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Estimating and forecasting 
the burden and spread 
of Colombia’s SARS‑CoV2 first 
wave
Jaime Cascante‑Vega  1,2, Juan Manuel Cordovez1 & Mauricio Santos‑Vega1,2*

Following the rapid dissemination of COVID-19 cases in Colombia in 2020, large-scale non-
pharmaceutical interventions (NPIs) were implemented as national emergencies in most of the 
country’s municipalities, starting with a lockdown on March 20th, 2020. Recently, approaches that 
combine movement data (measured as the number of commuters between units), metapopulation 
models to describe disease dynamics subdividing the population into Susceptible-Exposed-
Asymptomatic-Infected-Recovered-Diseased and statistical inference algorithms have been 
pointed as a practical approach to both nowcast and forecast the number of cases and deaths. We 
used an iterated filtering (IF) framework to estimate the model transmission parameters using the 
reported data across 281 municipalities from March to late October in locations with more than 50 
reported deaths and cases in Colombia. Since the model is high dimensional (6 state variables in 
every municipality), inference on those parameters is highly non-trivial, so we used an Ensemble-
Adjustment-Kalman-Filter (EAKF) to estimate time variable system states and parameters. Our 
results show the model’s ability to capture the characteristics of the outbreak in the country and 
provide estimates of the epidemiological parameters in time at the national level. Importantly, these 
estimates could become the base for planning future interventions as well as evaluating the impact 
of NPIs on the effective reproduction number ( Reff  ) and the critical epidemiological parameters, such 
as the contact rate or the reporting rate. However, our forecast presents some inconsistency as it 
overestimates the deaths for some locations as Medellín. Nevertheless, our approach demonstrates 
that real-time, publicly available ensemble forecasts can provide short-term predictions of reported 
COVID-19 deaths in Colombia. Therefore, this model can be used as a forecasting tool to evaluate 
disease dynamics and aid policymakers in infectious outbreak management and control.

Coronavirus disease 2019 (COVID-19) pandemic emerged in December 2019 caused by the virus SARS-CoV21,2. 
This pandemic started in Wuhan-China, but it quickly spread to several countries worldwide1. This rapid global 
spread of SARS-CoV2 has caused an urgent need for readily-available forecasts of the Spatio-temporal transmis-
sion patterns to inform risk assessment and planning instances. For example, in Colombia, the novel coronavirus 
(SARS-CoV2) was initially reported in Bogota on March 6, 2020. Then, the virus has spread rapidly to several 
municipalities in the country, and as of October 29, 2020, about 71 municipalities reported more than 50 accu-
mulated deaths. On March 20, 2020, the government declared a nationwide lockdown to prevent the spread of the 
virus throughout the country. After the first lockdowns, several non-pharmaceutical interventions, including case 
isolating, contact tracing, quarantine of exposed persons, social distancing, travel restrictions, school, churches, 
and workplace closures, were in place in Colombia to reduce transmission of the virus1,3. Although some of these 
measures are still in place, the intensity of these restrictions has changed over time due to reopening attempts, 
generating changes in mobility and activity patterns. Thus, assessing the temporal variation of transmission in 
real-time for different country regions based on human mobility becomes essential for evaluating the possible 
effects of reopening the country’s economy. Nowcasting and forecasting the COVID19 dynamic can also illustrate 
early possible periods or scenarios with high transmission intensity and ultimately help the public health system 
assess, intervene, and formulate public health policies.
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In recent years, the interest in generating real-time epidemic forecasts to help control and manage infectious 
diseases has grown, prompted by a succession of global and regional outbreaks of infectious diseases such as 
Zika and Ebola4–6. The current availability of epidemiological and digital data streams, enhanced by process-
based models that account for mechanisms such as climate, demography, and mobility, among other factors, can 
provide a basis to evaluate the impact and effectiveness of intervention strategies in changing environments7–9. 
Different studies have proposed various mechanistic and statistical approaches to forecasting seasonal and epi-
demic diseases10,11. The limitation of statistical models is that these approaches focus on associations and cor-
relations in the epidemiological time-series data without addressing the mechanisms behind disease transmis-
sion dynamics10,12. This element could be resolved by mechanistic models based on biological mechanisms that 
underlie population-level disease transmission. However, forecasting with this kind of model is challenging given 
the difficulty of accounting for different sources of uncertainty7,11,13–15.

