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ABSTRACT: A detailed understanding of temperature and pressure effects on an
infinitely dilute protein’s conformational equilibrium requires knowledge of the
corresponding infinitely dilute partial molar properties. Established molecular
dynamics methodologies generally have not provided a way to calculate these
properties without either a loss of thermodynamic rigor, the introduction of
nonunique parameters, or a loss of information about which solute conformations
specifically contributed to the output values. Here we implement a simple method
that is thermodynamically rigorous and possesses none of the above disadvantages,
and we report on the method’s feasibility and computational demands. We calculate
infinitely dilute partial molar properties for two proteins and attempt to distinguish the thermodynamic differences between a
native and a denatured conformation of a designed miniprotein. We conclude that simple ensemble average properties can be
calculated with very reasonable amounts of computational power. In contrast, properties corresponding to fluctuating quantities
are computationally demanding to calculate precisely, although they can be obtained more easily by following the temperature
and/or pressure dependence of the corresponding ensemble averages.

■ INTRODUCTION

Equilibrium constants (and their derivatives) that describe the
delicate balance between the native and denatured states of
proteins are frequently measured to understand if and why
certain proteins are more stable than others and how mutations
can alter this stability.1 However, under physiological
conditions, the ratio of [denatured]/[native] is usually very
small, making it difficult to measure accurately. Often the
equilibrium must be perturbed, for example by changing the
temperature or pressure, in order to achieve an equilibrium
constant that is larger in magnitude and can, therefore, be
calculated more precisely. Afterward, the results are usually
extrapolated back to physiological or standard conditions.2

Thus, it is important to understand the effects of temperature
and pressure on the equilibrium constant.1,2 One way of
learning more about these effects is through computer
simulation. However, structural properties are usually the sole
or primary focus of most simulations studies, and the
corresponding thermodynamic properties are often ignored.2,3

When thermodynamic properties are determined from
simulation, it is typically by way of a method that does not
retain information concerning which conformation gave rise to
the specific values, meaning the simulation does not really
provide any more insight than an experiment would, or the
properties are calculated from phenomenological relationships
rather than rigorously derived thermodynamic expressions.
Thermal and Pressure Effects on Conformational

Equilibria. Although multiple environmental variables affect
the conformational equilibrium of a protein,4 here we limit our
scope to thermal and pressure effects. Hence, the effects of
cosolvents and pH on protein equilibrium are not discussed

here, although a theoretical framework for understanding their
effects on an equilibrium has recently been advanced.5−8

To understand the effects of the environment on a protein’s
thermodynamic properties, it is common to study an infinitely
dilute protein in a single solvent. To keep the situation
tractable, we will assume that a protein molecule adopts one of
only two forms, the native state, N, or the denatured state, D.
(The process of classifying a specific conformation as being N
or D is subjective, but addressing this subjectivity is beyond the
focus of this paper. When studying a specific system’s
equilibrium by computer simulation, it would be wise to use
the same definition as was used experimentally, e.g., measuring
tryptophan fluorescence, if possible.) When considering the
equilibrium between N and D, N ⇌ D, the standard state
Gibbs free energy of unfolding (ΔN

DG°, hereafter ΔG°)
determines the population of the protein conformations
through the usual relationship to the thermodynamic
equilibrium constant K = aD/aN, where ai is the equilibrium
activity of form i, through

μ μΔ ° = − = ° − °G RT Kln D N (1)

where R is the gas constant, T is the temperature, μi is the
chemical potential of the protein in conformation i, and the
superscripted o denotes the standard state.9 The activity
coefficients at infinite dilution are assumed to be one, which
leads to the replacement of the activities with their
concentrations in the equilibrium constant expression.10
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While ΔG° quantifies the ratio of species at equilibrium,
derivatives of ΔG° reveal increasingly more detailed informa-
tion the higher their order. The bivariate Taylor expansion of
the standard state free energy change for unfolding,
−βΔΔG°(β, p) = ln(K/Kref), up to second order around a
reference (ref) inverse temperature (β = 1/RT) and pressure
(p) provides an avenue to interpret experimental thermal and
pressure denaturation data via

β β− ΔΔ ° ≈ +
!

G p k d d Kd( , )
1
2

T T
(2)

where k is the column vector whose elements are the first
derivatives of ln K with respect to β and/or p evaluated at a
reference β and p and K is the matrix whose elements are the
corresponding second partial derivatives of ln K. d is the
column vector of deviations from the reference β and p,
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where ΔX = X − Xref.
It can be shown that

β

α

α β κ

=
−Δ °
− Δ °

=
Δ ° Δ ° − Δ °

Δ ° − Δ ° Δ °

β β

β β

= =

= =

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

H
V

RT C T V

T V

k

K

p p

p p

p T
p p

,

2

,

ref ref

ref ref (4)

where H denotes the enthalpy, V the volume, Cp the heat
capacity, αp the thermal expansion, and κT the isothermal
compressibility. The changes are given by ΔH° ≡ HD° − HN° ,
ΔV° ≡ VD° − VN° , ΔCp° ≡ Cp,D° − Cp,N° , Δαp° ≡ VD°αp,D° − VN°αp,N° ,
and ΔκT° ≡ VD°κT,D° − VN°κT,N° .
First order Taylor expansions provide the following temper-

ature and pressure dependencies of ΔH°, the standard state
entropy change (ΔS°), and ΔV° via,1
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Thus, to use MD simulations to understand how temperature
and pressure affect the conformational equilibrium of a protein
in significant detail, that is, to map ΔΔG° as a function of β and
p, one requires ΔH°, ΔV°, ΔCp°, Δαp°, and ΔκT°. Similarly, to
map ΔH°, ΔS°, and ΔV° as a function of β and p, one requires
ΔCp°, Δαp°, and ΔκT°.
The second derivative properties can also be expressed by
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The relationships in eq 6 will be used later. All of the above
properties are standard state properties. Standard state
properties are usually associated with those of an infinitely

dilute protein (for which the activity is approximated by the
concentration) in either the native or denatured forms,11 which
is helpful since most molecular dynamics simulations model the
infinitely dilute case. In fact, the single protein molecules
studied by simulation should really be considered as pseudo
infinitely dilute (but we will drop the use of pseudo for the sake
of brevity), since the amount of protein in a given volume (the
formal or effective concentration) will vary depending upon the
total system size even though the number of protein molecules
is fixed at one.
Most simulations do not readily provide the above infinitely

dilute partial molar properties, because the expressions relating
the output simulation results to these properties have generally
been considered unknown. In contrast, it is well-known that the
system fluctuations are related to the compressibility, thermal
expansion, and heat capacity of the whole system. In the NpT
ensemble the corresponding expressions are

