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Abstract: A disproportionate burden of helminthiases in
human populations occurs in marginalised, low-income,
and resource-constrained regions of the world, with over
1 billion people in developing areas of sub-Saharan Africa,
Asia, and the Americas infected with one or more
helminth species. The morbidity caused by such infections
imposes a substantial burden of disease, contributing to a
vicious circle of infection, poverty, decreased productivity,
and inadequate socioeconomic development. Further-
more, helminth infection accentuates the morbidity of
malaria and HIV/AIDS, and impairs vaccine efficacy.
Polyparasitism is the norm in these populations, and
infections tend to be persistent. Hence, there is a great
need to reduce morbidity caused by helminth infections.
However, major deficiencies exist in diagnostics and
interventions, including vector control, drugs, and vac-
cines. Overcoming these deficiencies is hampered by
major gaps in knowledge of helminth biology and
transmission dynamics, platforms from which to help
develop such tools. The Disease Reference Group on
Helminths Infections (DRG4), established in 2009 by the
Special Programme for Research and Training in Tropical
Diseases (TDR), was given the mandate to review
helminthiases research and identify research priorities
and gaps. In this review, we provide an overview of the
forces driving the persistence of helminthiases as a public
health problem despite the many control initiatives that
have been put in place; identify the main obstacles that
impede progress towards their control and elimination;
and discuss recent advances, opportunities, and challeng-
es for the understanding of the biology, epidemiology,
and control of these infections. The helminth infections
that will be discussed include: onchocerciasis, lymphatic
filariasis, soil-transmitted helminthiases, schistosomiasis,
food-borne trematodiases, and taeniasis/cysticercosis.

Introduction

Since the publication by Norman Stoll in 1947 of ‘‘This Wormy

World’’ [1], where the intolerable burden of intestinal nematode

infections was highlighted, several global efforts have been made to

address the health effects of human parasitism by helminths.

Helminths (roundworm and flatworm parasites) are among the

most widespread infectious agents of human populations. Today,

they disproportionately affect marginalised, low-income, and

resource-constrained regions of the world. It is estimated that

over 1 billion people in developing regions areas of sub-Saharan

Africa (SSA), Asia, and the Americas are infected with one or more

species of helminths [2,3]. The morbidity associated with most of

the helminthic diseases we focus on in this report and in the other

reviews in this issue are closely linked to poverty; they result from

poverty and markedly contribute to further poverty by, among

others, impairing agricultural and economic productivity, and they

exert a detrimental impact on cognitive development and

educational outcomes, thereby hampering socioeconomic devel-

opment. Moreover, the infections themselves may accentuate the

effect of other significant pathogens such as malaria and HIV, and

attenuate the response to a range of vaccines.

In response to growing evidence demonstrating the devastating

impact of these neglected tropical diseases (NTDs) on the bottom

billion of the world population through their effects on health,

education, and socioeconomic development, the World Health

Assembly (WHA) has adopted several resolutions calling for the

control or elimination of these diseases, and for the implementation

of a number of large-scale control and elimination programmes.

These have been aimed at the parasites themselves and/or the agents

(vectors and intermediate hosts) responsible for their transmission. In

1974, WHA resolution WHA27.52 was passed, calling upon the

World Health Organization (WHO) to intensify research on major

parasitic diseases. This led in 1975 to the creation of the Special

Programme for Training and Research in Tropical Diseases (TDR).
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That year also saw the commencement of antivectorial operations by

the Onchocerciasis Control Programme (OCP) in West Africa. In

1993 and 1995, respectively, the Onchocerciasis Elimination

Program for the Americas (OEPA) and the African Programme

for Onchocerciasis Control (APOC) were initiated. In 1997,

resolution WHA50.29 was passed, which urged the WHO and

member states to eliminate lymphatic filariasis (LF). This led to the

formation of the Global Programme to Eliminate Lymphatic

Filariasis (GPELF), which is supported by the Global Alliance to

Eliminate Lymphatic Filariasis (GAELF), a public–private partner-

ship that was launched in 2000 to support the GPELF in fundraising,

advocacy, communications, resource mobilisation, and programme

implementation. In 2001, resolution WHA54.19 was passed, setting

the global target of treating by the year 2010 at least 75% of all

school-age children at risk of morbidity from soil-transmitted

helminthiases (STHs) and schistosomiasis. This resolution led to

the establishment of Partners for Parasite Control (PPC) by the

WHO. More recently, the global public health community has been

invigorated by the articulation of the Millennium Development

Goals (MDGs), which are: MDG1: Eradicate extreme poverty and

hunger; MDG2: Achieve universal primary education; MDG3:

Promote gender equality and empower women; MDG4: Reduce

child mortality; MDG5: Improve maternal health; MDG6: Combat

HIV/AIDS, malaria and other diseases; MDG7: Ensure environ-

mental sustainability; and MDG8: Develop a global partnership for

development [2,4]. Several new initiatives have been also been

established, most notably the Schistosomiasis Control Initiative (SCI)

in 2002 and the Global Network for Neglected Tropical Disease

Control (GNNTDC) in 2006.

However, despite such WHA/WHO resolutions, the initiatives

described above, and the many scientific advances in our

understanding of the biology and epidemiology of helminth

infections, obstacles remain that challenge the global public health

community in their efforts to attain the aims of controlling

morbidity and eliminating infection. Some of the identified obstacles

include the current scarcity of tools for: 1) updated disease mapping

(particularly as interventions progress); 2) new anthelmintics and

vaccines that would provide higher levels of control and greater

sustainability than currently available to the present control

measures; 3) improved, more sensitive diagnostics that are required

for specific activities, such as in elimination settings; 4) monitoring

the progress of control interventions and quantifying changes in

incidence of infection and disease; 5) assessing the efficacy of drug

and interventions to control vectors/intermediate hosts (e.g.,

insecticides) and promptly detecting possible development of

resistance to these; 6) determining programme end points (for

elimination of the public health burden and/or the infection

reservoir) and deciding when interventions could be safely stopped;

and 7) implementing post-control surveillance. Research gaps in

these and other areas, as well as inclusion of a research and

development agenda for human helminthiases for each of the topics

covered (interventions, diagnostics, basic biology, mathematical

modelling, social and environmental determinants, and capacity

building) have been the subject of deliberation by the Disease

Reference Group on Helminth Infections (DRG4), established in

2009 by TDR, and will be further discussed in detail in the following

reviews within this PLoS Neglected Tropical Diseases collection. Box 1

lists the abbreviations used in this paper.

