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Abstract 

Background:  Wide-ranging concerns exist regarding the use of black-box modelling methods in sensitive contexts 
such as healthcare. Despite performance gains and hype, uptake of artificial intelligence (AI) is hindered by these 
concerns. Explainable AI is thought to help alleviate these concerns. However, existing definitions for explainable are 
not forming a solid foundation for this work.

Methods:  We critique recent reviews on the literature regarding: the agency of an AI within a team; mental models, 
especially as they apply to healthcare, and the practical aspects of their elicitation; and existing and current definitions 
of explainability, especially from the perspective of AI researchers. On the basis of this literature, we create a new defi-
nition of explainable, and supporting terms, providing definitions that can be objectively evaluated. Finally, we apply 
the new definition of explainable to three existing models, demonstrating how it can apply to previous research, and 
providing guidance for future research on the basis of this definition.

Results:  Existing definitions of explanation are premised on global applicability and don’t address the question 
‘understandable by whom?’. Eliciting mental models can be likened to creating explainable AI if one considers the AI 
as a member of a team. On this basis, we define explainability in terms of the context of the model, comprising the 
purpose, audience, and language of the model and explanation. As examples, this definition is applied to regression 
models, neural nets, and human mental models in operating-room teams.

Conclusions:  Existing definitions of explanation have limitations for ensuring that the concerns for practical applica-
tions are resolved. Defining explainability in terms of the context of their application forces evaluations to be aligned 
with the practical goals of the model. Further, it will allow researchers to explicitly distinguish between explanations 
for technical and lay audiences, allowing different evaluations to be applied to each.
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Background
The use of Artificial Intelligence (AI) models in health-
care holds a lot of promise. However, the use of such 
algorithms in making decisions regarding sensitive 
aspects of our lives raises concerns [1]. Black box mod-
els, those where we do not understand their inner work-
ings, are of greatest concern. This has been reflected in 
the General Data Protection Regulation (GDPR) which 

established the ‘right [...] to obtain an explanation’ of such 
sensitive decisions [2]. Despite significant work in the 
area, adoption of such models in practical applications 
such as clinical decisions support systems has been chal-
lenging [3].

Explainable AI (XAI) is new [4], but the foundation of 
the research goes back to the mid 1970s with work on the 
explanation of decision support systems [5] with similar 
motivations to today. Despite work to date, the ongo-
ing concerns indicate a potential mismatch between the 
work being done and the goals of the AI applications. 
Many definitions of explanations exist [6–12] but these 
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often start from difficulties in AI research, rather than 
from the goal. The definitions are not necessarily satisfac-
tory for researchers in other fields [13].

Our objective is to create a new definition of explain-
ability that provides a framework for future work in 
Explainable AI. This definition is based on the ideas that 
an AI can be considered a member of a team with agency 
[14] and that mental models provide a framework for 
understanding the thinking of members within a team 
[15]. The rest of the paper addresses the methods to 
arrive at this point, a review of the relevant literature, the 
definition itself, worked examples for existing literature, 
and finally a discussion of the implications of the new 
definition. This work provides practical steps towards the 
multidisciplinary approaches to explanation called for by 
Amann et al. [13].

Methods
We critique recent reviews on the literature regard-
ing: the agency of an AI within a team; mental models, 
especially as they apply to healthcare, and the practi-
cal aspects of their elicitation; and existing and current 
definitions of explainability, especially from the perspec-
tive of AI researchers. On the basis of this literature, we 
create a new definition of explainable, and supporting 
terms, providing definitions that can be objectively evalu-
ated. Finally, we apply the new definition of explainable 
to three existing models, demonstrating how it can apply 
to previous research, and providing guidance for future 
research on the basis of this definition.