κ δ
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where the angled brackets indicate time or ensemble averages,
δX = X − ⟨X⟩ and ⟨δXδY⟩ = ⟨XY⟩ − ⟨X⟩⟨Y⟩ = cov[X,Y], where
cov is the covariance. We emphasize that these are all bulk
system properties, which means that when applied to a system
containing an infinitely dilute solute, the properties obtained
are those of the solvent, perturbed to some extent by the
presence of the solute molecule. For a binary mixture in which
both species 1 and 2 are at finite concentrations, the process of
extracting partial molar properties is straightforward. One needs
only to fit the property of interest as a function of composition
and then take the partial derivatives with respect to each
component.12 However, for the infinitely dilute case, an
appropriate method for determining partial molar properties
has not been clear or computationally intuitive.

Current Computer Simulation Methodologies for
Determining Infinitely Dilute Partial Molar Quantities.
Computationally speaking, we are only aware of one method in
the literature that has been used to obtain all of the infinitely
dilute partial molar properties and can be considered
thermodynamically rigorous, namely, the enhanced sampling
technique of replica exchange molecular dynamics (REMD).13

REMD simulations map out the phase space and allow one to
obtain K by determining the fraction of protein molecules that
are folded or unfolded as a function of temperature. Once this
is known, the free energy of unfolding as a function of
temperature can be computed according to13

β β
ρ
ρ

Δ ° = − −
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟G p( , ) lnN

D 1 D

N (8)

where ρi is the number density of i (Ni/⟨V⟩). After the free
energy of unfolding has been computed, the difference
(unfolded minus folded) in all of the thermodynamic properties
may be fitted simultaneously according to the approach
illustrated by, for example, Garcia et al.13 Note, however, that
all that is obtained using REMD is the difference between the
thermodynamic properties in the N and D forms, not the values
of the thermodynamic properties for each of the native and the
many denatured states that collectively gave rise to that
difference.
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Thus, the REMD approach provides an objective way to
calculate the change in an infinitely dilute partial molar
quantity, ΔX̅2

∞, and is therefore extremely useful from a force
field validation or a property prediction point of view. What
remains missing, however, is the ability to assign thermody-
namic properties to specific conformations, that is, the ability to
rank different conformations according to their X̅2

∞ values.
Many approaches for the determination of partial molar
quantities of individual biomolecule conformations have been
proposed in the literature.
Protein Volume and Compressibility. From a computa-

tional viewpoint, many subjective definitions for the volume of
a protein exist. Levy and co-workers have used three possible
definitions to calculate the volume of 15 proteins.14 The most
striking volume variability was, naturally, for the smallest
protein they studied, the insulin monomer (51 residues). They
reported the van der Waals (VDW) volume to be 5.564 nm3,
the molecular volume (calculated using a sphere with probe
radius of 0.14 nm) to be 6.848 nm3, and the excluded volume
(also calculated using a sphere with probe radius of 0.14 nm) to
be 11.142 nm3.14 This corresponds to a 100% increase in the
volume on going from a VDW volume definition to an
excluded volume definition. Even the largest protein they
studied, carboxypeptidase A (307 residues), had a 17% increase
in the volume on going from a VDW to an excluded volume
definition (reported volumes: VDW = 33.571 nm3, molecular =
42.098 nm3, excluded = 58.055 nm3).14 While there is nothing
wrong with calculating these quantities and using them to
probe the properties of proteins, it is unclear which approach
best corresponds to the rigorously defined partial molar
volume. Unfortunately, for those interested in further
calculations that depend upon the protein volume, it is also
unclear which volume definition should then be used. This has
been an issue in several publications.15,16

We have found several examples17−25 where an objective
definition of the protein volume has been used via the apparent
molar approach usually encountered in experimental studies,
that is,26

̅ = ⟨ ⟩ − *∞V V V N2 1 1 (9)

where ⟨V⟩ is the average system volume from an NpT
simulation, V1* is the molar volume of pure 1, N1 is the number
of molecules of species 1, and the angled brackets, again, refer
to time or ensemble averages.
Another rigorous V̅2

∞ definition comes from the Kirkwood−
Buff theory of solutions via the expression9

κ̅ = * −∞ ∞V RT GT2 21 (10)

where the Kirkwood−Buff integral, G21
∞, is given by27

∫ π= −μ∞

∞
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21
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2
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,
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and where g21(r) is the radial distribution function of the
solvent (1) around the solute (2) defined in the grand
canonical (μVT) ensemble. Equation 10 has been used by
several authors.5,20,23,24,28−30 Due to the nonspherical geometry
of proteins, the integration in eq 11 is more difficult to perform
if one is interested in a surface based approach.28 Similarly,
Hirata and colleagues have derived statistical mechanical
expressions for the infinitely dilute partial molar volumes
using the Reference Interaction Site Model (RISM) integral
equation theory coupled to KB theory.31,32

It is worth noting that while traditional KB theory provides a
rigorous expression for the volume only, the generalization of
KB theory to Fluctuation Solution Theory (FST) provides
rigorous expressions for all of the thermodynamic properties
considered in this work. However, FST is still in its infancy, and
therefore, while the expressions have appeared, they have not
yet been applied to obtain the full set of possible
thermodynamic properties.5,33

Most calculations of κT̅,2
∞ we have found cannot be considered

rigorous for one of two main reasons. First, they may have
relied on subjective definitions of the protein volume. Second,
they often assume that the equation that relates the bulk system
compressibility to fluctuations in the volume of the entire
system can be applied to a component of the system (i.e., the
protein) to obtain its compressibility, that is, that κT̅,2

∞ =
β⟨(δV2)