Human Helminthiases, Populations at Risk, and
Resulting Diseases

Helminth parasites are parasitic worms from the phyla

Nematoda (roundworms) and Platyhelminthes (flatworms). To-

gether, they comprise the most common infectious agents of

humans in developing countries. The most common helminthiases

of humans are those caused by intestinal infection with STHs,

namely Ascarias lumbricoides, Trichuris trichiura, and hookworms

(Necator americanus and Ancylostoma duodenale), followed by schistoso-

miasis and lymphatic filariasis (LF). In Table 1 the estimated

number of people infected (although estimates are given

separately, there is a significant amount of co-infection), the

burden of disease (in terms of disability-adjusted life years

[DALYs]), and the estimated number of annual deaths attributable

to each disease, are summarised for each condition. The collective

burden of the common helminth diseases rivals that of the main

high-mortality conditions such as HIV/AIDS or malaria; 85% of

the NTD burden for the poorest 500 million people living in SSA

results from helminth infections. Of the 580 million people in

Latin America and the Caribbean, 241 million live in areas where

at least one of the NTDs is endemic [5,6]. Since the remit of the

series of these review papers is centered on the issues of identifying

research priorities for the improvement of helminth control

programmes, the infections described below are ordered not in

terms of their abundance but in terms of their history of

intervention, with the OCP in West Africa (1975–2002) being

the first large-scale programme to have been implemented

(originally based on vector control).

Onchocerciasis
Onchocerciasis (caused by infection with Onchocerca volvulus)

affects, according to recent estimates [7], 37 million people in 34

countries and is the second cause of infectious blindness after

trachoma, with 99% of the cases in SSA. In Latin America,

Box 1. List of Abbreviations

ADLA, acute dermatolymphangioadenitis
DALY, disability-adjusted life year
DRG4, Disease Reference Group on Helminth Infections
EST, expressed sequence tag
GIS, geographical information systems
GAELF, Global Alliance to Eliminate Lymphatic Filariasis
GNNTDC, Global Network for Neglected Tropical Disease
Control
GPELF, Global Programme to Eliminate Lymphatic Filari-
asis
LF, lymphatic filariasis
MDGs, Millennium Development Goals
MSAT, mass screen and treat
NCC, neurocysticercosis
NTDs, neglected tropical diseases
OCP, Onchocerciasis Control Programme in West Africa
M&E, monitoring and evaluation
OEPA, Onchocerciasis Elimination Program for the Amer-
icas
OSD, onchocercal skin disease
PPC, Partners for Parasite Control
REA, rapid epidemiological assessment
RNAi, RNA interference
RS, remote sensing
SCI, Schistosomiasis Control Initiative
STHs, soil-transmitted helminthiases
SSA, sub-Saharan Africa
TDR, Special Programme for Research and Training in
Tropical Diseases
WHA, World Health Assembly
WHO, World Health Organization
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onchocerciasis has been endemic in six countries (namely, Mexico,

Guatemala, Colombia, Ecuador, Venezuela, and Brazil), with 13

focal areas originally described, and 510,000 individuals estimated

to have been at risk of infection [7]. However, in eight of these

focal areas, there is encouraging evidence of interruption of

transmission after the implementation of the regional strategy

adopted by the OEPA [5,6]. Notably, most of these foci are small

and circumscribed, with probably not much genetic diversity in

the parasite population at any single focus, some (though not all) of

the blackfly vectors are less efficient than their African counter-

parts, and treatment with ivermectin has been more frequent

(biannually instead of yearly, and in some localities up to four

times per year) and has achieved a high coverage [8].

In onchocerciasis, morbidity is manifested as ocular involvement

including blindness, dermal involvement including skin disease and

palpable nodules, neuro-hormonal involvement including associa-

tions with epilepsy and hypo-sexual dwarfism (Nakalanga syndrome),

and lymphatic involvement including lymphadenopathy, hanging

groin, and lymphoedema. Although onchocercal ocular disease and

blindness are more prominent in African savannah regions,

onchodermatitis or onchocercal skin disease (OSD) has a higher

prevalence in forest areas, possibly because of differences in parasite

strains. The importance of OSD as a contributor to the disease

burden of onchocerciasis has been recognised relatively recently [9].

In 1995, the year APOC was implemented (and 25 years after the

commencement of the OCP), the burden of disease was estimated to

amount to 1.99 million DALYs lost because of onchocerciasis. In

2003, on the basis of updated mapping and treatment coverage data,

and assumed decreases in attributable morbidity due to skin and eye

disease, the DALYs due to onchocerciasis were re-estimated to have

reduced to 1.49 million [10].

Lymphatic Filariasis
LF is endemic in 83 countries and territories. It is estimated that

1.3 billion people are at risk for developing the disease, with some

120 million people being infected [11]. Over 40 million people are

seriously incapacitated and disfigured by the disease. Of these,

95% are infected with Wuchereria bancrofti, and the remainder with

Brugia malayi or Brugia timori [12]. The infection, usually acquired in

early childhood, causes considerable morbidity and social stigma

because of the deformities it produces. LF provokes acute

dermatolymphangioadenitis (ADLA) and lymphoedema. Major

chronic manifestations include hydrocoele and lymphoedema of

limbs, as well as chyluria, lymphoedema of the scrotum,

adenopathy, haematuria, and tropical pulmonary eosinophilia.

The disease causes permanent and long-term disability, and

damages and deforms the limbs, breasts, and genitals, resulting in

serious psychosocial consequences. Worldwide, 5 million DALYs

are lost annually due to LF [10]. The Southeast Asia region

accounts for about 57% of the total global burden. India’s

economic losses due to LF have been estimated at ,US$ 1 billion

per year [13].

Soil-Transmitted Helminthiases
The STHs are intestinal nematode infections and are among

the most common and persistent parasitic infections worldwide.

Table 1. The Worldwide Abundance, Burden of Disease, Distribution, and Control/Elimination Programmes of Human
Helminthiases.

Infection Causal Agent

Region with
Highest No.
Infected

Number Infected
(Millions) DALYs (Millions)

Number of Deaths/
Year (Thousands)

Programmes
Involved

Onchocerciasis Onchocerca volvulus SSA 37 1.5a 0.05 (in the OCP area)b OCP, APOC, OEPA

Lymphatic filariasis Wuchereria bancrofti;
Brugia malayi

India, SEA, SSA 120 5.8 0.4 GPELF

Ascariasis Ascaris lumbricoides Asia, Africa, LA 1,221–1,472c 1.8–10.5c 3–60c PPC, DtW, GPELF, SCI

Trichuriasis Trichuris trichiura Asia, Africa, LA 759–1,050c 1.0–6.4c 3–10c PPC, DtW, GPELF, SCI

Hookworm infection Necator americanus;
Ancylostoma duodenale

Asia, Africa, LA 740–1,300c 0.1–22.1c 3–65c PPC, DtW, GPELF, SCI

Schistosomiasis S. mansoni
S. haematobium
S. japonicum

SSA, LA
SSA
China, SEA

207 1.7–4.5c 15–280c SCI in SSA; national
programmes elsewhere

Food-borne trematodiases Clonorchis sinensis;
Opisthorchis viverinni;
Paragonimus spp.;
Fasciolopsis buski;
Fasciola hepatica

East Asia 56d 0.5–0.9d 7d Large-scale control
initiatives lacking

Cestode infections:
cysticercosis

Taenia solium SSA, Asia, LA 0.4 (LA only) ND ND Large-scale control
initiatives are lacking

