20038018; https://

doi.org/10.1101/2020.03.17.20037713. Accessed 6 April 2020). One

of them, qSARS‐CoV‐2 IgG/IgM Rapid Test from Cellex Inc, received

the US FDA EUA on 1 April 2020. This assay was granted emergency

use in authorized laboratories for qualitative detection of IgM and IgG

antibodies against SARS‐CoV‐2 in serum, plasma (EDTA or citrate), or

venipuncture whole blood from individuals suspected of COVID‐19 by

their health‐care provider (https://www.fda.gov/media/136622/

download. Accessed 6 April 2020). At the time of writing, three ad-

ditional ones, VITROS Immunodiagnostic Products Anti‐SARS‐CoV‐2
Total Reagent Pack (Ortho Clinical Diagnostics, Rochester, NY), DPP

COVID‐19 IgM/IgG System (Chembio Diagnostic System, Medford,

NY), and COVID‐19 ELISA IgG Antibody Test (Mount Sinai Laboratory,

New York, NY) have been granted EUA by FDA. Rapid antigen/anti-

body lateral flow immunoassays (LFIA) already have been developed

for the diagnosis of COVID‐19; additional assays will undoubtedly

follow these.36,37 However, the early promise of LFIA devices has been

questioned following concerns about sensitivity and specificity. A re-

cent study parallelly compared one ELISA and nine different com-

mercially available LFIA devices for detection of SARS‐CoV‐2‐specific
IgM and IgG antibodies revealing the performance of current LFIA

devices was inadequate for most individual patient applications

(https://doi.org/10.1101/2020.04.15.20066407. Accessed 23 April

2020). A pseudovirus‐based neutralization assay for SARS‐CoV‐2 was

developed and validated.10

1.4.3 | Role of serological assays

Such serological assays are critically important to determine the

seroprevalence in a given population and to define previous exposure

as well as to provide information about asymptomatic patients that

may have played a large role in transmitting COVID‐19 (https://doi.

org/10.1101/2020.03.18.20037994. Accessed 6 April 2020).38,39

Serology can be used to contact tracing, which is especially useful

during current shortage of molecular assays. Serology results can be

used in COVID‐19 case confirmation when viral RNA‐negative pa-

tients presenting late in the illness.40 Beyond diagnosis, serology

results may be used to guide return‐to‐work decision.41

However, antibody detection measures past exposure to

SARS‐CoV‐2 and another production is host dependent and takes

time. As a natural delay, antibody testing is not useful in the setting

of an acute illness.22,23 A recent study validated the VivaDiag

IgM/IgG Rapid Test37 in acute patients referring to emergency room

department in Italy. The sensitivity and specificity were 18.4% and

91.7%, indicating the serology assay should be avoided for triage of

patients with suspected COVID‐19.26 Possible explanations included

the low antibody titers or delayed humoral responses in patients with

SARS‐CoV‐2 infections.42 A recent study revealed that the presence

of anti‐SARS‐CoV‐2 IgG did not start till the illness day 11 and

postexposure 18 to 21 days.43 Although unlikely to be very useful for

the diagnosis of acute COVID‐19, serology, especially ELISA‐based
ones, will be very useful for defining immunity as well as better

characterizing certain parameters such as the true fatality rate. Re-

sult interpretation in the clinical setting in combination of molecular

results is listed in Table 2.

2 | SUMMARY

As the COVID‐10 outbreak has evolved, so has the approach to

SARS‐CoV‐2 testing. Availability of molecular testing for COVID‐19
has been limited in many areas due to a lack of consumable

reagents. This has required testing algorithms. Fortunately,

random‐access point‐of‐care devices will soon be able to bring

molecular testing to small communities. Initial availability of these

kits may be limited due to a high demand. As these instruments

become available, this capability combined with ELISA‐based ser-

ological testing for immunity will further assist with the resolution

of this outbreak.

TABLE 2 General molecular and
serology test result interpretation in

COVID‐19

RNA IgM IgG Interpretation

+ − − Patient in the 2‐wk period before immune response

+ + − Patient in early infection

+ − + Patient in mid to late infections; confirmation if IgG titer in convalescence is

four times higher than acute phase

+ + + Patient in active infection with decent immune response

− + − Patient has active infection with a false‐negative RNA assay

− − + Patient with previous infection; virus has been cleared

− + + Patient with recent infection and in convalescence; virus has been cleared;

active infection with false‐negative RNA assay

Abbreviation: COVID‐19, 2019 novel coronavirus disease.
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