Recently, mathematical models and forecasting algorithms have been used to forecast and understand diseases 
such as Ebola16, influenza6,7 and dengue17, and recently significant research has used models to explain and pro-
ject COVID19 dynamics. These forecasting approaches combine data assimilation methods (a technique where 
observational data are combined with output from a model to produce an optimal estimate of the evolving state 
of the system) with dynamical transmission models. The methods let estimating parameters in real-time and 
epidemiological quantities; therefore, their outputs would allow rapid assessment and decision-making. Moreo-
ver, forecasting infectious diseases is a valuable tool that helps understanding disease transmission dynamics 
and planning future interventions. However, it can have biases due to assumptions in the short term of the cur-
rent disease dynamics8,18. In this paper, we used an epidemiological model to account for the disease dynamics 
of the SARS-CoV2 first wave in Colombia and iterated filtering algorithms to fit the parameters of our model 
to the reported data across municipalities. We estimated the transmission parameters of the disease and mod-
eled the dynamics in every municipality with more than 50 cumulative deaths. This study aimed to determine 
parameter estimates to understand SARS-CoV2 space-time dynamics, combine these estimates with the model 
dynamics to generate and evaluate weekly real-time now-casting, and forecast COVID19, community, spread 
and mortality in Colombia.

Methods
Data description.  We used daily reported cases (newly reported infections) by the Instituto Nacional de 
Salud (INS) in Colombia3. There each new infection is identified by a unique case ID and has an associated 
notification date by the surveillance system (SIVIGILA), the symptoms onset date (registered by the patient to 
the health care provider), and diagnosis date (documented by the laboratory after test confirmation). The epi-
demiological dataset also includes aspects such as recovery date, date of death, age, sex, municipality (county), 
department (state), type (imported from other countries versus associated, i.e., locally-acquired), location, if the 
patient is currently at home, hospital or ICU and the state/level of the disease (mild, medium or severe symp-
toms). We construct the daily community spread time series by confirmation date and mortality time series from 
this database (Fig. 1).

To incorporate the effect of human mobility between municipalities into our model, as depicted in Figure 
S2, we used movement data (measured as the number of reported commuters between units) from Facebook 
Mobility Data for Good. In addition, we used Facebook’s regular movement data, which aggregates the number 
of trips Facebook users make between every pair of municipalities over time19.

Model description.  We use a meta-population model, to model the transmission dynamics at each loca-
tion following a SEAIIRD model. For simulating the community spread, we formulated the model as a discrete 
Markov process across days, and it assumes that susceptible individuals get infected at the rate �i or force of 
infection (FOI). Following the mass law action, we consider the FOI is proportional to the number of contacts 
between susceptible individuals ( Si ) and infectious reported individuals Ii at rate βt and assume non-reported 
individuals to have relative transmissibility of σtAi they infect at rate σtβt . The model subdivides infectious 
stages into three classes: i) Exposed (E): Infected but not infectious individuals, i) infected non-reported indi-
viduals (A): Infectious non-reported individuals (accounting mostly for asymptomatic transmission), and i) 

Figure 1.   (A) Left: Cumulative observed cases of COVID19 by diagnosis date. (A) Right: Cumulative 
estimated cases by the nowcasting in the EAKF metapopulation model. (B) Left: Cumulative observed deaths of 
COVID19. (B) Right: Cumulative estimated deaths by the nowcasting in the EAKF metapopulation model.



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13568  | https://doi.org/10.1038/s41598-022-15514-x

www.nature.com/scientificreports/

Infected reported individuals. We assume both infected reported ( Ir ) and non-reported (A) individuals infected 
for an average time of Tr days before acquiring immunity.

Our transmission model assumes multiple locations are connected by human mobility, then sub-populations 
of susceptible, exposed, unreported infected, reported infected, and recovered individuals move from munici-
pality i to j at time t, and it is represented by Mij(t) . We provide a parameter β such as the municipal contact 
rate for transmission due to documented infected individuals. We assume that the transmission rate due to 
undocumented individuals is reduced by a factor σi . This relative transmissibility is based on the assumption that 
unreported individuals are mostly asymptomatic and have mild infections and therefore do not get tested20. In 
addition, α is the report fraction, or the proportion of total detected infections Ii(t) individuals. Te is the incu-
bation time in days (time from infection to symptom onset for symptomatic individuals), Tr is the infectious 
period (time from symptom onset for symptomatic individuals or since exposure for asymptomatic individuals 
to recovery) also in days, and Td is the death period (time since exposure to death). Figure 2 shows the model 
diagram for the population dynamics of COVID-19.