Results
The results are presented in three subsections, forming 
the justification for the new definition of explainabil-
ity, and the definition itself. The first section establishes 
that it is possible to consider an AI as an agent or mem-
ber of a team. By allowing this possibility, it is possible to 
approach the question of explainability from a different 
perspective. The second section examines how one elic-
its explanations from team members when we consider 
only human team members, and particularly looks at the 
framework of mental models in which the appropriate 
process for the elicitation of mental models depends on 
context. The third section establishes that existing defi-
nitions are not well formalised, and that they implicitly 
rely on a contextual understanding which necessarily 
differs between applications, causing a tension between 
a general definition and specific implementation. We 
argue that if we allow that an AI can be considered as a 
team member with agency, then mental models, being 
an accepted framework for explaining thought processes 
between team members, can be used to resolve the con-
cerns in the definitions of explainability for AI. On that 

basis, we construct a new definition of explainability, 
with the new requirement of a well-defined context being 
necessary for evaluation.

Healthcare delivery as teamwork (with AIs)
Some consider the output of an AI purely as the output of 
a statistical model. Clinicians should regard the predic-
tion with appropriate levels of scepticism and uncertainty 
[16]. The AI and the physician should work together. 
The model predicts, and the physician explains and acts 
upon that information [17]. The lack of explanation or 
comprehension of the model is a concern, thought to be 
mitigated by the physician’s ability to provide the human 
context [17]. For this use, further training in statistical 
methods is recommended for the physicians to be able to 
interpret the results of the model appropriately, and for 
them to engage in shaping the technology [16].

Considering AIs to have some level of agency has been 
an element of human-computer interaction work regard-
ing interactions with AIs for a long time [14]. From the 
early ‘direct manipulation’ systems [18], agency has 
developed significantly with the ‘rise of machine agency’ 
and substantially increased to a level which machines 
can act and influence, exerting their own agency [19]. 
This machine agency is not necessarily equal to human 
agency—there exist good reasons for distinguishing the 
moral agency of humans from that of machines including 
that we might otherwise be abdicating human responsi-
bility [20]. However, with assistants such as Apple Siri, 
Amazon Alexa and Google Assistant, it is increasingly 
evident that we can interact with and consider AIs with 
some level of agency, especially in the context of request-
ing an explanation.

The increasingly complex delivery of healthcare 
requires strong teamwork. There is a move to consider 
medical professionals like ‘pit crews, not cowboys’ [21]. 
We should not expect medical professionals to treat 
patients independently, with scant regard for colleagues 
or protocols (the ‘cowboy’ metaphor). Rather, they should 
work as a team of generalists and specialists who each 
have a part to play in getting the patient back to full 
health (like the pit crew in Formula 1 racing). Improved 
teamwork can lead to improved clinical outcomes [22, 
23], patient experience [24], and healthcare worker out-
comes [23, 25]. Improved clinical outcomes include 
reduced rates of error and patient mortality [23]. Princi-
pal factors of the teamwork include role clarity, mutual 
trust, and quality exchange of information [22].

Considering an AI in the same terms as a pit-crew 
member, much like other healthcare professionals, can 
help address many of the concerns regarding trust and 
clinical use. The precise role that an AI might fulfil may 
vary with application. Considering an AI with the same 
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techniques as used with other members of the clinical 
team may provide new approaches for addressing the 
concerns regarding its use. The effective application of 
AI in healthcare requires the same factors as good team-
work, with the role of an AI needing to be well defined, 
with trust being a motivating factor for explanation, and 
quality information exchange being synonymous with 
explanation. Mental models help in understanding and 
improving teamwork and we explore this and its applica-
tion to explanation in AI in the next section.

Mental models
A mental model is a mental representation of the state of 
the world, especially in a given context. Medically, this 
might be who is responsible for specific tasks, informa-
tion about the patient, the plans for treating the patient, 
and the culture of the unit. Shared mental models help 
improve teamwork [15, 26] and deliver higher quality 
care [27, 27, 28].

Team mental models are the shared understanding or 
representation of the relevant knowledge of a team [29]. 
Team mental models divide into four categories: 

1.	 The team model which pertains to the knowledge 
and skills of team members;

2.	 The team interaction model which pertains to the 
roles and responsibilities of the individuals;

3.	 The equipment model which pertains to the equip-
ment and system itself;

4.	 And the task model which pertains to the actions and 
procedures relevant to the task at hand [29, 30].

When a team is working on a single task, each member 
will have their own mental model(s) regarding the task at 

hand. The overlap of these mental models is the shared 
mental model [31]. Sharing mental models is thought to 
improve team performance [31], though complete over-
lap may not be necessary or optimal [32]. However, a 
failure to share the mental model within a team may well 
lead to errors, especially in complex tasks involving coor-
dinated actions within a team [33].