2⟩/⟨V2⟩,
15,16,34−38 where V2 is some measure of the

protein volume. This may or may not provide a measure of the
intrinsic compressibility of the protein, but it is unlikely that it
corresponds to the thermodynamically defined infinitely dilute
partial molar compressibility of the protein. This idea has been
used in the literature many times and appears to have
originated from the work of Cooper.35 It has been further
supported by Hinz and co-workers,39,40 but has also been
strongly contested by Imai and Hirata.31 Furthermore, while
many researchers have been able to successfully obtain
reasonable agreement with the experimental κT̅,2

∞ by breaking
the simulated compressibility into different contributions, such
as the “intrinsic,” “hydrational,” and/or “thermal” components
(which involves the use of nonunique volume definitions),41

here we seek to calculate the thermodynamically defined
property, κT̅,2

∞ .
A few noteworthy exceptions to the above compressibility

studies exist, such as the work of Yu and co-workers mentioned
in the previous paragraphs explaining protein volume
calculation methods. Yu used eq 10 and then looked at the
pressure dependence of the volume to obtain the correspond-
ing compressibility.28 Likewise, Hirata and co-workers also used
the pressure derivative of the volume that was obtained from
RISM combined with KB theory to obtain the isothermal
compressibility.31,32 In contrast to these studies, we seek a
method that can be used to analyze computer simulations, does
not involve integral equations, and directly provides any first or
second derivative of the free energy, rather than only providing
the volume (obtained from the first pressure derivative of the
free energy).

Protein Enthalpy, Heat Capacity, and Thermal
Expansion. In a computer simulation, the absolute partial
molar enthalpy is available, whereas experiments only provide
the excess partial molar enthalpy. When a single protein
conformation is simulated, it is not obvious that there would be
any value in quoting the absolute enthalpy of that protein form.
This may explain why we have found considerably fewer
attempts to extract H̅2

∞ or C̅p,2
∞ from simulations as compared to

the preceding properties, outside of the REMD studies. For
interesting explanations as to the dearth of simulations
targeting C̅p,2

∞ , the reader is referred to a review by Prabhu
and Sharp2 and an article by Cooper.42

Shing and Chung did calculate the internal energy of an
infinitely dilute Lennard−Jones (LJ) sphere in a LJ binary
mixture by the finite difference of the system internal energy in
the absence or presence of the infinitely dilute solute.21

However, the method was not generalized to all properties or
other types of systems such as biomolecules. As we will show
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here, it is trivial to make these generalizations, but the literature
from the intervening years suggests that this approach has not
been popular. In the same vein, Smit and co-workers recently
calculated the enthalpy of a lipid bilayer, with respect to the
enthalpy of the solvent background, in order to make a
connection to differential scanning calorimetry experiments.3

Unlike nucleic acids, proteins, and polysaccharides, lipids are
not polymeric. Therefore, Smit calculated the (extensive)
enthalpy of a lipid aggregate, not an (intensive) infinitely dilute
partial molar lipid enthalpy. However, their method is in the
same spirit as the method used in this work and it could be
applied to any infinitely dilute solute (considering the lipid
aggregate as a single object) and to any property, not just the
enthalpy.
Lastly, very few examples of protein thermal expansion values

calculated from computer simulations studies can be found.
They have all used nonunique protein volume definitions and/
or decomposed the thermal expansion into different contribu-
tions, such as the “intrinsic,” “hydrational,” and/or “thermal”
components, which introduces several additional subjective
parameters.17,43−45

Aim of This Study. The purpose of this paper is to
investigate the computational feasibility of using a general
method for extracting the thermodynamically defined X̅2

∞ that
does not result in a loss of information about the conforma-
tional state of the protein that gave rise to these properties. The
significance of this work is that it allows MD simulations to
better fulfill their claim of providing exquisite details about
systems, often unavailable from experiment, and to do so using
thermodynamically exact relationships and approaches.
As mentioned in the Introduction, obtaining thermodynami-

cally rigorous partial molar properties for species whose
concentrations are finite is trivial by computer simulation.
However, finite concentrations are typically not feasible for
biological system simulations. Thus, it is the infinitely dilute
limit that is of primary interest for this work. The current
approaches found in the literature to determine the relevant
properties are often reasonable, but are typically subjective and
often rather involved. In comparison, we show here that it is
often simpler to use a thermodynamically rigorous apparent
molar approach.

■ THEORY
As discussed in the Introduction, obtaining partial molar
properties is, in principle, straightforward when all species are at
finite concentrations. For a multicomponent system of 1 ≡
solvent, 2 ≡ solute, 3, ..., n ≡ cosolvents, a molar property is
defined as Xm = X/N, where X is the corresponding extensive
thermodynamic property of interest and N is the total number
of molecules in the system. Here we will be focused on X = H,
V, Cp, VκT, and Vαp only, where we have multiplied the κT and
αp by the system volume. In addition, we have also investigated
results for the kinetic energy, K, but only as a test of the
procedure, so as to ensure that the equipartition results were
achieved. The partial molar property of 2 is then obtained from

̅ = ∂
∂

′

⎛
⎝⎜

⎞
⎠⎟X N p T

X
N

({ }, , )
N p T

2
2 { } , , (12)

where the subscripted {N}′ indicates that all N other than N2
are held constant.
Now consider that 2 is a protein plus its counterions.

Generally, it would not be feasible to perform simulations in

which one varies the number of protein molecules, because the
required system sizes would become elephantine rather quickly.
Furthermore, researchers are often more interested in the
infinitely dilute system where the inclusion of protein−protein
interactions would often be undesirable. A finite difference
approach can be used if N2 is set equal to zero and to one in
two separate simulations while {N}′ is held fixed. As mentioned
in the Introduction, this finite difference calculation has been
used before for calculations of a LJ sphere’s volume and internal
energy, for determining protein volumes, and for a lipid
aggregate enthalpies.3,21,46 It has also been noted that such an
approach can suffer from large statistical errors.46

We instead have constructed a series of infinitely dilute
systems in which we vary x2 by changing N1, where N2 is always
one. If we choose systems such that even the smallest system
contains water that is beyond the “sphere of influence” of the
protein, that is, some waters exhibit the thermodynamic
properties of bulk water, then the addition of more waters
will correspond to a simple dilution process, and the
corresponding plot of Xm versus x2 will be linear. An example
plot (created using real data), which illustrates the method, is

shown in Figure 1. Due to the linearity, it is easy to fit Xm. The
line is then given by