Modified from references [2,3,10,14–16,36,77,120].
aFrom Remme et al. [10].
bFrom Little et al. [120].
cFrom Utzinger and Keiser [14].
dFrom Fürst et al. [36].
Abbreviations: SSA, sub-Saharan Africa; SEA, Southeast Asia; LA, Latin America; OCP, Onchocerciasis Control Programme in West Africa (1975–2002); APOC, African
Programme for Onchocerciasis Control (1995–ongoing); OEPA, Onchocerciasis Elimination Program for the Americas (1993–ongoing); GPELF, Global Program to
Eliminate Lymphatic Filariasis (2002–ongoing); PPC, Partners for Parasite Control (2001–ongoing); DtW, Deworm the World (2007–ongoing); SCI, Schistosomiasis Control
Initiative (2002–ongoing).
doi:10.1371/journal.pntd.0001582.t001
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According to the latest estimates, 1221–1472 million people are

infected with roundworm (A. lumbricoides), 795–1050 million with

whipworm (T. trichiura), and 740–1300 million with hookworm (N.

americanus, A. duodenale) [14]. Although not mentioned further in

this report, it is worth noting that an unknown, but estimated 30–

100 million people are infected with threadworm (Strongyloides

stercoralis) [15]. The morbidity attributable to this lifelong infection

is poorly studied but the serious morbidity and mortality it causes

in immuno-suppressed individuals continues to be reported in the

medical literature [3,16]. In Latin America and the Caribbean,

STHs are present in all countries with an estimated 26.3 million

school-age children at risk of infection. In 13 of the 14 countries in

this region, many areas have an infection prevalence higher than

20% [5,6,17]. Globally, approximately 300 million people suffer

from severe morbidity that results in 10,000–135,000 deaths

annually. However, their greatest impact is through the impair-

ment of physical and mental development in children, which

ultimately retards educational advancement and economic

productivity. The relationship between hookworm infection and

anaemia is well recognised, with numerous intervention trials

showing a direct effect of cure of infection with reduction in

prevalence and intensity of iron deficiency anaemia. However, for

A. lumbricoides and T. trichiura infection, the relationship between

infection and specific morbidity measures is less well established.

The uncommon, but potentially severe, adverse clinical outcomes

of rectal prolapse due to T. trichiura infection and bile duct or

intestinal obstruction due to A. lumbricoides infection are well

recognised in the medical literature. However, there is a lack of

epidemiological data defining the prevalence of these complica-

tions, and relating them to community prevalence and infection

intensity [18–20]. Less easily measured parameters such as

hypoproteinemia have been attributed to heavy infection with

these parasites, but likewise there is a dearth of quality

epidemiological data. Studies have been undertaken to relate

school, cognitive, and athletic performance to infection, largely

through chemotherapy interventions. While there appears to be

some effect, distinguishing this from other coexisting confounding

variables such as micro- and macronutrient deficiency is not

straightforward.

Schistosomiasis
Schistosomiasis is endemic in 76 countries and territories in the

tropics and subtropics. Schistosoma mansoni is endemic in 54

countries and S. haematobium in 55 [21]. Infection by S. japonicum

remains an important public health burden in the Philippines,

China, and parts of Indonesia, despite continued efforts by

ongoing control programmes [22]. Worldwide, almost 800 million

individuals are at risk; about 200 million people are estimated to

be infected, and over half of these have various degrees of

morbidity [23–25]. Of the 200 million people infected with

Schistosoma spp. in the world, 160 live in SSA, where approximately

110 million are infected with S. haematobium [26]. Schistosomiasis

causes 15,000–280,000 deaths annually in SSA alone [26] and

severe disability in approximately 20 million people. In its chronic

stage, the disease is associated with liver and bladder cancer.

Infection with S. haematobium is particularly burdensome, causing

a large number of cases of hydronephrosis, renal failure, and

bladder cancer. Women with urinary/genital schistosomiasis are

at an increased risk of acquiring HIV infection [27]. Over 80% of

the schistosomiasis burden is concentrated in SSA. In Latin

America and the Caribbean, S. mansoni infection is prevalent in

four countries: Brazil, Saint Lucia, Suriname, and Venezuela, with

25 million people at risk of infection and 1–3 million people

infected. The figures presented in Table 1 (corresponding to the

Global Burden of Disease estimates for 2000 and updated in 2004)

are thought to considerably underestimate the true burden of

schistosomiasis [28,29]. As for almost all helminth infections,

schistosome infection is not equivalent to schistosomiasis disease.

Likewise, there is a paucity of validated direct and indirect

indicators of schistosome-related morbidity [30–33]. In urinary

schistosomiasis, macroscopic haematuria is an obvious early sign of

morbidity. However, for S. mansoni and S. japonicum, assessment of

morbidity is more difficult. Furthermore, few, if any, of the clinical

manifestations of schistosomiasis are specific and overlap with

other causes, including other helminth infections, malaria, and

viral hepatitis, which often are co-endemic with schistosomiasis.

Food-Borne Trematodiases
Food-borne trematodiases, including liver flukes (Opisthorchis

viverrini, Op. felineus, and Clonorchis sinensis) and lung flukes

(Paragonimus spp.), remain important public health problems,

particularly in Asia. Chronic infections with Op. viverrini and C.

sinensis have long been associated with cholangiocarcinoma (bile

duct cancer). C. sinensis is widespread in China, Korea, and

Vietnam, while Op. viverrini is endemic in Southeast Asia, including

Thailand, Lao People’s Democratic Republic (Lao PDR),

Cambodia, and central Vietnam. Recent reports suggest that

about 35 million people globally are infected with C. sinensis, with

up to 15 million human infections in China alone and another 10

million individuals infected with Op. viverrini in Thailand and Lao

PDR. In a recent review it was estimated that 80 million people in

Thailand, Lao PDR, Cambodia, Vietnam, and Eastern Europe

are at risk for infection with Op. viverrini and Op. felineus. Over 45

million people are infected by both liver flukes Op. viverrini and C.

sinensis. More than 600 million people, mainly in Asia, including

China, Korea, Taiwan, and Vietnam, are at risk of infection [34].

The infections are associated with hepatobiliary diseases including

hepatomegaly, cholangitis, fibrosis of the periportal system,

cholecystitis, gallstone disease, and, importantly, are major

precipitants of cholangiocarcinoma. The liver fluke–endemic area

of Khon Kaen in northeast Thailand has reported the highest

incidence of this liver cancer in the world [35]. Indeed, liver and

bile duct cancers, end-stage consequences of liver fluke disease,

rank number five in Thai males and number six in females among

all diseases in terms of DALYs in 2005. About 56.2 million people

were infected with food-borne trematodes in 2005, 7.9 million had

severe sequelae, and 7,158 died, mostly from cholangiocarcinoma

and cerebral infection. Taken together, the global burden of food-

borne trematodiasis was estimated at 665,352 DALYs (ranging

from 479,496 to 859,051) [36].

Taeniasis/Cysticercosis
Human infections with the cestode parasite Taenia solium are

endemic in Latin America, most parts of Asia (including China

and the Indian subcontinent), Eastern Europe, and most of Africa.