A shared mental model across a team can be under-
stood similar to a Venn diagram, with overlaps between 
the different mental models (see Fig. 1). There may be a 
centralized mental model with a common understanding 
between all individuals within the team. Different com-
binations within the team might have different overlaps. 
It is even possible that there exists no part of the mental 
model shared amongst all team member. Some failures to 
share the mental model might be of greater risk than oth-
ers. Two people believing the other is responsible for a 
critical task could be riskier than each believing they are 
responsible. In one case, neither takes responsibility, and 
in the other, both do [34].

Eliciting mental models is the ‘process of inquiry to 
encourage a person to externalize a mental model’ which 
yields an expressed mental model [35]. Mental model 
elicitation is situated (i.e., in the context in which the 
mental model applies), or non-situated (i.e., away from 
that context), and can be either oral- or visual-based elic-
itation [35]. Many techniques exist for eliciting mental 
models, for example, interviews whilst walking through 
a relevant area [36], organization of concepts spatially or 
visually [37], diagrammatic interviews where relation-
ships between concepts are drawn [38] and structured 
interviews with structures for specific contexts, such as 
Actors, Resources, Dynamics, and Interaction (ARDI) 
[39]. Medically, there have been studies examining 

Fig. 1  Venn diagrams representing differences in overlapping mental models. A Three mental models overlap with a subset being globally 
understood. B Although each pair intersects, there is no globally shared mental model. Inspired by and adapted from [34]
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mental models’ relationship with performance in anaes-
thesia in the Operating Room (OR) [30, 40], looking at 
team interactions within surgical teams [41] and trauma 
teams [28]. Improved sharing of mental models has been 
identified as a factor to improve the delivery of care [42].

Mental models provide a framework for considering 
how teams work, and how to improve teamwork. They 
address questions with regards to roles and how members 
engage with others in a team, and the research in the area 
has provided ways to understand the different dynamics 
of these interactions in a formalised way. Research into 
mental models has a range of general approaches (e.g., as 
described by Jones et al. [43]), but that given the range of 
potential team structures that exist, these approaches are 
specialised and adapted for specific use within the con-
text of the team in which they are being applied.

Explainable AI
David Goodstein once asked Richard Feynman to explain 
why ‘spin one-half particles obey Fermi-Dirac statistics’. 
Feynman promised to deliver a freshman lecture on the 
topic. A few days later, he said ‘I couldn’t do it. I couldn’t 
reduce it to the freshman level. That means we don’t 
really understand it.’[44]. Although talking about physics 
models, this suggests a general heuristic regarding expla-
nation: you understand the model if you can explain it at 
a freshman level. There is a wide range of definitions for 
explanation that have been proposed [6–8, 12]. In this 
section, we present two definitions, particularly from 
Guidotti et al. [6] and Doshi-Velez and Kim [7]. We then 
present a critique of these approaches, and the computer-
science-oriented approach more generally.

Guidotti et al. [6]
Guidotti et  al. [6] provide a comprehensive review of 
existing approaches to explanation in machine learning 
to create a practical definition. They provide the follow-
ing series of definitions:

•	 ‘An explanation is an ‘interface’ between humans and 
a decision-maker that is at the same time both an 
accurate proxy of the decision-maker and compre-
hensible to humans.’

•	 ‘We refer to interpretability also with the name com-
prehensibility.’

•	 ‘Interpretability [...] provide[s] meaning in under-
standable terms.’

They then provide a taxonomy of explanations, cat-
egorizing them as model explanations (explaining the 
logic of a classifier); outcome explanations (explaining 
the reasons for a given decision); or model inspection 
(explaining how the model behaves internally), before 

providing details of the taxonomy with examples. Within 
this taxonomy, they distinguish between local and global 
explanations. Local explanations relate to a single predic-
tion or decision whereas global explanations cover the 
entirety of the model and all possible predictions. Glob-
ally explainable models are a superset of locally explaina-
ble models—if you are able to explain all predictions, you 
can explain a single one. Global explanation is therefore 
a harder problem to solve, especially as many local tech-
niques do not apply globally.