= * +X X axm m 2 (13)

where Xm* is the molar property of pure 1 (always water here)
and a is the slope. After taking the partial derivative of eq 13
with respect to N2, multiplying both sides by N, and taking the
limit x2 → 0, one finds that

= ̅ − *∞a X X2 m (14)

Thus, the linear regression of Xm provides a and subsequently
X̅2
∞, the thermodynamically rigorous infinitely dilute partial

molar property of the protein plus its counterions. Rearrange-
ment of eq 13, after substituting eq 14 in for a, indicates that
this method is equivalent to the apparent molar approach often
used experimentally,26

̅ = ⟨ ⟩ − *∞X X X N2 m 1 (15)

Although we have seen a few molecular dynamics studies that
use this approach to calculate V̅2

∞,5,17−19,28,46 to our knowledge,
it has never been presented generally or applied for the
determination of higher derivatives.
In using eq 13, one has a choice of fitting both Xm* and a, or

of fixing the y-intercept and only fitting the slope. We have
chosen to fix the y-intercept for the following two reasons: (1)
So that we could use the same values of Xm* regardless of the

Figure 1. Illustration of the apparent molar approach used to calculate
infinitely dilute partial molar properties. A protein is simulated in
various box sizes so that a plot of Xm vs x2 may be achieved from which
X̅2
∞ may be calculated. (Simulation boxes not to scale.)
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protein under study and (2) because we have performed the
pure water simulation for four times longer than the
simulations of systems containing proteins, in an effort to
increase the precision on the molar properties of water. It
should be noted that one could use this method with any
number of components as long as the ratio of 1:3:...:n is held
constant and only the ratio of 2:(N − 1) varies.
The advantages of the above approach include the following:

(i) It involves an interpolation of data between pure water
and some value of x2, not an extrapolation.

(ii) It is thermodynamically exact.
(iii) No subjective definitions are required.
(iv) It can be applied to extract any partial molar property for

any solute in any solvent system regardless of the
number of components.

(v) Partial molar properties can be assigned to specific
conformations.

However, regardless of the quality of the approach, in
computer simulations, the ultimate arbiter remains the quality
of the force field and the need for sufficient sampling of the
relevant phase space. Errors in our results will be due to these
factors. Specifically, there will be errors in our results due to a
classical treatment of those X which have significant quantum
mechanical contributions, such as the constant pressure heat
capacity.
The disadvantage of the approach is that, as alluded to above,

multiple simulations are required to obtain a good fit for the
calculation of X̅2

∞. Since it is a linear fit, in principle, only two
compositions are required, namely, a pure water box and one
protein system. However, if any noise is present in the results, it
can be better identified when multiple compositions are used.
Furthermore, systematic deviations from linearity in the plot of
Xm versus x2 would indicate that a simulation box was too small,
such that bulk water was not present. Figure 1 schematically
illustrates the use of multiple simulation boxes.

■ METHODS
Systems Studied and Molecular Dynamics Simula-

tions. We illustrate the above method using basic pancreatic
trypsin inhibitor (58 amino acids, PDB ID 5pti), abbreviated as
BPTI, and hen egg white lysozyme (129 amino acids, PDB ID
4lzt), abbreviated as HEW lysozyme. These proteins are
relatively small, which allows smaller simulation boxes to be
used, and experimental data is available for several of the partial
molar properties for comparison with the simulated results.
The initial structures for BPTI and HEW lysozyme were each

centered in a series of truncated octahedron boxes where the
distances between any two parallel box faces were 8, 9, 10, 11,
and 12 nm. The titratable residues were protonated to
correspond to a neutral pH and counterions were added to
ensure neutral systems (6 Cl− for BPTI systems, 9 Cl− for
HEW lysozyme systems). A pure water system, consisting of a
truncated octahedron box (with the distance between any two
parallel box faces equal to 7 nm) was used to calculate the
corresponding molar properties of the pure solvent.
All simulations were performed using classical MD

techniques at a temperature of 300 K and pressure of 1 bar
unless otherwise noted. In an effort to ensure that the
simulations would sample from the NpT ensemble and the
corresponding system fluctuations would be correct, the Nose−́
Hoover (chain length of one) and Parrinello−Rahman T and p
baths were used.47−50 The protein and ions were modeled

using the Kirkwood−Buff Force Field (http://kbff.chem.k-
state.edu, KBFF)51−53 in explicit solvent with the SPC/E54

water model. Following 25 ns of production simulation for each
system size, the average Cα root mean squared deviation
(RMSD) for the final BPTI (lysozyme) structures, after a
translational and rotational fit to the initial structure, was 0.22
nm (0.27 nm). These values correspond to the average over the
final structure from each of the different system sizes.
Additional details of the simulations are provided in the
Supporting Information.
Due to the promising initial results for BPTI and HEW

lysozyme, and due to our overarching questions, we also asked
whether the method could be used to distinguish between
different conformations of a protein, that is, if it could be used
to determine ΔN

DX̅2
∞. To test this, we simulated a native and an

extended denatured conformation of trp-cage (PDB ID 2jof,
construct TCb10) using the KBFF models (see the Supporting
Information). Trp-cage is a 20 amino acid designed
miniprotein. The system setup was the same as for BPTI and
HEW lysozyme, except that the distance between any two
parallel box faces was 7, 8, 9, and 10 nm for the native
conformation, and 8, 9, and 10 nm for the denatured
conformation. The simulation protocol for trp-cage was similar
to that for BPTI and HEW lysozyme. The specific trp-cage
construct used here is neutral, so no counterions were added to
the systems. Following 25 ns of production simulation, the
average Cα RMSD for the final trp-cage native structures, after a
translational and rotational fit to the initial structure, was 0.17
nm.
In addition to modeling trp-cage using the KBFF in explicit

solvent with the SPC/E water model, we performed identical
trp-cage simulations with the AMBER99sb force field and the
TIP3P water model to allow for a force field comparison.55 A
TIP3P truncated octahedron box, with the distance between
any two parallel box faces equal to 7 nm, was used to calculate
the properties of pure water for the AMBER99sb simulations.
Following 25 ns of production simulation, the average Cα

RMSD for the final trp-cage native structures, after a
translational and rotational fit to the initial structure, was
0.09 nm using AMBER99sb.
The initial and final denatured conformations are shown in

Figure 2. Since the experimental ΔN
DX̅2

∞ corresponds to a
difference between properties of an ensemble of native and
denatured states, our goal here was not necessarily to match the
experimental value, although certainly that is of long-term
interest. In this study, we instead specifically sought to establish
how precisely the differences could be calculated, and to see if
we achieved the correct sign and order of magnitude for the
values using only two conformations.