We use the 2020 Colombia’s national statistics demographic projections for the total population of the i − th 
municipality Ni

21. The transmission model equations are shown below:

Mobility data and parametrization.  Our model uses the information of the number of commuters to para-
metrize the equation below, where Xi corresponds to the number of individuals in the epidemiological state X 
in (susceptible S, exposed E, asymptomatic A or recovered R) and municipality i. We assumed both infected 
reported Ir individuals and infected who eventually are going to disease L do not travel between municipalities/
patches and therefore are discounted in the denominator. This calculation divides the total commuters from 
patch j to path i by the fraction of individuals in each epidemiological state that we assume can commute. Par-
titioning the commuters from the Facebook Data for Good only requires accounting for commuters’ report rate 
parametrized by θ.

Parameter estimation and forecasting.  Parameter inference.  We use the model to estimate non-ob-
served epidemiological dynamics by fitting the model to the observed number of cases by confirmation date 
and deaths reported from March 06 to October 11, 2020, to estimate the model epidemiological parameters. We 
only estimated parameters for municipalities that reported more than 50 cumulative deaths by the first week of 
October. We use an Ensemble Adjustment Kalman Filter (EAKF), which applies to high dimensional models to 
assimilate daily data7,13,22.

Furthermore, we use an Iterative Filtering approach to infer model parameters and state variables; this iterated 
filtering (IF)-EAKF framework has been used to infer parameters in large-scale models as network metapopula-
tion models for other pathogens7,13,23,24. We start by uniformly sampling from the prior ranges defined in Table S1. 
To address the limitation of the surveillance system report, we choose the prior fraction of reported cases α to 
cover almost all of its domain in [0,1]. A similar range was used for the relative asymptomatic transmission or 
unreported individuals, which have been shown to be primarily asymptomatic σ13,18,25. Importantly, in this case, 
we assume that the viral load in this sub-population cannot be greater than the viral load of reported individu-
als Ii as has been assumed and estimated1,25. Finally, we also estimated the ascertainment or infection detection 
rates of Medellín using the same model structure without the metapopulation commuting model and found 
that it has substantial differences compared with the estimated for the country and attribute these differences 
to the overestimation.
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Figure 2.   Meta-population SEAIIRD model. (A) Schematic representation of the spatially explicit 
epidemiological model in a patch of the population, where population is subdivided in Susceptible ( Si ), Exposed 
( Ei ), Unreported infections mostly accounting for asymptomatic or mild infections ( Ai ), Infected ( Ii ), Infected 
individuals that eventually are gonna die ( Li ) and Recovered ( Ri ). This captures the local transmission dynamics 
in every municipality, importantly yellow compartments represent individuals who do not move within 
municipalities. (B) Schematic of meta-population model, connections between municipalities.
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We assume equal initial conditions for all municipalities regardless of the number of cases reported in the 
first days of SARS-CoV2 detection. We assume that each municipality starts with one infected individual and 
three exposed individuals Ii(0) = 1 , Ei(0) = 3 and the seeding strategy follows the next protocol: The reporting 
delay in every municipality it is described by a Gamma distribution with with mean delay Pdi in days (see sup-
plementary information Section 1). We then assume the seed of each municipality is T0 = ti − Pdi where ti is the 
date of the first reported case in municipality i. This seeding strategy follows the rationale that the first confirmed 
infection was seeded Pdi days before its confirmation.

Reporting delay.  Our transmission model does not explicitly account for the time lag between the infection 
and their notification by PCR or Antigen test. However, we consider a delay between the symptoms onset report 
and the laboratory test result. For this, we mapped the simulated documented infections to the confirmed cases 
using a separate observation delay model to account for this notification delay. To estimate this lag period, td , we 
examined the observed distribution of the time interval to the event (in days) from the onset of the symptoms 
to confirmation and adjusted a Gamma distribution to it (Figure S1). In practice, in the transmission model 
simulation, for each new documented infection that goes from Ei to Ii , a random number for td with a Gamma 
distribution is generated. In other words, this case is “reported” as a confirmed infection td days after the transi-
tion from Ei to Ii,t . Therefore, the number of cases reported in one day accumulates as the model is integrated 
over time. Our model inference approach was applied to three different periods of the first pandemic wave of 
COVID19; first to the period before the strong lockdown (March 3rd to March 20th, 2020), then during the 
lockdown period (March 21th to May 1st, 2020), and finally the period of relaxation and progressively reopening 
(May 2nd to October 11th, 2020).