This series of definitions contains two important com-
ponents, the definition of the agents involved as the 
humans and the decision-maker, and the claim that an 
explanation is a proxy that is comprehensible/interpret-
able/understandable. This definition is characteristic of 
many approaches in explainable AI. It leans heavily on 
various terms, particularly creating a chained definition 
via the synonymous terms ‘interpretability’, ‘comprehen-
sibility’ and ‘understandable’. However, it doesn’t go so 
far as to formally define those terms. The context is very 
general (as to who/what are the humans and decision-
makers) and the practical steps are highly specified. The 
idea is that a given model plus an explanatory method 
should hold generally. For example, LORE [6] which cre-
ates a local explanation for any predictive model, should 
be applicable to any model for any predictive purpose 
and be equally as applicable. Whether or not the model 
to be explained is a neural network or a support vector 
machine, and whether or not it is a medical or a house-
prices application, LORE is equally applicable, allowing 
for a wide range of use cases.

Doshi‑Velez and Kim [7]
Doshi-Velez and Kim [7] also attempted to define 
explainability and make the approach more rigorous. 
They identify two approaches to explanation in the litera-
ture: the idea of explanation via a proxy (as per [6]); and 
the idea of interpretability in the context of an applica-
tion. They characterise the first in the following way: ‘if 
the system is useful in either a practical application or a 
simplified version of it, then it must be somehow inter-
pretable’. They characterise the second as ‘interpretability 
via a quantifiable proxy’—representing the model using 
another that is claimed to be interpretable. These two 
approaches they reject as being weak and instead propose 
that ‘interpretability [is defined] as the ability to explain 
or to present in understandable terms to a human’. Simi-
lar to Guidotti et al., they do not formalise the definitions 
of ‘explain’ or ‘understandable’. They look at the evalua-
tion in the context of the task at hand ‘such as whether 
[the explanation] results in better identification of errors, 
new facts or less discrimination’. A model that assists in a 
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task is interpretable if the human is able to perform the 
task better, such as a student doing better in a test.

Doshi-Velez and Kim identify an important ele-
ment for research moving forward—that the evaluation 
should match the claim, with the example of reliability 
claims being poorly supported by accuracy-based evalu-
ations. This puts forward a new perspective compared 
to other researchers, especially where the methods are 
being undertaken on specific, real-world tasks. Previous 
research has made many claims on various quantitative 
metrics of explanations, such as complexity or size of the 
models [6]. These are measures that are relatively easy 
to compute as part of an automated set of experiments 
in code, but not necessarily reflective of the experience 
of the individuals who receive the explanations. This is 
perhaps unsurprising for computer-science research, 
though does indicate a possible limitation of the existing 
approaches when considering their application in applied 
contexts.

There is also a commonly-made claim regarding expla-
nation of computational models: there exist models that 
are inherently comprehensible, such as rule-based clas-
sifiers, decision trees, decision sets, and rational func-
tions [6, 7, 45]. A number of approaches, such as LIME 
and LORE [6, 11] approximate the target model using 
various inherently explainable models without neces-
sarily examining this claim in more depth with regards 
to their definitions. Applying Guidotti et  al.’s definition 
to a regression model does mean that it is explainable—
the interface is the mathematical representation of the 
model, which can be presented to humans, and is under-
standable for anyone with appropriate training in statis-
tics or similar disciplines. In general, it meets all of the 
criteria; but one can find and construct counterexamples 
that would not be considered explainable by many. For 
example, if one had a regression model with 1,000 inputs, 
with hundreds of interaction terms, and many computed 
features, then it might well be considered unintelligi-
ble (unexplainable, uninterpretable, incomprehensible). 
Moreover, for anyone without appropriate training, even 
a simple regression is not necessarily understandable—
p-scores and confidence intervals are notoriously unin-
tuitive. For predictive models in medicine, such as the 
EuroSCORE II [46], the models typically have a small 
number of factors and few interactions. These are inter-
preted by medical professionals with appropriate train-
ing. In this context, it could be reasonable to consider 
the model explainable - it does meet the requirement of 
‘understandable to a human’ as per Markus et  al. [12]. 
However, many patients would not find the model intelli-
gible without the interpretative assistance of their doctor.