Extracting Xm from the Simulations. The properties Um,
Km, Hm, and Vm were extracted from the Gromacs energy file
since they simply correspond to time averages of system
properties. The other properties (Cp,m, κT, and αp) were
calculated from their bulk system fluctuations definitions in eq
7. The standard deviation for each property was calculated
using block averages where the block size was 5 ns.
The system fluctuations displayed a large standard deviation

(see Results and Discussion). In an effort to increase the signal-
to-noise ratio, we additionally calculated these properties using
the expressions in eq 6 (where the standard state superscripts
should be removed). To do this, each system was run at four
additional temperatures (290, 295, 305, and 310 K) and four
additional pressures (250, 500, 750, and 1000 bar) for 10 ns per

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp508632h | J. Phys. Chem. B 2014, 118, 12844−1285412848

http://kbff.chem.k-state.edu
http://kbff.chem.k-state.edu


new state point. The Cp,m, κT, and αp were then obtained by
fitting the simulated molar volumes or enthalpies to a
polynomial function and taking the derivatives of the
polynomial at the temperature or pressure of interest (300 K
or 1 bar). Quadratic fits were used for the calculation of κT and
αp. Linear fits were used for the calculation of Cp,m. The
standard deviations for each property using this “polynomial
fitting method” were calculated using block averages where the
block size was again 5 ns. Although the production simulation
lengths for the system fluctuation approach (25 ns) and
polynomial fitting approach (10 ns per state point) are not
equal and correspond to 25 ns per property for the system
fluctuation approach and 50 ns per property for the polynomial
fitting approach, the reported error estimates (see Results and
Discussion) indicate that the polynomial fitting method greatly
reduced the noise beyond the type of noise reduction one
would see by doubling the simulation length alone.

■ RESULTS AND DISCUSSION
Figure 3 shows that ensemble average properties were well
behaved for both BPTI and HEW lysozyme. In contrast, there
was significant noise in the three properties that are obtained
from fluctuating properties. This is clearly illustrated by the
scattering of the filled points around the solid lines in Figure 4.
It is well-known that the isothermal compressibility of

proteins is less than that of pure water.15 Lines with negative
slopes in the top panel of Figure 4 correspond to protein partial
molar isothermal compressibilities that are less than the
isothermal compressibility of pure water. If the slope is too
negative (see, e.g., the system fluctuation result for BPTI), then
the compressibility of the protein will actually become negative
(Table 2). It is known that the isothermal compressibilities of
zwitterionic amino acids are negative.34 So, in general, this is
not an impossible result. However, most reported isothermal
compressibilities of proteins are positive.34

Tables 1 and 2 show the values and standard deviations of
the X̅2

∞ obtained for BPTI and HEW lysozyme. While the
internal energy, kinetic energy, and enthalpy of the proteins are
not comparable to experiments, it may be of interest to study
trends in these properties with, for example, protein mass, for a
given force field. One application of such a study might be that
these trends could provide an additional metric for the

Figure 2. Trp-cage denatured conformations used in this study. The
denatured conformation was obtained after clustering a 100 ns, 500 K,
NVT simulation using the AMBER99sb force field. Subsequent
simulations of this structure using KBFF and AMBER99sb resulted in
the denatured conformations shown. The three structures for each
force field correspond to the structures from the three compositions
(i.e., the three system sizes) studied.

Figure 3. System properties used to calculate the infinitely dilute
partial molar properties of basic pancreatic trypsin inhibitor (BPTI)
and hen egg white (HEW) lysozyme in pure water at 300 K and 1 bar
according to eq 14. Black: BPTI. Red: HEW lysozyme. Circles: The
property at each composition. Lines: Linear fits (fixed y-intercept)
through the set of points. The properties shown correspond to time
averages from the simulations: the molar internal energy, Um
(kJmol−1), kinetic energy, Km (kJmol−1), volume, Vm (nm3 × 102),
and enthalpy, Hm (kJmol−1).

Figure 4. System properties used to calculate the infinitely dilute
partial molar properties of basic pancreatic trypsin inhibitor (BPTI)
and hen egg white (HEW) lysozyme in pure water at 300 K and 1 bar
according to eq 14. Black: BPTI. Red: HEW lysozyme. Results from
the bulk system fluctuations are shown as solid lines with filled circles,
while results from the polynomial fitting method are shown as dotted
lines with open circles. The property at each composition is shown as a
circle, and the linear fit through the set of points, in which the y-
intercept was fixed, is shown as a line. The top panel corresponds to
VmκT (×106 nm3 bar−1), the middle panel to Cp,m (J mol−1 K−1), and
the bottom panel to Vmαp (×10

5 nm3 K−1).
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characterization of protein force fields. It is possible that such a
characterization, for a given force field, could be used to
distinguish between folded and unfolded conformations using
thermodynamic, rather than structural, criteria. The simulated
protein kinetic energy agreed with the predicted equipartition
result in every case, calculated as K̅2