Seeding index cases.  We initialize each spatial unit with the same number of infected and exposed individuals 
( Ir and E in the model’s equations); we consider time heterogeneity in the seeds. The seeding strategy is as fol-
lows: each municipality has a computed Gamma distribution for the reporting delay, the mean delay Tdi in days, 
subscript indicating the municipality. We then assume the seed of each municipality is T0 = ti − Tdi where ti is 
the date of the first reported case in municipality i. This seeding strategy follows the rationale that every first 
confirmed infection is seeded Tdi days before its confirmation.

Real time nowcasting and forecasting.  We used the IF-EAKF to estimate time-varying parameters 
and variables and then used last week’s estimate to forecast future dynamics. Kalman Filters assume a Gaussian 
distribution for both the prior and likelihood. Therefore, the distribution of the system state can be fully param-
eterized by the first two moments (the ensemble mean and covariance)7. Based on this assumption, the posterior 
mean and covariance are calculated through the convolution of two Gaussian distributions. However, by gen-
erating the prior using a nonlinear model (e.g., the SEIIR model here), the model-filter system can estimate the 
nonlinear system dynamics despite the linear assumption of the Kalman filter algorithm.

For the EAKF, the ensembles are updated deterministically, then the ensemble mean and covariance match 
their theoretical values exactly. Then, the higher moments of the prior distribution are preserved in the posterior. 
The EAKF also adjusts the unobserved state variables and parameters based on their covariance with the observed 
state variables. EAKF is a suitable technique in problems like this because its implementation is independent of 
the dynamical model. This method allows both to simulate and make short-term predictions assuming particular 
scenarios which map to parameter space22,23. Here we used multiple observations from different locations to 
optimize the model by iterating over all observations sequentially and adjusting the entire state vector.

Metrics.  To assess model performance, we used different metrics to evaluate how the nowcasts and forecasts 
generated perform every week; then, we evaluated the performance of our nowcasts on a weekly horizon. For 
out-sample validation we project both number of cases and number of deaths assuming dynamics (parameter 
estimates) remained the same as the previous 10 days. This forecast reasoning has also seen in26 (See section S5 
in Supplementary Material for further information). Next, we evaluated the forecast performance using different 
scores27–29. We investigate the probabilistic assessment of our forecast. We compute the sharpness, Bias and accu-
racy as measured by the Ranked Probability Score (RPS), Dawid-Sebastiani score (DSS) and Log-Score (LS). The 
scores, and it’s mathematical description can be seen in Table 15,29. Finally, we split up the data into two subsets, 
the first one was used for testing, and the other subset was used for training the model’s, for evaluating the model 
performance in an out-of-sample way.

The sharpness is the ability of the model to generate predictions within a narrow range of possible outcomes. 
It is a data-independent measure, so it is purely a feature of the forecasts themselves, as shown in Table 1. To 
evaluate sharpness at time t, we used the normalized median absolute deviation about the median (MADN) of 
the prediction at time t5; this metric not only considers point errors as the mean square error or absolute error 
but has information on the posterior error median, that one would expect to be close to zero. Here, the model 
forecast performances were averaged across the weekly estimates and reported each month. We also assessed the 
bias to study if the model systematically over or under-predict. The forecast bias at time t is depicted in Table15. 
An unbiased model would have Bt ≈ 0 whereas an biased model would have Bt > 1 if the model overestimate at 
time t and Bt < −1 if the model under-predict at time t. We say the model systematically over-predicted if Bt > 1 
averaging across the time series. Similarly, the model under-predicts if Bt < −1 in average. Finally, we evaluate a 
ranked probability score (RPS), which reduces to the mean absolute error if the forecast is deterministic5 and the 
coverage (CP) probabilities at confidence intervals of 95% and 50% . This score considers the number of observa-
tions falling inside the specified model area27. We also computed the continuous Ranked Probability Score (RPS) 
which rather than providing a distance from a scalar prediction it measures the performance for a probabilistic 
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prediction of a scalar observation. It is a quadratic measure of the difference between the prediction cumulative 
distribution function (CDF) and the empirical CDF of the observation.

Results
Parameter estimates for these three periods are reported in Table 2. Our estimates for the infectious period and 
latency period are ∼ 2.66 days, consistent with the period estimated in the literature13. In addition, the transmis-
sion rate β and the report rate α are consistent with values assumed by1 or estimated values by13,30,31.

Comparisons between model simulations and data are shown in Fig. 3 at the national level. This figure shows 
simulations of reported cases using the best-fitting model parameter estimates and their confidence intervals. 
These results from the stochastic simulations show that our model can capture the temporal dynamics of the 
epidemic. In addition, the best-fitting model captures the space-time pattern of COVID19 infections in different 
municipalities in Colombia, as shown in Fig. 3 and for the time pattern see Fig. 1.