Imported cases occur in most developed countries due to

immigration from and tourism to endemic regions. T. solium

infection, which causes intestinal taeniasis and tissue cysticercosis,

represent two different life stages and clinical entities in the human

host. Intestinal taeniasis with the adult tapeworm (when humans

act as definitive hosts) causes low morbidity by itself, but represents

the sole source of the more pathogenic tissue infection, designated

cysticercosis, that affects both humans and pigs. Cysticercosis, the

infection with the larval stage of the parasite or cysticercus (when

humans act as ‘‘intermediate hosts’’), is a major cause of seizure

disorders worldwide (human neurocysticercosis or NCC), and also

causes economic losses due to infected pork (porcine cysticercosis).

The most consistent indicator of the prevalence of neurocysticer-
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cosis is that of seizure disorders. In several endemic areas of Latin

America, the attributed fraction for NCC is around 30% of all

seizure disorders, with this estimate also being consistent among

people with epilepsy worldwide [37]. Subarachnoid NCC is also

associated with intracranial hypertension and mortality.

Notably, the prevalence of NCC worldwide remains still

unknown. However, initiatives are currently underway to

determine the burden of NCC in endemic countries of Africa,

Asia, and Latin America [37–39] as well as in industrialised

countries such as the United States where it is becoming a better

recognised and possibly an increasing problem, the latter because

of immigration of tapeworm carriers from endemic areas. As the

estimate for the proportion of NCC among people with epilepsy is

very robust [37], it could be used, in conjunction with estimates of

the prevalence and incidence of epilepsy, to estimate this

component of the burden of NCC in endemic areas.

Distribution and Co-Occurrence

Epidemiologically, human helminthiases are characterised by

long-lasting infection with one or, more often, more than one of

the helminth species referred to above. This phenomenon, known

as polyparasitism, is the result of commonalities in ecological and

environmental requirements, infection routes, host exposures, and

susceptibility, as well as behavioural, sociological, and economic

factors that enable co-occurrence of a multiplicity of parasite–host

systems in time and space. In Figure 1, the geographical

distribution of co-occurrence of helminth species (LF, onchocer-

ciasis, schistosomiasis, and STHs) at country level is presented.

As studies have demonstrated that individuals infected with

multiple helminth species may also have the most intense

infections [40–44], polyparasitism may have a greater impact on

morbidity than the sum of single-species infections. In addition,

multiple species infections may increase susceptibility to other

infections, such as malaria or HIV [45,46], particularly given the

often detrimental immunomodulatory effect of helminth infec-

tions. Consequently, efforts have been made to better understand

the consequences of the co-existence of parasites within the same

host on the immunological responses to each species and, more

importantly, whether such interactions affect resistance, suscepti-

bility, or clinical outcome [47]. Co-infections are also shifting some

of the prevention and control measures of helminth infections

Figure 1. Geographical distribution of co-infections with helminth infections, 2009. The helminth infections include: lymphatic filariasis (LF),
onchocerciasis (Oncho), schistosomiasis (SCH), and soil-transmitted helminthiases (STH). The different colors represent the following co-infections:
STH+SCH+Oncho+LF; STH+SCH+LF; STH+SCH+Oncho; STH+Oncho; STH+SCH; STH+LF; and only STH. The information is based on reference [119].
doi:10.1371/journal.pntd.0001582.g001
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from single-drug treatments to integrated approaches that can

simultaneously target as many as four of the helminth NTDs,

including onchocerciasis, LF, STHs, and schistosomiasis—a

mission undertaken by the GNNTDC and the WHO [2,48].

Advances, Opportunities, and Challenges for the
Control and Elimination of Human Helminthiases

Improvement of environmental conditions, increased hygiene,

access to clean and potable water, better housing, and sustained

socioeconomic development have been demonstrated to be

essential for the elimination of helminth infections (the reason

many of these infections, previously prevalent in presently

industrialised countries, are no longer endemic in such areas).

Despite this, treatment of populations with anthelmintics in the

modality of mass drug administration (MDA), referred to as

preventive chemotherapy via community-based distribution sys-

tems and through schools, has become the predominant tool for

helminthiasis control in developing countries, either as targeted

treatment (to particular occupational or age groups), or among

whole communities, since they appear to be among the most cost-

effective global public health control measures [49–51]. Not only

does MDA obviate the costly requirement for mass screening and

diagnosis, but also drug donation programmes have been initiated

by highly visible pharmaceutical companies (such as the Mectizan

Donation Program of Merck & Co. for onchocerciasis and LF

control/elimination with ivermectin, in coordination with alben-

dazole donation by GlaxoSmithKline for LF and STHs [52]).

Additionally, patents have expired for some compounds, making

generic preparations (such as praziquantel for schistosomiasis, or

diethylcarbamazine for LF) highly affordable. The anthelmintic

drugs thus available to the control programmes are safe for mass

treatment of human populations and moderately to highly (albeit

variably) efficacious (see review by Prichard et al. in this issue for a

summary and discussion on anthelmintic efficacy [53]).

MDA is being assisted by global partnerships, including the

aforementioned donations from pharmaceutical companies of

anthelmintic drugs and financial support from foundations,

governments, United Nations agencies, companies, and individ-

uals. Efforts to integrate various MDA programmes may bring

logistic benefits to intervention programmes. However, it should

also be recognised that very little funding is available to support

operational research that is essential for such interventions to

remain sustainable and bring long-lasting benefits. Unfortunately,

much of the effort is, at present, directed at short-term objectives.

Mass chemotherapy as a control strategy has its own challenges,

among which are those of optimising community involvement and

participation. The recognition, acceptance, and commitment to

play the role that is expected of the communities are factors crucial

to achieving sustainable control programmes. Although global

funding for these programmes has increased markedly in recent

years, ‘‘donor fatigue’’ may set in as a major obstacle to sustained

funding if initial successes (which are invariably largest at the

beginning), are not maintained. The arsenal of available drugs for

MDA is limited, as most of them were developed originally for

parasites of veterinary importance in markets of middle- to high-

income economies,with very little or no development programmes

for new drugs specifically targeting human helminthiases. This

makes the existing control programmes highly vulnerable to the

possible development and spread of anthelmintic resistance. It is

also clear that the long-term control and eradication of these

helminth diseases will require improvements in sanitation and

hygiene, improved socioeconomic development, and environmen-

tal sustainability.

Increasing human population size, changes in demographic

patterns and activities, and changing agriculture and irrigation

practices are also altering the environment at an unprecedented

scale, further increasing the risk of STH and zoonotic helminthi-

ases [54,55]. How these activities will play out in the long term, as

well as what will be the effects of climate change on the

distribution and incidence of helminth infections, remains poorly

understood. Thus, whereas helminth diseases are often thought of

as chronic and ancient scourges of humanity, some may become

re-emerging diseases as new outbreaks are reported in response to

environmental and socio-political changes, migration, travel,

forced human displacement, and clean water shortages.