The computer science claims for explanation fol-
low a theme of generalized context and specified 

implementation. Recent movements are towards evalu-
ation being more application-oriented, but without a 
framework for structuring this. Even broadly-accepted 
assumptions regarding which models are explainable do 
not necessarily hold when applied in practical contexts. 
The methods for evaluation are often quantitative and 
oriented towards features that are easily measurable 
within computer science labs. The result is that despite 
all of this work, the use of models in practice such as 
clinical decision support systems have not had wide-
scale adoption [3]. The next section examines a change 
in approach that might help resolve these conflicts.

Mental models for explainable artificial intelligence
Mental models are commonly used within the contexts 
of teams, which could be considered multi-agent con-
texts from a computer science perspective. They are 
a representation that facilitates the combined use of 
knowledge and skills to achieve tasks together. This is 
equally applicable to the use of a computational model 
or AI system. In some contexts, it is a collaborative 
effort for the user and the model to jointly achieve a 
task, or a task might be delegated to the model for it to 
achieve independently. There is a parallel between the 
elicitation of a mental model of a team member and the 
creation of an explanation from an AI agent. In the first, 
we are concerned around understanding how a team 
member is thinking in order to improve teamwork and 
reduce errors. In the second, we are concerned with 
how an AI reaches a prediction or decision in order to 
function better at the task at hand, addressing potential 
concerns such as bias and inaccuracy. It is with this lens 
that we aim to fit computational models into the men-
tal-model framework—by considering them as agents 
within the team whose mental model must be shared.

If this is to be applied to computational models and 
AI, then rather than developing general methods out 
of the context of the practical application, explainable 
AI research ought to focus on explanations that make 
sense within their intended context. The context is sim-
ilar to that of the mental model: who is the audience of 
the explanation, what is the language that is being used 
to communicate, and what is the purpose of the model. 
This is not entirely dissimilar to the previous definitions 
but does require that an explanation have these three 
elements defined (audience, language, and purpose) in 
order to guide its evaluation (as per the recommenda-
tions of Doshi-Velez and Kim [7]). Rather than being a 
general ‘interface’, an explanation is a representation in 
a language that is appropriate for a specific audience in 
a way that is relevant to the task at hand.
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On that basis, we present the following series of defini-
tions for the explanation of models that are equally appli-
cable to mental and computational models. 

1.	 A model is a simplified representation of a thing that 
enhances the ability to understand, predict and pos-
sibly control. [47]

2.	 An explanation of a model is an expression or refor-
mulation of the model in a different medium that can 
be shared with others.

3.	 An accurate expression of a model is one that would 
allow an accurate reproduction of the results of the 
model (allowing for some additional computational 
or logical work).

4.	 The model and explanation have a purpose, an audi-
ence, and a language. The purpose, audience and lan-
guage together form the context of the explanation. 

(a)	 The purpose is the goal for which the model 
and explanation were created.

(b)	 The audience are those people for whom the 
model was built and who will receive the expla-
nation.

(c)	 The language is the form of expression that is 
used to create the explanation.

5.	 A good explanation is an accurate expression of the 
model in language that is understandable by the audi-
ence that helps in achieving the purpose.

6.	 A model is explainable if a good explanation of the 
model can be created.

The clarification of context is the primary change in 
approach between the combined work of Guidotti et al. 
[6] and Doshi-Velez and Kim [7] and this definition which 
reflects the ideology of mental models. Rather than defin-
ing the metrics for the quality of explanation in a general 
way and then applying them in context, here we propose 
defining the metrics in context from the beginning and 
look for ways of eliciting those explanations to meet the 
goals. This is aligned with the mental-models approach 
where the interaction between team-members is being 
considered within context. This change of approach does 
not invalidate previous research or methods but requires 
researchers to consider the practicalities of the use case 
at hand. It particularly establishes the three most impor-
tant factors to consider—the purpose, audience, and 
language.