Figure 4 presents our median estimate of the effective reproduction number ( Reff  ). This quantity is equivalent 
to the basic reproduction number, R0 , at the beginning of the epidemic was around 2.24 [95 % credible interval 
(CI): 2.21− 2.32 ], which coincides with the reported R0 for Colombia for COVID19. Indicating that this number 
has consistently been above 1 for COVID-19 in the country, suggesting a high capacity for sustained transmission 
(Table 2 and Fig. 4D). Significantly, reductions in Reff  are associated with the lock-down measures during April, 
with sustained increases in this number after the reopening. Figure 4 also shows the value of the parameters on 
which Rt depends ( βt , σβt and α ). Noteworthy, time variation in the contact rates ( β = βt ) closely matches the 
trajectory of deaths and the cases in the country. There is a decreasing trend in the number of detected infections 
and important variations in the fraction of asymptomatic cases, causing the most infection events. We can com-
pute the effective reproduction number Reff  as the case reproduction number Rt times the fraction of susceptible 
individuals in the population St/N where N =

∑
i Ni for every municipality; this can be seen in Figs. S3 and S4.

Figure 5 shows forecasting for different representative regions of Colombia (the remaining units are reported 
in the supplementary information). Our models can capture the temporal variation in the data at local scales, 
where most of the observed cases and deaths fall within the model’s confidence interval. The orange bound-
ary shows weekly forecasting for the diseased; while our posterior estimates generally present a good fit to the 
observed mortality, we have some errors predicting it. For example, in Fig. 5 we can see an overestimation of the 
time series for the city of Medellín (depicted upper right). This pattern, in general, is consistent with the ability 
of the model to recreate the first wave in the country but highlights the considerable heterogeneity in reporting 
rates, for example, across space that is not considered the model, and other epidemiological differences as frac-
tion of infections that result in fatalities or infection fatality rate (IFR).

Table 3 shows model scores aggregated over the top-10 locations. While Bias, DSS, and LS remain roughly 
constant, the MADN and RPS model scores increase over time. This is because both score metrics are based 
on the number of deaths. In fact increases in time in this metric are a consequence of changes in the number 

Table 1.   Summary and description of the metrics used for evaluating the quality of both nowcast and forecast 
and their performance. In these y is a variable with CDF Pt , and X and X ′ are independent realizations of a 
random variable with cumulative distribution Pt.

Score Measure Equation References

Median absolute deviation normalized (MADN) Sharpness 1
0.675median(|yt −median(yt)|)

5

Bias Bias 1− (Pt (xt )+ Pt (xt − 1)) 5

Ranked probability score (RPS) Probabilistic Fit
∑

∞

k=0(Pt (k)− I(k ≥ xt ))
2 5,28

α Ranked probability score (RPS-α) Probabilistic Fit
∑

∞

k=0(Pt (xt )
1−α

≤ Pt (xt ) ≤ Pt (xt )
α)) 5,28

Dawid-Sebastiani score (DSS) Probabilistic Fit
(

xt−µPt

σPt

)2
+ 2 log σPt

5

Absolute error of the median (AE) Fit |median(Pt (X))− xt |
5,27

Log Score (LS) Probabilistic fit log(Pt (xt ))
27

Table 2.   Estimated parameters in three different moments of the epidemic. Before country-level restrictions, 
during NPIs, and after relaxing NPIs. We assume the infectious period Tr , the incubation period Ti , and the 
death period Td of individuals are constant in time.

Parameter Description Units

Before lock-down During lock-down Lock-down relaxation

Mean (95% CIs) 03-March–20-
March

Mean (95% CIs) March 21th–1st-
May

Mean (95% CIs) 2nd-May–11-
October

β Contact rate Days−1 1.066 (1.062, 1.081) 1.014 (0.994, 1.038) 0.993 (0.959, 1.012)

σ
Relative asymptomatic transmis-
sibility. - 0.465 (0.465, 0.465) 0.462 (0.462, 0.463) 0.463 (0.462, 0.465)

α Report fraction - 0.339 (0.334, 0.351) 0.260 (0.244, 0.270) 0.303 (0.169, 0.414)

θ Movement report - 1.361 (1.361, 1.362) 1.361 (1.360, 1.362) 1.361 (1.360, 1.362)
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of deaths between May and October and not to a decrease in model sharpness or quality of the prediction. As 
cases increases o does mortality and the uncertainty associated with the prediction, resulting in higher MADN.