∞ = 1/2kBT(3Natoms −
Nbonds), where Natoms is the number of protein + ion atoms and
Nbonds is the number of constrained bonds in the protein.
The simulated BPTI volume, 8.164(8) nm3, was larger than

the approximate value calculated based upon the amino acid
composition, 7.8 nm3.61 This difference of 0.364 nm3

corresponds to approximately 12 waters (the volume of an
SPC/E water molecule is ∼0.03 nm3). The simulated HEW
lysozyme volume, 18.00(3) nm3, was larger than the
experimental volume, 16.92(2) nm3 (experimental measure-
ment was of isoionic lysozyme in completely deionized and
distilled water at 25 °C).57 This difference of 1.08 nm3 for
HEW lysozyme corresponds to approximately 36 waters. For
both BPTI and HEW lysozyme, the disagreement with the
literature results is partly due to the inclusion of counterion
volumes in our simulated values (6 for BPTI, 9 for HEW
lysozyme). For HEW lysozyme, this is clearly not the only
issue.
Using the system fluctuation method, the fluctuating

properties for both proteins displayed too much noise to

determine if there was good agreement with experiment or not
(Table 2). To increase the signal-to-noise ratio, we used a
second approach, in which we looked at the system volume and
enthalpy as a function of pressure and or temperature and
calculated the κT, Cp,m, and αp using their partial derivative
definitions instead of their fluctuation definitions (see Theory).
This greatly reduced the error (shown visually in Figure 4 and
tabulated in Table 2).
The BPTI and HEW lysozyme Cp,m overpredict the

experimental values. Since our simulations were classical and
there are significant quantum corrections to the heat capacity,
perfect agreement with experiment, even if achieved, may have
been for the wrong reasons. Specifically, real molecules store
energy in low frequency bonds, whereas all bonds were
constrained in our simulations. Second, in real molecules, only
the low frequency bond angles would store energy, whereas all
angles (except those in water) are flexible and store energy in
our simulations. Quantum corrections could be made,62 but
they are difficult for proteins and have not been made here.
The thermal expansion and isothermal compressibility were

in reasonable agreement with experiment, but displayed large
error bars. The magnitude of the errors on the fluctuating
properties is a downside of our approach that has not been
observed using more subjective methods.15,16

Table 1. K̅2
∞, H̅2

∞, and V̅2
∞ of Native BPTI and Lysozyme in Pure Water at 300 K and 1 bara

BPTI lysozyme

sim exptl/pred* sim exptl/pred*

K̅2
∞ ×10−3 kJ mol−1 1.515(8) 1.511* 3.309(8) 3.306*

H̅2
∞ ×10−4 kJ mol−1 −1.725(1) −3.655(5)

V̅2
∞ nm3 8.164(8) 7.8 18.00(3) 16.92(2)

aError estimates are reported in parentheses and correspond to the standard deviation from 5 ns block averages. The “experimental” BPTI volume is
actually a calculation based upon BPTI’s amino acid composition.56 The experimental HEW lysozyme volume was measured using a solution of
isoionic lysozyme in distilled and deionized water.57 Simulations were performed using the KBFF force field.51−53 For reference, the volume of a
single SPC/E water molecule is ∼0.03 nm3, and 1 nm3 molecule−1 = 602.2 cm3 mol−1.

Table 2. C̅p,2
∞ , κ̅T,2

∞ , and α̅p,2
∞ of Native BPTI and Lysozyme in Pure Water at 300 K and 1 bara

BPTI lysozyme

SF PF exptl SF PF exptl

C̅p,2
∞ kJ mol−1 K−1 7(15) 11.2(4) 9.5 33(38) 23.39(9) 17.97, 21.22

κT̅,2
∞ ×106 bar−1 −25(32) 5(2) O(1−10) 8(13) 12(4) 7.73
α̅p,2
∞ ×104 K−1 0(22) 4(4) 6 6(12) 5(1) 4.26

aSF, system fluctuations; PF, polynomial fitting. Error estimates are reported in parentheses and correspond to the standard deviation from 5 ns
block averages. Experimental BPTI heat capacity value from Makhatadze et al.,58 and thermal expansion value from Lin et al.59 Experimental
lysozyme heat capacity values from Gekko and Noguchi57 and Yang and Rupley,60 isothermal compressibility value from Gekko and Hasegawa,36 and
thermal expansion value from Gekko and Noguchi.57 Simulations were performed using the KBFF force field.51−53

Table 3. H̅2
∞ and V̅2

∞ of Native (N) and Denatured (D) Trp-Cage in Pure Water at 300 K and 1 bara

KBFF X̅2
∞ AMBER99sb X̅2

∞ exptl

N D ΔN
D N D ΔN

D ΔN
D

no position restraints
H̅2

∞ ×10−3 kJ mol−1 −5.120(8) −5.03(2) 0.09(2) −1.817(9) −1.77(2) 0.05(2) 0.065(2)
V̅2
∞ nm3 2.524(3) 2.496(7) −0.028(8) 2.375(8) 2.377(6) 0.00(1)

position restraints on denatured conformation
H̅2

∞ ×10−3 kJ mol−1 −5.00(1) 0.12(1) −1.74(2) 0.08(2) 0.065(2)
V̅2
∞ nm3 2.48(2) −0.04(2) 2.37(1) 0.00(1)

aError estimates are reported in parentheses and correspond to the standard deviation from 5 ns block averages. The kinetic energy contributions
agreed with the equipartition results and were the same, within statistical uncertainty, for the native and denatured confirmations. Experimental
ΔN

DH̅2
∞ from Barua et al.65
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Literature values are available for all of the pure water (SPC/
E) properties. However, since it is critical that all of the
simulation conditions are consistent, we simulated a pure SPC/
E system instead of simply quoting previously reported SPC/E
properties. The reason for the difference between the pure
SPC/E values obtained using the system fluctuation method
versus the polynomial fitting method for the isothermal
compressibility is currently unknown (Figure 4). However,
the value obtained using the polynomial fitting method is in
better agreement with experiment [polynomial fitting, 4.48(2)
× 10−5 bar−1; system fluctuation, 4.75(3) × 10−5 bar−1;
experiment,63 4.525 × 10−5 bar−1].
The results for the trp-cage simulations with both force fields

and with both methods (the system fluctuation and the
polynomial fitting method) are summarized in Tables 3 and 4.
As shown in Table 3, the KBFF results suggest that the native
state has a larger volume than the denatured state by a value of
approximately one water molecule or ∼1% of the protein
volume, regardless of whether or not the denatured
conformation was position restrained. This is the typical sign
observed for the volume change of a protein upon
denaturation.64 In contrast, the AMBER99sb simulations
produced no statistically significant volume change.
The KBFF simulation produced the correct sign for the

change in enthalpy upon denaturation. The enthalpy of the
denatured state was more positive, or unfavorable, than the
enthalpy of the native state, as expected for heat denatura-
tion.65,66 The average KBFF result was in better agreement with
experiment when the position restraints were removed,
although the difference was not statistically significant and the
native state was slightly overstabilized in both cases. Since the
starting conformation for both simulations was taken from a
500 K simulation using the AMBER99sb force field (see the
Supporting Information), better agreement with experiment
may be achieved if the KBFF simulations were extended to
allow for more conformational rearrangements. The AM-
BER99sb result was within the error of the experimental value
with or without position restraints on the denatured
conformation.