Control of S. japonicum and most cestode infections in humans is

also complicated by the fact that they constitute zoonotic

infections. For example, other animals, e.g., cattle, buffalo,

rodents, dogs, sheep, and pigs can act as reservoirs for human

transmission of S. japonicum. A more integrated strategy for control

of this species of schistosome is therefore required. A pilot study for

such an integrated control strategy for schistosomiasis has been

undertaken in China using a multi-pronged approach, including

health education, access to clean water and adequate sanitation,

mechanisation of agriculture, and fencing of water buffaloes, along

with chemotherapy [56–58]. In the case of cestode infections, and

despite the proven benefit of chemotherapy with praziquantel and

possibly albendazole for patients with parenchymal NCC [59,60],

there is a need for improved drugs and/or studies with drug

combination regimens and dosages to evaluate their efficacy [61].

Millions of doses of anthelmintics have been administered to

patently infected and exposed individuals in endemic areas, in

some cases for prolonged periods, and have undoubtedly yielded

health benefits for the treated populations. However, helminth

infections persist in their host populations, and are resilient to

control interventions (a consequence, in part, of their population

biology). Understanding the biological, environmental, and social

determinants of such persistence, as well as the driving forces of

new emerging and re-emerging public health challenges, is crucial

to steering research, harnessing the potential of new scientific

advancements, and engaging stakeholders to achieve the MDGs.

Reviews of the progress on the implementation of the MDGs

indicate that the attainment of the goals has been slow, in

particularly those related to health, namely, MDG4, reduce child

mortality; MDG5, improve maternal health; and MDG6, combat

HIV/AIDS, malaria and other diseases. This is particularly

worrying for many African countries. This slow progress is not

consistent with the actual increase in resources for health research

worldwide. However, it is important to pay attention to the fact

that only 5% of global research spending is estimated to actually

be applied to the needs of low- and middle-income countries, and

a miniscule fraction of this to the neglected helminth diseases. In

fact, though MDG6 specifically mentions HIV/AIDS and malaria

as critical targets for sustainable poverty reduction by the year

2015, it merely alludes to chronic parasitic worm infections as

‘‘other diseases’’ [2]. Because these diseases prevent the achieve-

ment of the first six MDGs, their control with cost-effective

interventions could be the basis for long-term economic growth

and development [2,4].

Although the disability among the bottom billion that results from

NTDs, including the helminth diseases, is enormous, the NTDs

have not received nearly the same attention as three of the highest

mortality-causing infectious diseases, HIV/AIDS, malaria, and

tuberculosis [62]. This is likely because they are not perceived as

major causes of premature death. However, onchocerciasis can

cause visual impairment, blindness, and excess mortality both of the

blind and of heavily infected yet sighted individuals; LF can cause
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major body deformation and impaired function, reducing the ability

of people to work and look after themselves and others; STHs and

schistosomiasis can markedly reduce the growth and development

of children, including cognitive ability throughout life, as well as

increasing child mortality. Hookworm infection can cause anaemia

and impact on maternal health and neonatal mortality. In pregnant

women, the same infections may result in premature birth, low birth

weight, and increased maternal morbidity and mortality. Liver fluke

infections can cause major liver pathology, including hepatic

cancer, while NCC is a major cause of seizure disorders and other

forms of neurological disease that can increase the level of poverty.

Box 2 summarises some of the driving forces that maintain

helminthiases as a challenge to the global public health community.

They are discussed more fully below.

Prof. David Molyneux, one of the leading advocates for NTDs

and helminthic control programmes, has said ‘‘My position has

always been that if you are going to do anything about the MDGs,

which have the overall objective of taking people out of poverty,

then you had better do something about the diseases which affect

the most people rather than those that affect the minority’’ [63].

However, to control the high-burden NTDs, including helminthi-

ases, in low- and middle-income countries and thus help achieve

the MDGs, a great deal of investment from both international and

national funding bodies will be required in order to develop the

facilities and the capabilities of scientists who can drive research

aimed at developing more effective tools and strategies to fight

infectious diseases of poverty [4]. Global financing mechanisms for

NTDs should take into consideration that disease control

programmes must be nationally owned, embedded into national

health plans, and backed by political commitment [4].

Another major issue that affects significantly the capacity of

several nations to reach the MDGs is the lack of trained human

resources, or the inability to retain those individuals who have

been trained, due to an inadequate environment for them to tackle

health problems within a research culture. Although some

countries are in the process of overcoming these difficulties, and

several high-level meetings on health research have called for

action on this respect (Mexico City, Abuja, Accra, Algiers, and

more recently Bamako), a clear commitment has not yet been

made by all participating nations. In Bamako, during the Call to

Action 2009 meeting, all stakeholders were urged to ‘‘promote and

share the discovery and development of, and access to, products

and technologies addressing neglected and emerging diseases

which disproportionately affect low- and middle-income coun-

tries’’. In countries where NTDs are endemic, different levels of

commitment toward their resolution, however, occur. A more

detailed discussion regarding these issues is presented in the review

entitled ‘‘A Research Agenda for Helminth Diseases of Humans:

Health Research and Capacity Building in Disease-Endemic

Countries for Helminthiases Control’’ [64].

Factors Driving the Persistence and Re-
Emergence of Helminth Infections of Humans

Parasite Population Biology and Human Host
Sociological Factors

Infection prevalence at any time-point may be high and this, in

addition to reflecting a high intensity of transmission, also results

from infections which are of long duration: parasites may have a

long life span, hosts do not recover and do not mount an effective

Box 2. Factors Driving the Persistence and Re-Emergence of Helminth Infections of Humans

N A disproportionate burden of helminthiases in human
populations occurs in marginalised, low-income, and
resource-constrained regions of the world that are
extremely poor and live with inadequate sanitation, which
contributes to a vicious circle of infection, poverty,
decreased productivity, and inadequate socioeconomic
development

N Polyparasitism; human helminthiases are characterised by
long-lasting infection with one or, more often, more than
one helminth and with other diseases

N Free-living stages of some STHs are very resistant to
environmental degradation and can persist in soil for years

N Parasite populations are strongly regulated within their
hosts (including definitive, intermediate, vector, and snail
hosts), which makes them highly stable and often resilient
to control interventions; therefore, premature cessation of
interventions may lead to re-emergence and eventually
restoration of the parasite population to baseline levels

N The control programmes rely heavily on anthelmintic
treatment and in many cases they depend on only one
drug. This makes the programmes vulnerable to the
possible development of anthelmintic resistance

N Optimum treatment coverage with MDA is required for the
success of control and elimination programmes for
helminthic infections. It also depends on community
involvement and participation, which needs to be opti-
mised and further encouraged

N Lack of highly effective tools, e.g., macrofilaricides or
vaccines, which can remove a high proportion of an
existing infection

N Increasing human population size and activities, and
changing agriculture and irrigation practices are also
altering the environment at an unprecedented scale,
further increasing the risk of zoonotic helminthiases

N Technical limitations of available diagnostic methods for
helminthiases impose significant constraints on current
initiatives to understand the epidemiology and control of
these infections

N A major obstacle to the implementation of cost-effective
control is the lack of accurate descriptions of the
geographical distribution of infection and co-infection

N Current diagnosis tools do not adequately identify true
infection status, parasite load, and do not account for
other confounding or interacting infections

N The distribution and burden of helminth infections are not
merely a reflection of geographical and ecological
circumstances, but also a reflection of the level of political
commitment and investment in human and financial
resources by national governments for the prevention
and control of helminthiases

N A multi-disease, inter-programmatic, and inter-sectorial
approach is not always taken wherever scientifically,
logistically, and economically possible in order to success-
fully control helminthiases

N Understandably, priority is given to ‘‘applied’’ or ‘‘opera-
tional’’ research at the expense of basic research; however,
a continuous effort to improve and update knowledge of
helminth fundamental biology is likely to yield improved
intervention and control tools
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infection-clearing immune response, and they are exposed to

repeated infection throughout their lives.