Discussion
The proposed model-inference captures the spatiotemporal dynamics of COVID19 in Colombia, allowing us 
to generate a short-term forecast of the spread of the virus and the following number of deaths despite high 
heterogeneous transmission across the country. Forecasting the daily cases and deaths becomes important for 
prioritization and resource allocation by public health authorities. Also, our inference framework allows time 
variable parameter estimation, which is a valuable feature to characterize the evolution of the country’s local 
transmission dynamics and ultimately generate disease trajectories in the long term. We demonstrate that the 
standard epidemic SEAIR-type model under the assumption that homogeneous mixing of individuals is lim-
ited to account for the transmission dynamics observed for COVID19. The results of this study underscore the 
importance of short-term forecasts (one-week horizon) since the future of ongoing epidemics is sensitive to 
parameter values that change over time. Therefore, using this framework would be only meaningful within a 
narrow time window, even smaller than what we are used to in weather forecasts32,33. The median estimates for 
the latency and infectious period, Te is ∼ 3.4679 , and Tr is ∼ 3.4324 days; we fixed those parameters during the 
fitting process assuming generation interval remain fixed in time. The median estimate for the dead period is 
∼ 11.822 days. The ascertainment rate α in the country is estimated to be around 30% of total infections reported. 
This estimate reveals a high rate of undocumented infections: 45% , as shown by different estimates around 
the globe13. Moreover, the estimated time variable parameters (view Fig. 4) generally agree with the estimated 
parameters in the literature13.

Over July, the model consistently predicted the number of cases in each municipality, although there is much 
higher variance in these weekly forecasts than in national forecasts. Furthermore, we demonstrated that using 
a transmission model with a meta-population structure incorporating population fluxes and accounting for the 
effect of commuting will significantly add information about the spatiotemporal dynamics. Traditionally this 
effect is usually contained in the contact rate β at a population level. Also, we consider that our modeling frame-
work considered a more realistic approach where spatial heterogeneity in factors such as time-varying disease 
onset times and the time-dependence of the contact rates are accounted34. In addition, we demonstrated the 
potential of sequential data assimilation for COVID-19 dynamics at a regional level and in combination with 
stochastic epidemiological models. Using an Iterated Filtering with an Ensemble Adjustment Kalman Filter (IF-
EAKF), we successfully determined the contact parameter from simulated data and obtained reliable estimates 
from empirical data22. Notably, a characterization of the heterogeneity in the transmission parameter ( β ) is the 
most critical free parameter in our stochastic SEAIIRD model since other parameters (mean exposed and infec-
tious duration of incubation period) can be extracted from the literature, given that are intrinsic parameters of 
the disease13,35.

Interestingly, since the transmission rate is estimated in time, and this parameter is directly related to the 
basic reproduction number R0

34, our approach becomes a valuable method to infer the effective reproduction 
number ( Reff  ). Our results show a decay in the Reff  from March to June; this coincides with the early lockdown 
period followed by a plateau which is explained by an increase in both the time varying transmission rate βt as 
shown in Figure 3B and the mobility Figure shown below. The decay in Reff  after May is a consequence of both 
the slowdown in the mobility change as well as a plateau in the number of new spatial units with reported cases 

Figure 3.   National Forecast (Aggregated municipal level forecast). This aggregation is the sum of all the deaths 
predicted for each municipality. Black line represents the median of the now-casting, the gray dark points 
are the daily deaths and the light gray area represents the 95% confidence interval. The orange white-dotted 
line represents the forecast assuming the parameters as the mean of the last week. Again the light orange area 
represents 95% confidence intervals.
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between May 1st and June 5th. We have studied the difference in the effective reproductive number to respect the 
parameters (the sensitivity index of Rt of alpha, for example, accounts for the report rate). Rather than comparing 
absolute changes, we have normalized the sensitivity indices to compare the 1% changes of parameters to see 
how it influences Reff  . The analytical expression of the sensitivity indexes is shown in SI Section S9. We found 
that the parameters that affect the most Reff  are the transmission rate β , recovery period Tr with a sensitivity 
index of 1, and the report rate α with a sensitivity index of 0.443. This result also highlights the importance of 
estimating these quantities in time, reflecting the underlying community structure that affects transmission with 
β and the surveillance system’s effectiveness in capturing unseen infections or α.