A clearly stated purpose is necessary to evaluate an 
explanation. It may be useful to decompose any given 
purpose into sub-goals, having one high-level purpose 
and separate, targeted goals for each of the model and 
explanation. For example, if the purpose of developing an 

AI is to improve patient outcomes for patients at risk of 
cardiovascular disease in primary care, then the goal of 
the model could be to create better risk score predictions, 
and the goal of the explanation could be to allow general 
practitioners to better communicate the risk factors and 
possible interventions to patients. The purpose might 
vary even for the same model and this applies equally 
to non-computational contexts. A professor delivering 
lectures on structural engineering principles explains a 
range of concepts. She might have a range of goals. On 
one hand, she might be focused on the pass-rate of the 
course, allowing students to learn. She might also be con-
sidering how well the students can use the content after 
the exams, or even how her lectures might inspire some 
students to undertake post-graduate study with her. The 
evaluation of the professor’s lectures would vary depend-
ing on which of these purposes was considered, with 
candidate measures such as pass rates in examinations, 
total failure rate of bridges built in the next 50 years, and 
retention of students for post-graduate studies.

An explanation requires an audience. As different audi-
ences have different levels of assumed knowledge, lan-
guage, and familiarity with presentation style, evaluating 
an explanation against a specific audience is necessary. 
The same explanation may be more or less appropriate 
for different audiences. For example, a good explanation 
of an AI used to predict cardiovascular disease risk in 
order to improve health outcomes for patients changes if 
it is the physician, patient, or both who is the audience. 
Similarly, a professor’s lectures may be considered well-
explained to a post-graduate audience but inappropriate 
for high-school students.

The appropriate language to explain things differs 
depending on the audience. The language of an explana-
tion may be generic or domain-specific. Here, language is 
used broadly to also capture other representations, such 
as charts, formulae, and physical representations. The 
choice of language is important and should be aligned 
with the audience, rather than the model or those creat-
ing the model and the explanation, in the same way that 
the language used in a lecture changes for high-school 
courses compared to post-graduate classes on the same 
topic. Although a model may have a natural representa-
tion, such as a mathematical formula, or a series of coeffi-
cients and confidence intervals, the appropriate language 
for a given audience might be a plot of the boundaries, 
or even a simplified, natural-language description of the 
relationship between factors and outcomes.

Requiring the full context in order to evaluate an 
explanation provides the terms of reference for any 
evaluation and provides a minimum set of dimen-
sions to qualify any generic methods. For exam-
ple, we can examine the claim that a regression 
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model is inherently explainable. The language 
of the explanation is typically the formula (e.g., 
y = b0 + b1x1 + b2x2 + . . .+ bnxn ), with the bn coef-
ficients and description of the xn factors, along with 
confidence intervals or some similar uncertainty rep-
resentation. The audience is varied, but we can make 
a broad claim that this would be appropriate for any-
one with some training in statistical models, especially 
regression models, and who is familiar with linear 
relationships. They must also be familiar with what 
the xn factors mean, which may be more challenging 
if any are computed features. Provided those condi-
tions are met, many purposes would be satisfied with 
a good explanation (e.g., understanding what factors 
have a linear relationship with the outcome variable). 
A patient wanting to understand why he is at high-risk 
for cardiovascular disease during a consultation with 
his physician, however, may not have the relevant sta-
tistical training nor understanding of the specific fac-
tors. If the explanation is to explain to him what is 
happening with his health so that he can make positive 
lifestyle changes, then the regression model is likely an 
inadequate explanation. It is only via an intermediary 
(e.g., a clinician) that such an explanation would be 
considered good, but this contradicts the idea of the 
inherent explainability of the model.