Further, aggregation of infection, whereby a minority of

individuals harbour very heavy infection but the majority of the

population harbour light or moderate infection, is a major factor

to consider in epidemiological studies and chemotherapy efficacy

trials, as well as in efforts to reduce prevalence, if, for example,

‘‘wormy’’ individuals are somehow missed in drug treatment

programmes.

Among the biological determinants of persisting infection is the

fact that parasite populations are strongly regulated within their

hosts, including definitive and intermediate hosts (arthropod

vectors, snail intermediate hosts, etc.), which makes them highly

stable and often resilient to control interventions. Therefore,

premature cessation of interventions may lead to re-emergence

and eventually restoration of the parasite population to baseline

levels. Among the sociological factors contributing to this stability

are those that link infection, and particularly heavy infection, with

chronic and long-lasting morbidity, disability, insidious and

irreversible effects on health, poor school performance, impaired

ability to work, low economic productivity, and premature death.

This perpetuates the vicious circle that links helminthiases to

poverty, lack of sanitation, poor hygiene, and marginalisation.

All of the above point towards the need to shift the intervention

paradigm from single to multi-disease, and to integrated

approaches to achieve sustained control of helminth infection.

There is also a need to develop indicators capable of capturing

meaningful impacts of multiple interventions such as reduced

anaemia, improved school attendance, and increased economic

productivity, as well as a need to evaluate the cost-effectiveness of

such interventions.

Chemotherapeutic Factors
The majority of the control programmes listed in Table 1 relies

heavily on anthelmintic treatment. Overall they have achieved good

results with regards to effecting reductions on the prevalence and

intensity of infection and morbidity in some endemic areas [65–68],

and interruption of transmission for some infections, leading

towards local elimination, has been reported for some foci [69–

72] and even at the country level. Between 2000 and 2007, the

GPELF prevented LF disease in an estimated 6.6 million newborns

who would otherwise have acquired LF, thus averting in their

lifetimes nearly 1.4 million cases of hydrocoele, 800,000 cases of

lymphoedema, and 4.4 million cases of subclinical disease [11], and

achieving considerable economic benefits [73]. Examples of

elimination of transmission at a country level include the

achievements of the OCP in West Africa that, after 30 years of

concentrated efforts, prevented 600,000 new cases of onchocerciasis

and protected a total of 18 million villagers from the threat of

contracting river blindness [10]. Elimination of LF as a public

health problem has been successful in China and Korea [74–76],

proving that elimination of LF is possible given the necessary levels

of political support, adequate funding, public commitment, and

improvement of general socioeconomic conditions [76]. In

programmes where cohorts have been followed longitudinally from

the beginning of the interventions, reductions in the incidence of

infection and/or morbidity have been documented [77,78].

One reason for the heavy reliance on chemotherapy is because

for some programmes the drugs are donated by pharmaceutical

companies, or their cost has become affordable [2]. In this setting,

such interventions have been termed ‘‘a rapid-impact package’’

because the impact of anthelmintic treatment on parasite

populations is proportionally largest at the beginning of the

intervention. However, the long-term sustainability of the benefits

accrued depends critically on altering the environmental compo-

nents that facilitate transmission. Large-scale elimination of the

infection reservoir will depend on improving sanitation and

drainage, providing access to clean water, disposing adequately

of excreta and solid waste, promoting access to health services for

diagnosis and treatment, and facilitating adequate housing and

health education [79,80]. Anthelmintic treatment should therefore

be seen as a necessary, but not sufficient, condition towards

breaking the vicious circle between helminth infection, ill-health,

and chronic poverty.

Anthelmintic treatment can be distributed using a variety of

treatment strategies, depending on the level of infection endemic-

ity, the overall aim of the control programme (elimination of the

public health burden or of the infection reservoir), the population

groups that exhibit the highest infection levels, and the relationship

between infection and disease sequelae (for morbidity control).

Treatment can be aimed at particular occupational or age groups

(such as school-age children) most at risk of heavy infection and

severe morbidity. This is the basis for school-based health

programmes aimed at deworming children of STHs and

schistosomiasis. In this target population, treatment is adminis-

tered to all individuals regardless of their infection status. In areas

where community parasite burden is substantial, community

(mass) treatment is recommended. Other strategies include mass

screen and treat (MSAT) (targeting selective treatment to those

with patent and detectable infection), or treating individual cases

in clinical as opposed to community settings. The adoption of such

treatment modalities may also depend on the stage of the control

programme, with MDA implemented at its commencement, and

selective treatment in mopping-up phases. In programmes where

the aim is to eliminate the infection reservoir, the approach

adopted has generally been to treat the largest number of people at

the highest possible coverage for as long as autochthonous

transmission persists. However, this approach imposes strong

selection pressure upon parasite genomes, affecting genetic

diversity and favouring emergence of drug resistant strains. This

could lead to resurgence of infection in areas previously under

control.

Optimum treatment coverage with MDA is required for the

success of control and elimination programmes for helminthic

infections. Mathematical models predict, and experience confirms,

that population coverage is a key determinant of the success of

such programmes and that there remains a need to evaluate the

compliance of the population participating in such programmes

over the years. The use of the term ‘‘therapeutic coverage’’ implies

that the persons who receive the drugs are actually taking them

(i.e., they are compliant), but in several countries, most notably

India, a gap between coverage and compliance has been observed

in the case of LF [81,82]. The contribution of non-compliant

persons to transmission is unknown, but systematic non-compli-

ance may represent a potential threat for helminth control or

elimination. Furthermore, the sustainability of the required long-

term treatment programmes also raises issues of compliance

related to possible population fatigue, waning interest of

community drug distributors, and the necessary continuing

funding support from external donors, as the original funds which

initiated the treatment-based control programmes may be time-

limited.

Factors Associated with Current Ability to Diagnose
Helminth Infections in Individuals, Communities, and
Larger Spatial Scales

The technical limitations of available diagnostic methods for

helminthiases impose significant constraints on current initiatives
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to control these infections. Appropriate diagnostic methodologies

are required for: disease mapping to guide initiation of

interventions; case-based diagnosis; and monitoring and evalua-

tion (M&E) of intervention programmes, particularly with the

possible threat of failure of the interventions due to technical

reasons and/or the development of drug resistance in the parasite

and insecticide resistance in vectors. An understanding of all these

factors will be important for determining the appropriate timing of

cessation of interventions in elimination settings, confirming

interruption of transmission, and learning what methods for

epidemiological surveillance in post-control areas are needed to

monitor resurgence or reinvasion of infections in areas where

elimination may have been certified.