Globular protein heat capacity changes upon denaturation
are typically positive; a positive (negative) change is considered
to be due to apolar (polar) solvation upon denaturation.2 Since
trp-cage is considered globular and its name stems from its
buried tryptophan side chain, one might predict that the sign of
ΔN

DC̅p,2
∞ would be positive. Indeed, the experimental ΔN

DC̅p,2
∞ for

the original trp-cage construct (TC5b) was reported to be small
and positive (0.3 ± 0.1 kJ mol−1 K−1).67 However, the
experimental results of Barua et al. were small and negative
(ΔN

DC̅p,2
∞ = −0.2 ± 0.1 kJ mol−1 K−1) for the trp-cage construct

simulated here (TC10b),65 indicating that considering
tryptophan exposure is not enough to predict the correct sign.
While the statistical uncertainty in our results was too great

to determine whether or not the correct sign was obtained, our
results may suggest that the KBFF and AMBER99sb
simulations provide opposite signs (negative and positive,
respectively). It is encouraging that the KBFF simulations may
be able to detect this atypical ΔN

DC̅p,2
∞ sign. The positive sign for

the AMBER results reported here agrees with the recent 1 μs
per replica REMD simulations of the TC10b construct by
English and Garcia, who also used the AMBER99sb/TIP3P
force fields and reported ΔN

DC̅p,2
∞ = 0.35 ± 0.51 kJ mol−1 K−1.68

The results for the isothermal compressibility and thermal
expansion changes upon denaturation are too noisy to
determine the simulated sign; however, the error was greatly
reduced using the polynomial fitting method.
Visualization of the denatured trp-cage trajectories showed

that the KBFF and AMBER99sb denatured simulations without
position restraints behaved differently from each other. The
KBFF denatured trp-cage conformation remained more fully
extended throughout the 25 ns, whereas the AMBER99sb
denatured trp-cage collapsed quickly and remained collapsed
for most of the simulation (although it became more extended
at the very end of the simulation). The final snapshot of the
denatured simulations is shown in Figure 2. Despite this, the
two force fields gave similar enthalpy differences [experiment,
ΔN

DH̅2
∞ = 65(2) kJ mol−1; KBFF, ΔN

DH̅2
∞ = 90(20) kJ mol−1;

AMBER99sb, ΔN
DH̅2

∞ = 50(20) kJ mol−1]. Certainly, the
simulations did not access all the denatured conformations with

Table 4. C̅p,2
∞ , κ̅T,2

∞ , and α̅p,2
∞ of Native (N) and Denatured (D) Trp-Cage in Pure Water at 300 K and 1 bara

KBFF X̅2
∞ AMBER99sb X̅2

∞

N D ΔN
D N D ΔN

D

C̅p,2
∞ kJ mol−1 K−1

exptl −0.2(1) −0.2(1)
SF 14(21) 23(18) 9(28) 19(6) 18(16) −1(17)
PF 3.6(1) 3.5(5) −0.1(5) 5.8(5) 6.4(1) 0.6(5)
PF PRD 3.6(1) 3.23(5) −0.4(2) 5.8(5) 6.1(4) 0.3(6)
PF (1 μs) 6.2(1)
κT̅,2
∞ ×106 bar−1

SF 9(72) −100(100) −100(100) −78(168) 65(160) 144(233)
PF 3(8) 33(11) 29(13) −16(10) −12(9) −9(10)
α̅p,2
∞ ×104 K−1

SF 30(40) 20(40) −10(60) −10(50) 40(70) 50(90)
PF 6(6) 8(15) 2(16) 7(2) 6.7(2) −1(2)
PF PRD 6(6) 8(5) 2(8) 7(2) 6(3) −2(4)
PF (1 μs) 8.6(4)

aError estimates are reported in parentheses and correspond to the standard deviation from 5 ns block averages, excluding the 1 μs simulation, which
corresponds to the standard deviation on ∼333 ns block averages. For the 1 μs simulations, the error on the y-intercept (pure water value) was taken
as zero. SF: System Fluctuations, PF: Polynomial Fitting. PRD: Position Restrained Denatured conformation. Experimental ΔN

DC̅p,2
∞ from Barua et

al.65
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only 25 ns of production, so it was remarkable that the ΔN
DH̅2

∞

values were so close to the experimental value.
To test whether the different denatured conformations that

were sampled in the simulations of trp-cage with these two
different force fields accounted for the different enthalpy
differences, we ran a new set of denatured simulations for both
FFs using soft harmonic position restraints (100 kJ mol−1

nm−2) on the Cα atoms of trp-cage. The average position
restraint energy was small, approximately 2 J mol−1, so we did
not repeat the simulations of the native trp-cage with position
restraints. Thus, we assumed that any artifacts from the
addition of the position restraints were negligible when
calculating the ΔN

DX̅2
∞ using simulations of the native structure

without position restraints. The ΔN
DX̅2

∞ results were the same
with and without position restraints to within the statistical
error. This is consistent with a two-state folding pathway in
which the energy landscape is relatively flat for the (high free
energy) unfolded conformations and drops down into one
minimum for the folded conformation. Remarkably, the
enthalpy differences remained essentially correct when
calculated from the difference between the native conformation
and just one restrained denatured conformation.
Error Analysis. Lin et al. and references therein have

reported that typical magnitudes for the volume change
associated with protein unfolding are <0.5% of the protein
volume.59 Using pressure perturbation calorimetry, Lin
determined the ΔN

DV̅2
∞ value was −0.06% of the volume of

native BPTI in water at pH 4 and −0.08% of the volume of
native HEW lysozyme in water at pH 2.5.59 The errors on our
ΔN

DV̅2
∞ value for BPTI and HEW lysozyme were 0.1% and 0.2%;

thus, simulation times longer than the currently used times
would be necessary to calculate ΔN