The accurate expression is important to distinguish 
from the accuracy of the model. The explanation is a 
representation of the model, and the model is a rep-
resentation of the data. The definition above requires 
that the explanation be accurate to the model, and 
allows that the model may not be accurate to the data 
(in fact, one may identify from an explanation that the 
model has clear inaccuracies with respect to model-
ling the data). This can also be described as fidelity—
‘accurately describing the task model’ [12]. However, 
the explanation may not necessarily be as precise as 
the model, while still retaining the accuracy. Depend-
ing on the context, this may be more or less of a prob-
lem, and we explore this below in Case study 1.

Case studies
The following are a set of three short case studies 
examining different models (computational and men-
tal) and how this method of explanation might apply 
to them. These case studies are presented as worked 
examples of the new definition, and show how the 
definition can apply to existing work in the literature. 
These are chosen to be an interesting range of cases 
focused on healthcare, demonstrating the applicability 
of the definition in a range of contexts.

Case study 1: PREDICT and the New Zealand Primary Care 
Handbook
The PREDICT clinical decision support tool is a web-
based system that integrates with general practice elec-
tronic health records for cardiovascular disease (CVD) 
risk assessment and data collection [48]. PREDICT was 
built on the New Zealand guidelines for managing cardi-
ovascular risk [49] and includes a risk-prediction model 
based on the Framingham model [50]. This has been 
revised for the New Zealand population, most recently 
in 2018 [51]. This related work was the basis for a set of 
risk-assessment charts in the New Zealand Primary Care 
Handbook [52]. These charts (see Fig. 2) are a summary 
of the model which used a combination of demographic 
and test results, including age, sex, smoking status, diabe-
tes status, blood pressure, and cholesterol. These charts 
provided a quick lookup of the risk level (categorised in 
various bands ranging from mild to very high using col-
our coded grids) of a patient according to the risk-predic-
tion model and could well be considered an explanation 
of the model which could easily be used by the general 
practitioner or be presented to a patient.

Applying the above definitions, we have the risk-
prediction model, for which the handbook contains the 
charts that are the explanation. These are accurate rep-
resentations to the level of granularity that they specify 
(risk bands such as 2.5–5%). The purpose of the model 
is to facilitate the delivery of care for patients at risk of 
cardiovascular disease, both to estimate the risk and to 
guide the treatment. The audience of the explanation is 
the general practitioner and the patients, and the lan-
guage used is graphical charts. An appropriate evaluation 
of how good this explanation is could be done by a socio-
logical study of the uptake and comprehension, and an 
epidemiological or randomised controlled trial regard-
ing the improvement in outcomes for those patients for 
whom this was used.

Case study 2: LYNA
The Lymph Node Assistant (LYNA) [53, 54] is a con-
volutional neural network that is used to help detect 
metastases in gigapixel microscopy images. It analyses 
the images, identifies areas of potential metastases and 
highlights them on screen for further review by pathol-
ogists. The LYNA model provides highlighted areas of 
the scan to help detect metastases. These are accurate 
representations that highlight the areas it has detected. 
The audience is the pathologists, and the language is 
highlighted or encircled regions on the scans. What is 
not so explicit within the research is whether or not the 
goal is simply diagnosis and identification, or whether 
or not there is an element of understanding why a given 
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part of the image relating to the metastasis is classified 
as cancerous compared to other parts, and what are the 
features that are of importance. Depending on which of 
those two goals is most important, the evaluation might 
be different. In the first case, a randomized controlled 

trial of the use of LYNA in context might be more 
appropriate, and in the second, an analysis of whether 
or not new features and hypotheses could be generated 
with regards to metastatic cancer formation that could 
be tested by other means.

Fig. 2  Example of charts referencing cardiovascular disease risk prediction models for primary-care use in New Zealand from Fig. 1 of [52]
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Case study 3: operating room mental models
Nakarada-Kordic et al. [41] captured the mental models 
of operating room teams comprising of nurses, anaes-
thetists, and surgeons, with regards to what order tasks 
should be done in and whose responsibility they were. 
These were analysed for similarity within the team, with 
a view to improving the delivery of care for patients and 
a reduction of errors. The models were the mental mod-
els of task allocation of the surgical team for which the 
explanation was the results of a card-sort elicitation 
(see Fig. 3). The purpose of the model is to deliver high-
quality, error-free surgical care to patients. The audience 
of the explanation is the research team and the surgical 
team themselves, and the language is the list of tasks in 
order with whose responsibility it is next to it. An appro-
priate evaluation of the explanation is whether or not it 
allowed for effective analysis of the mental models and 
allowed for the identification of discrepancies, overlaps, 
and potentially dangerous misunderstandings between 
different teams.