For each of these activities, the technical requirements for

diagnostic tests are likely to be different, and may represent

different technical challenges. Furthermore, for each of the

helminth species considered here, the effect of the biology of the

parasite (life cycle, accessibility to parasitological diagnosis, body

fluid appropriate for sampling, role of and need to sample vector

or intermediate hosts), and the biology of the parasite–host system

(including age profiles of infection prevalence and intensity) on our

ability to diagnose infection status appropriately differs. In

addition, intensity of infection is a critical determinant of

morbidity and disease burden, and as described above, also

critical for the stability of the host–parasite relationship,

contribution to density-dependent, regulatory mechanisms of

parasite population abundance, and contribution to transmission.

Yet, with few exceptions, this critical parameter is difficult to

quantify accurately with present tools, or not at all quantified in

operational settings.

Not only is the diagnosis of individual infections important, but

also is the understanding of their spatial distribution within

countries, communities, and in individuals in which they may co-

occur. The effectiveness of large-scale integrated programmes for

the control of NTDs in general, and of helminth diseases in

particular, will depend on the geographical overlap between the

different NTDs. However, despite being co-endemic in particular

countries [83], different NTDs may, in certain settings, have

limited geographical overlap at sub-national scales, necessitating a

more geographically targeted approach for integrated NTD

control [79,84]. A major obstacle to the implementation of cost-

effective control is the lack of accurate descriptions of the

geographical distribution of infection. In recent years, considerable

progress has been made in the use of geographical information

systems (GIS) and remote sensing (RS) to better understand

helminth ecology and epidemiology, and to develop low-cost and

minimally invasive ways to identify target populations for

treatment such as the development of methods for rapid

epidemiological assessment (REA) of infection and morbidity

[85,86]. A significant constraint on such activities is the paucity of

accurate information on the distribution of infection prevalence

and intensity to build such maps. In China and Africa, predictive

maps have been prepared to identify risk areas and help

governments and health services to plan control strategies.

However, the potential of NTD mapping has been less exploited

in Latin America (but see [87] for REA methods and [88] for GIS

and onchocerciasis in the Amazonian focus [89]). Thus, research is

required to determine the optimal strategy for rapidly and

simultaneously assessing a number of NTDs so that more effective

implementation of integrated approaches for disease control can

take place. Reliable and updated maps of helminth infection

distributions are essential to design control strategies to target

those populations in greatest need; this current lack constitutes a

driving force of persisting control challenges. A principal

advantage of GIS platforms is that they facilitate the regular

updating of information, and provide a ready basis for analysis and

statistical modelling of spatial distributions [90].

Factors Associated with the Environmental and Social
Ecology of Human Helminthiases

The distribution and burden of helminth infections are not

merely a reflection of geographical and ecological circumstances,

but also a reflection of the level of political commitment and

investment in resources (human, financial) by national govern-

ments for the prevention and control of helminthiases in these

vulnerable populations and the environment they inhabit. Progress

has been slow in preventing, controlling, or eliminating these

diseases in some countries. Few health care systems can guarantee

full access to and delivery of the essential medicines for all patients

and populations at risk. Most countries have not yet fully taken

advantage of the new tools and protocols available for prevention,

control, and elimination. In order to develop an operative strategy

for the prevention and control of NTDs, there is a need to organise

public health resources.

For the infections that can be controlled by mass chemotherapy

(STHs, schistosomiasis), but not readily eliminated, early and

intensified case detection and management can be pursued.

However, although in some settings MSAT strategies have been

implemented (e.g., Brazil), more often than not, after some initial

assessment of prevalence and intensity, MDA is implemented; a

strategy that does not target infected individuals only. Normally,

clinical services are not required to implement such treatment as it

can be delivered by community distributors. The complex and

substantial epidemiological pattern of these infections in endemic

countries makes elimination challenging, particularly in areas of

high endemicity [91]. In specific circumstances, however, the

feasibility of achieving this goal is being considered (e.g.,

schistosomiasis in some Caribbean countries and low transmission

areas [92], and some isolated (island) foci in Africa such as on

Unguja, Zanzibar, http://score.uga.edu/Elimination.html).

Surveillance for NTDs should be the responsibility of national

and local health authorities, but there are challenges regarding the

availability of appropriate tools for this task (see review by

McCarthy et al. in this issue [93]). Moreover, given the reality that

most health care systems do not yet prioritise surveillance of

NTDs, outreach is needed to extend to and involve cooperating

health services, health professionals, environmental health officers,

and communities that can organise themselves for surveillance.

At a regional, supra-national level, a ranking order of the

relative importance of NTDs would be difficult to propose.

Rankings could be made based on criteria such as presence of

global or regional mandates for elimination, magnitude of

geographical extension, trends in distribution, and estimated

burden of disease. However, disease burden in particular is

challenging to establish due to lack of reliable data for many

NTDs, with factors such as incidence, prevalence, intensity,

association with morbidity and sequelae, distribution in afflicted

populations, and reliable demographic denominators of popula-

tions at risk are all of relevance. In any particular country or sub-

region, it will be necessary to prioritise which NTDs will be the

most important, based on updated knowledge on local prevalence,

disease burden, at-risk populations, geographical distribution, and

the commitment of governments to equity in health care (coverage

and health services goals). In the strategic lines of action to be

developed under this framework, a multi-disease, inter-program-

matic, and inter-sectorial approach should be taken wherever

scientifically, logistically, and economically possible. It should

actively seek community involvement, with the aim of increasing
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local empowerment. In this way, the focus of implementation

should be through work in partnership with multiple sectors and

multiple health programmes. Failure to do so is also a driving force

of persisting, emerging, and re-emerging helminth infections and

the public health challenges they pose.

Factors Associated with Research Gaps and Overlooking
the Role of Basic Helminth Research

One of the main factors associated with the existence of research

gaps in basic helminth biology is the understandable priority given

to applied activities at the expense of basic research. ‘‘Under-

standable’’ because of the imperative to better control helminth

infections, or to at least relieve the morbidity associated with these

infections. The current efforts, based primarily on MDA, have

been effective in some cases (e.g., onchocerciasis, LF), but this

success has further eroded support for fundamental research.

However, MDA is potentially vulnerable to the development of

drug resistance in those cases where chemotherapy has had a

major impact on parasite prevalence and transmission (and hence

exerts a strong selective pressure), and has suffered from the lack of

suitable, safe, effective, and affordable drugs in other areas. For

example, although the macrocyclic lactone ivermectin has proven

effective in the interruption of onchocerciasis transmission in

specific epidemiologic settings, no safe and effective macrofilar-

icide (against adult worms or macrofilariae) exists. Likewise,

schistosome control depends critically on the sustained clinical

efficacy of praziquantel; the chemotherapy deployed to control

many helminth infections in a MDA setting is unsatisfactory, due

to the lack of safe and effective drugs amenable to single-dose

therapy. Furthermore, there is the hypothetical potential for

unintended consequences of MDA stemming from the poorly

understood dynamics of host–parasite interactions and interactions

between species parasitising the same hosts, and the changes that

altering parasite infection intensity and prevalence of some species

may have on those interactions.