DV̅2
∞ with precision for these

proteins. The corresponding ΔN
Dα̅p,2

∞ values reported by Lin
were 0.5 × 10−4 K−1 and 1.4 × 10−4 K−1 for BPTI and HEW
lysozyme, respectively. To calculate ΔN

Dα̅p,2
∞ with sufficient

precision using the polynomial fitting method, we would need
to reduce the error on α̅p,2

∞ by a factor of 8 for BPTI, which
would require simulations approximately 64 times as long, that
is, 640 ns at each temperature, assuming that the error ∝
tsim

−1/2. With the current simulation time, the α̅p,2
∞ value for

HEW lysozyme was at the minimal precision necessary for
detection of ΔN

Dα̅p,2
∞ , if simulations of denatured conformations

were performed.
In a compendium of protein thermodynamic properties

Makhatadze has reported that BPTI ΔN
DH̅2

∞ = 130 kJ mol−1 and
ΔN

DC̅p,2
∞ = 3.0 kJ K−1 mol−1 at 298 K.69 These numbers are larger

than the uncertainty on the native enthalpy and native heat
capacity calculated here, 10 kJ mol−1 and 0.4 kJ mol−1 K−1,
respectively. The same source reports that HEW lysozyme
ΔN

DH̅2
∞ = 242 kJ mol−1 and ΔN

DC̅p,2
∞ = 9.1 kJ mol−1 K−1 at 298

K.69 Again, these numbers are larger than the uncertainty on
the native HEW lysozyme enthalpy and heat capacity
determined here, 50 kJ mol−1 and 0.09 kJ mol−1 K−1,
respectively. Thus, we predict that similar length simulations
of either of these proteins in their denatured conformations
would allow for ΔN

DH̅2
∞ and ΔN

DC̅p,2
∞ to be calculated with

statistical precision. The challenge in these situations,
heightened as the number of residues in the protein of interest
increases, would be in choosing protein conformations that
were “representative” of the denatured state. Although the trp-
cage results from these simulations surprisingly showed that the
values were not sensitive to the protein conformation, much
more work on different proteins would be necessary before

confirming that behavior as a general conclusion. Indeed, one
would anticipate that it is not generally true. However, Shaw
and co-workers recently reported similar observations for
ubiquitin.70

We could have simulated all of the systems for even longer
periods of time. However, even a multiplication of the
production simulation length by four would only result in a
noise reduction by a factor of 2 (assuming that the error ∝
tsim

−1/2), which would not be sufficient in most cases to
determine these properties with sufficient precision. So, in an
effort to estimate how long one would need to simulate trp-
cage, in order to obtain the heat capacity and thermal expansion
with sufficient precisely, we extended the AMBER99sb native
trp-cage simulations to 1 μs at temperatures of 290, 295, 300,
305, and 310 K. Since we had already established the linear
behavior of Xm versus x2 for the 7, 8, 9, and 10 nm box sizes, we
only extended the simulations for the 8 nm box. Extension of a
simulation from 10 ns to 1 μs is an increase of tsim by a factor of
100; thus, we would have predicted a reduction in the noise by
a factor of 10. As shown in Table 4, the errors were actually
reduced by a factor of 5 for C̅p,2

∞ and only a factor of 2.5 for α̅p,2
∞ .

■ CONCLUSIONS
We have investigated the ability of a simple method to extract
infinitely dilute partial molar properties of biomolecules from
molecular dynamics simulations using basic pancreatic trypsin
inhibitor and hen egg white lysozyme as our test case proteins.
We then used the method to distinguish between the protein
volume and enthalpy of a native and a denatured trp-cage
conformation with sufficient precision. The method is most
similar to that used recently by Smit to determine the enthalpy
of a lipid aggregate, and to Shing and Chung’s work in the late
1980s for the infinitely dilute partial molar volume and internal
energy of a Lennard−Jones solute,21,71 but to our knowledge it
has never been used or presented for any general solute and for
any general partial molar property. The strengths of the
approach are that it is thermodynamically exact, no ambiguous
parameters are introduced, and knowledge of the specific
conformations that contributed to the output values is retained.
The method is general, and this approach may be used to
calculate any partial molar property of any solute in any
solution. It could be employed in the future as a test of the
quality of a FF.
The current limitation of the approach is the high level of

noise in the isothermal compressibility and thermal expansion
coefficient results, and the moderate level of noise in the
isobaric heat capacity results. To increase the signal-to-noise
ratio, a polynomial fitting method was used. Clearly, the system
fluctuation approach was not the method of choice for the
calculation of the fluctuating properties, and the polynomial
fitting method provided higher precision results. However, we
were still unable to precisely distinguish between native and
denatured trp-cage conformations’ heat capacities, thermal
expansions, and isothermal compressibilities.
Based upon our results, we predict that for a protein the size

of HEW lysozyme (129 residues), the following amounts of
time are needed to calculate specific thermodynamic properties
with statistical precision: ΔN

DV̅2
∞, ∼200 ns; ΔN

DH̅2
∞, achieved

necessary precision using 25 ns simulation; ΔN
DC̅p,2

∞ , achieved
necessary precision using 10 ns simulations at each of 5
temperatures; ΔN

DκT̅,2
∞ , difficult to predict due to the large noise;

ΔN
Dα̅p,2

∞ , achieved the necessary precision using 10 ns
simulations at each of 5 temperatures. Currently, the methods
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that rely upon subjective definitions, if they can be trusted, are
more competitive than our approach for the isothermal
compressibility due to the high amounts of noise in the
current method. Continued increases in computational power
should make the method presented here more usable, with
ease, over time.
Lastly, the method presented here does not provide a means

of directly decomposing the thermodynamic properties into
contributions, from specific surface groups for example. The
solute−solute and solute−solvent energy terms decay as a
function of distance away from the solute, which makes them
directly calculable. Since the solvent−solvent contribution does
not decay, it must be solved for indirectly. This is a commonly
encountered issue; see, for example, McCammon and co-
workers.72 We are currently working to develop and test a
method to calculate all of the above properties that uses
expressions from Fluctuation Solution Theory and is
decomposable, analogous to the group contribution decom-
position for partial molar volumes already achieved using
traditional Kirkwood−Buff theory.23,30
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