Our results are the first estimates for the country and the only estimation of the under-reported or asympto-
matic infections. These findings provide a baseline in Colombia to assess the fraction of undocumented infections 
and their relative infectiousness. In addition, these results describe the transmission dynamics in Colombia, a 

Figure 4.   For all figures the lighter areas represent the 95% confidence interval and line represents the 
median estimate. (A) National effective reproduction number computed as the mean of every municipality 
Reff =

1

K

∑K
i=1

RK
eff  ; lighter area represent the the 95% confidence interval. (B) Time variable contact rate 

β(t) lighter area represents the 95% confidence interval. (C) National time variable report rate α . (D) Relative 
Asymptomatic transmissibility σ . (E) Infection Fatality Risk (IFR %) ζ.
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Latin American country, one of the regions with the highest attack rates . Our approach allows us to evaluate 
the impact of changes in interventions, viral surveillance, and testing on the reported fraction. As shown in 
Fig. 4C, we found an average report rate of 38% , which results in around 60% of undocumented infections. This 
trend also follows the country’s testing and positivity rate trends. However, it is essential to highlight that this 
fraction shows their dependency on the time of the peak, the surveillance effort, and the spatial heterogeneity.

A recent evaluation of forecasts in the United States has shown the importance of including probabilistic and 
point estimate metrics to assess forecast accuracy (distance to observed data) and quality (coverage of forecast 
distribution)26. After evaluating the forecasting performance with different score measures, our epidemiological 
model and the inference method can accurately predict the number of cases in the country one week in advance, 
as reported results by month in Table 1. Interestingly some big urban centers like Medellin depicted in Fig. 5 
upper right overestimate the fitted posterior incident deaths. To understand these differences between Medellín 
and the rest of Colombia, in Figure S4, we show Medellin’s sub-reporting compared to the national one. We see 
that differences are principally accounted for by discrepancies in the case-ascertainment rates or reporting rates 
that we assumed were constant across the country.

Figure 5.   7 day death-forecast municipalities with more reported deaths by early October. Black line represents 
the median of the now-casting, the gray dark points are the daily deaths and the light gray area represents the 
90% confidence interval. The orange white-dotted line represents the forecast assuming the parameters as the 
mean of the last week. Again the light orange area represents 90%.

Table 3.   Scores for evaluating probabilistic forecasts. The table depicts monthly values of (MADN), (Bias), 
(RPS), (DSS), and (LS) from May to October 2020 to evaluate the predictive performance of the model.

Month MADN Bias RPS DSS LS

May 0.109 0.76 52.19 11.88 − 6.86

June 0.213 0.77 30.31 12.02 − 6.92

July 0.344 0.76 14.60 11.96 − 6.90

Aug 0.494 0.72 17.57 11.88 − 6.86

Sep 0.695 0.66 55.39 11.85 − 6.85

Oct 0.98 0.63 104.29 12.09 − 6.96
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Our work, however, has some limitations that are important to highlight. First, pre-symptomatic individuals 
might have a higher viral load than symptomatic ones hence infecting more; yet, we do not explicitly model 
pre-symptomatic transmission. Although different models assume asymptomatic individuals infect less than 
symptomatic ones, transmission model parameter estimation also suggests this. Finally, municipalities could 
only be forecasted if they had a minimum of 50 deaths. In addition, it must be noted and considered during the 
interpretation of these results that, first, the model is optimized using observations of both communities spread 
by confirmation date and mortality data through October 11, 2020, a range in which communities across different 
cities were under different NPIs as city and other spatial level lockdowns. Second, even when we use mobility data 
to disaggregate the effect of mobility between municipalities, the considerable space-time variability in epidemic 
seeding, epidemic timing, and testing practices makes fitting any model challenging. Yet, it is also important to 
highlight that the effects of NPIs will not be seen after 10–14 days after the interventions took place. Consider-
ing infections that the surveillance systems model does not capture, many asymptomatic, mild, and other more 
severe infections did not seek testing. Therefore, this is a crucial part of the sources of uncertainty in the model 
since we did not incorporate testing records explicitly. While the variance in a forecast prediction is a common 
feature of most COVID19 forecasting models, it appears to be quite large in our forecast.