What is needed is a balanced investment in basic research in

parallel to the operational activities that are being rolled out; the

dearth of funding available for basic research [94] undermines the

further improvement and future sustainability of the control efforts

already deployed and the consolidation of the gains that have been

achieved. What areas of basic research are likely to yield improved

control tools? Comparison of helminths with malaria may be

instructive in this context: genomics has transformed malaria

research over the past decade, reinvigorating drug and vaccine

development, and enabling the development of better parame-

terised mathematical models that may be used to inform control

and elimination efforts. A similar investment in helminth

genomics, most particularly in the development of functional tools

with which genome sequences can be probed and mined, could

catalyse a similar transformation of helminth research.

A major limitation on this front is the limited availability of

annotated genome sequences. With the advent of novel rapid and

inexpensive genome sequencing technologies, the entire genomes

of some selected helminths of medical importance have been

successfully sequenced. However, there is a lack of bioinformatic

tools, power, and reference genomes to accurately annotate them.

The genomes of B. malayi, S. mansoni, and S. japonicum have been

partially annotated, and a low-cost alternative for genome

sequencing, expressed sequence tag (EST), has been produced

for many helminths, which provide a glimpse of the transcriptome

of these species [95–100]. However, the complexity of helminth

life cycles, including the various developmental transitions they

undergo, makes it a daunting task to understand these transcrip-

tome profiles and, more importantly, the biological role of the

genes identified in these studies [101]. Functional genomic tools

such as RNA interference (RNAi) technology has proved to be

useful in deciphering the role of schistosome encoded proteins

[102–105]. In contrast, RNAi technology has been a largely

unsuccessful tool for functional analysis in parasitic nematodes

[106,107]. The exact reasons for this are still unclear, but is has

been suggested that some essential components of the RNAi

pathway are missing in some species of parasitic nematodes

[98,102].

Numerous studies have indicated that helminth-secreted

proteins, glycoproteins, and lipid-based molecules can interfere

with various host immune responses, ultimately leading to the

generation of an anti-inflammatory environment favourable for

the parasites’ survival [108–110]. Some of the processes affected

include the development of allergic responses [111,112] and

interference with host cytokine regulation and signal transduction

networks [113,114]. These findings highlight the complexity of the

biology of helminths with respect to the human/non-human

(definitive) hosts, and are further complicated by the effects of

Box 3. Gaps That Hinder Sustainability of
Control and Elimination Measures

Despite the many control initiatives that have been put in
place, helminthiases still persist as a public health problem.
To facilitate progress towards their control and elimina-
tion, it will be necessary to support research and
development of the following, which are required for
interventions to remain sustainable and thus bring long-
lasting benefits to the global public health community:

N Promote a better understanding and appreciation of the
importance of human helminthiases as causes of ill-
health and extreme poverty, so as to increase allocation
of resources for combating such infections, and, in
particular, to invest in a continuous effort to improve
and update knowledge of helminth fundamental biology
and to translate such knowledge into intervention tools

N Optimise existing intervention tools such as improved
formulation/combination of treatment regimens with
current/novel anthelmintics, control of vectors/interme-
diate hosts, as well as development of new pharmaceu-
ticals and vaccines

N Develop new diagnostic tools for determination and
quantification of: a) infection prevalence and intensity
that can aid more accurate mapping of helminth
infections; b) intervention impact in monitoring &
evaluation (M&E) protocols; c) possible anthelmintic
resistance; d) treatment end points

N Develop mathematical and statistical models for under-
standing parasite epidemiology; refining epidemiologi-
cal mapping; designing and implementing M&E and
surveillance of anthelmintic intervention; and determin-
ing criteria for safe cessation of MDA and post-control
surveillance

N Conduct research on the environmental and social
ecology of human helminthiases in order to improve
their control on a large scale and at sustainable levels

N Promote a better understanding of the role basic
research can play to facilitate knowledge and the
development of improved tools to further support
control and elimination measures, and thus bridge the
gap between basic research of helminth infections and
operational needs
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polyparasitism, either by other helminths, protozoan parasites, or

bacterial or viral infections. In addition, the importance of

Wolbachia, the bacterial endosymbiont of filarial nematodes, in B.

malayi, W. bancrofti, and O. volvulus has yet to be fully understood

with respect to the ultimate effects on host–parasite interactions

[115]. Wolbachia undoubtedly confer a survival advantage to B.

malayi and other filarial nematodes that enhances their parasitic

potential [116,117]. Further exploration of this interaction may

lead to development of novel methods of eliminating filarial

infections in host populations [118].

Despite the significant advances made in genomic, proteomic,

and transcriptomic profiles of helminths, these ‘‘omics’’ are still in

their early developmental stages. The influx of bioinformatic

knowledge needs to be reconciled with novel research methodol-

ogies for functional analysis of genes and the proteins they encode.

Since most countries afflicted by helminths are still classified as

developing, there is a divide between the available resources for

the application of basic research and what is available to scientists

in the endemic countries. Thus, the urgency required to explore

the incoming wealth of bioinformatic knowledge is skewed towards

the few research institutes in Western and developed countries that

have funding which normally has imposed priorities tailored

towards the funding agency’s interests and not necessarily the

actual needs of affected the population and countries [2].

Conclusion

The increasing acknowledgement of the burden imposed by

helminthiases, particularly since the last quarter of the 20th

century, has led to the implementation of large-scale control and

elimination programmes. Despite much advancement in control-

ling these diseases, obstacles remain that challenge the global

public health community. There is a clear need for an innovative

research framework that is thoroughly integrated with the

programmes, holistic in approach, collaborative and global in

perspective, and that assesses current understanding, identifies

gaps in knowledge, and seizes opportunities to address specific

needs and move the helminth control agenda forward. Although

millions of doses of anthelmintics have been administered to

patently infected and exposed individuals in endemic areas, in

some cases for prolonged periods, helminth infections still persist

in their host populations and they appear to be resilient to control

interventions (a consequence, in part, of their population biology).

Moreover, helminth diseases, which are often considered as

chronic and ancient scourges of humanity, may become re-

emerging diseases as new outbreaks are reported in response to

environmental, demographic, and socio-political changes, migra-

tion, travel, forced human displacement, and shortages of clean

water. Understanding the biological, environmental, and social

determinants of such persistence, as well as the driving forces of

these emerging and re-emerging public health challenges, is

crucial to steering the needed research and to harness the potential

of new scientific advancements that can be translated into

improved or novel intervention tools. It is important to remember

that a large-scale elimination of the infection reservoir will also

depend on improving sanitation, providing access to clean water,

disposing adequately of excreta and solid waste, promoting access

to health services for diagnosis and treatment, and facilitating

adequate housing and health education. Box 3 lists some of the

research gaps identified in five major research themes, including

interventions, diagnostics, basic biology, mathematical modelling,

social and environmental determinants, and capacity building, and

that hinder sustainability of control and elimination measures, and

which will be more extensively described in the following reviews.
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