It is expected that uncertainty in the forecasts would provide more insights into the COVID19 pandemic 
trajectory, modeling, and forecasting malpractice. The considerable uncertainty in the prediction shows that 
the trends can change rapidly, principally by the difficulties of predicting people’s behaviors in response to the 
different epidemiological scenarios and public health/government policies and how this is real-time changing 
the contact rates interacting with the current epidemiological state32. More data or specific studies would be 
needed to reduce the uncertainty of the estimates. In addition, data protection issues and real-time gathering 
of data impose challenges. The forecast results are shown in Fig. 3, and Fig. 5 shows an increasing declining 
trend in the incident cases. Nonetheless, the observed trend was stable for that period and increased in the first 
days of December. This highlights an important limitation of dynamic transmission models, that as they have a 
threshold Reff  uncertainty around Reff = 1 does not allow models to reproduce stable trends in deaths. Moreo-
ver, our model is implemented as a stochastic Markov chain process and therefore uncertainty is inherent to the 
stochastic nature of the system.

The proposed model has four crucial assumptions on the SARS-CoV2 spread: We directly assume the delay 
from the infection to the report date fitting a Gamma distribution as shown in Figure S1 in Supplementary Mate-
rial. This assumption relates to the challenge of reconstructing the time series of new infections, as observations 
occur long after transmission. The model and the parameter inference setting let us estimate time-variable contact 
rates for both reported individuals and asymptomatic/mild infections, which directly account for the mobility 
restrictions imposed to reduce the transmission. The model also assumes a time-variable asymptomatic/mild 
infections fraction, accounting for the possible high number of asymptomatic infections. About the limitations 
of our model, as we describe in the “Methods” section, our model does not track differences in the associated 
patch for each individual and the patch they reside in at time T. This mismatch is a product of both the model we 
use and the available aggregated and anonymized mobility data from Facebook Data for Good to compute the 
number of commuters between municipalities/patches at daily time steps. In addition, our modeling framework 
heavily relies on the quality of the surveillance data to make estimates of the fraction of the reported cases or the 
testing capacity, among others. So, it is crucial to mention that places with weak surveillance systems could lead 
to forecasts that are not as good and show high uncertainty.

Our work underscores the importance of mechanistic models for explaining spatio-temporal dynamics of 
COVID19 and therefore estimate time-varying parameters that allow recreating the transmission and further 
understanding of relevant epidemiological features of transmission across scales. While using a dynamical system 
to describe the disease dynamics and have a mechanistic understanding of the system, we recognize that purely 
statistical methods that use past trends in the data to project the time series might be more effective to forecast 
the future27. Many statistical models were designed to be either more flexible or parsimoniously parameterized, 
meaning that they may more easily capture dynamics typical to infectious disease time series, such as dynamics 
dependent on the previous consecutive time point and seasonality. In the case of this emergent pandemic, where 
limited data is available, mechanistic models may be able to take advantage of assumptions about the underlying 
transmission process, enabling rudimentary forecasts even with minimal data27. It is important to consider that 
making predictions just one week into the future will need to account for the non-linear nature of infectious 
diseases, which makes possible future scenarios incredibly uncertain. For example, minor initial differences in 
infection parameters can lead to significant differences in outcomes with time- and it certainly seems plausible 
that this makes it challenging to estimate one’s level of certainty36. Previous experiences with influenza forecasting 
have demonstrated that it is often possible to quantify uncertainty over the remainder of an ongoing flu season. 
However, this success was primarily based on observing the behavior of seasonable epidemics over several 
decades37. To reliably forecast the progression of pandemics, where relevant historical data are almost nonexist-
ent, we must have a detailed quantitative understanding of how different, diverse factors affect disease trans-
missibility. Importantly communicating forecasts in the COVID-19 pandemic exhibit considerable challenges 
and trade-offs in communicating uncertainty concerning public trust. For example, occasionally downplaying 
uncertainties may strengthen public trust in the short term, but confident predictions that later turn out wrong 
may reduce public trust in science36. Then it is crucial to consider these aspects to make forecasting operational 
(e.g., communicate about these forecasts publicly), consider broad ranges of possible outcomes as plausible, and 
communicate this high level of uncertainty to non-experts. In summary, while statistical methods based purely 
on observed trends in the data are helpful to forecast short-term dynamics, their accuracy in early stages (few 
data points available) and their lack of mechanistic understanding of the system makes their mechanistic model’s 
counterpart desirable. That said, we should thoroughly validate forecasts in the early stages of their development 
since they rely heavily on assumptions of the disease dynamics system. In conclusion, our approach becomes 
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a valuable tool for the country to understand the dynamics and estimate effects with comparatively little data 
at the level of regions. Importantly, future interventions should combine the benefits of the models’ estimating 
parameters with analysis tools to deploy NPIs in a specific area better.

Data availability
The datasets generated and/or analysed during the current study are available in the Github repository, https://​
github.​com/​biomac-​lab/​sarsc​ov2_​colom​bia_​estim​ates.
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