Discussion
The definition of explanation provided in this paper 
implies that a change in approach would be necessary 
for future research in explainable AI. Previous research 
has worked with abstracted deployment contexts, with 
an implicit idea that a technique once developed can 
and should be able to be applied broadly. Although this 
approach has merit and yields results like convolutional 
neural networks—a technique that can be applied suc-
cessfully in a large number of tasks—it is not a method 
that can be applied as successfully for explanations. 
This idea already has a parallel within the explanatory 
methods, namely the idea of global vs local explana-
tions. Although this idea has been applied to global or 
local regions of a given model, it is relevant to explaining 
models. Rather than a method for explaining all neural 
networks irrespective of context which might be approxi-
mate at a local scale, the idea is to explain specific neural 
networks that take into account the locality in terms of 
the context in which an explanation will be delivered.

Fig. 3  Card sorting algorithm in progress from Fig. 1 of [41]
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Arrieta et  al. [55] stated that an audience should be 
given to define explainability, and also highlighted the 
need of a metric to evaluate how well a model meets the 
definition. The underlying conflict here is precisely what 
we have looked to address. If one desires a common met-
ric to compare multiple models, but presupposes a speci-
fied audience, then either the choice of audience doesn’t 
impact the explainability or the metric must depend on 
the audience, not the model. We agree that any explaina-
bility metric must be audience-dependent, and moreover 
context-dependent. Just as Feynman’s explanation pre-
supposed freshmen students, rather than high-school or 
post-graduate students, so too must the explanation of a 
model for a doctor be evaluated differently than one tar-
geted for a patient. This may mean that a common metric 
is not possible, but that does not mean that a common 
approach is not viable. This will likely require increased 
work on the part of XAI researchers to clarify and work 
with the stakeholders for whom they are targeting their 
explanations, but as well this should result in much more 
useful and better-justified explanations as a result.

The use of this definition does not require that a pre-
hoc definition of context has been given, but can be used 
post-hoc to qualify the explainability of models that 
already exist. For example, if we apply this definition to 
logistic regression models, we can challenge and qual-
ify the claim that they are inherently explainable. Many 
regressions are reasonably considered explainable if we 
assume standard statistical outputs as the language, and 
an audience with statistical training. This does, however, 
restrict the scope of the explainability substantially from 
being inherently explainable to anyone in the world. Even 
then, for the sake of argument, we can consider a regres-
sion with 10,000 terms, with many complex interactions. 
The output from a statistical package is likely not under-
standable even for those with statistical training - fur-
ther restrictions of the audience, or a refinement of the 
language might be required as the complexity increases. 
Additionally, even simpler models in more complex 
domains might require other restrictions on the audi-
ence. For example, survival models in epidemiological 
contexts might require specific training and additional 
domain knowledge to meet the definition of explain-
able. Providing precise boundaries of existing techniques 
will allow us to better use the them, and to identify gaps 
where we may not have realised they existed.

It may also be necessary to consider the range of pur-
poses for which different approaches provide good 
explanations. For example, proxy methods may not be 
appropriate for addressing the concerns of bias in AIs. 
If we define the purpose of the explanation as being ‘to 
assuage the concerns of the general public about the 
use of the model’, then the argument can be made that 

creating an explanation on the basis of a similar but dis-
tinct model may not be sufficient to assuage the con-
cerns. It is not necessarily the role of the researchers to 
make that determination (except possibly via sociologi-
cal research), and what is acceptable may vary widely 
between locations and cultures. We may also come to dif-
ferent conclusions if we define the purpose as being ‘to 
prove that there exists no discriminatory effect on the 
basis of racial or ethnic origin, political opinion, religion 
or beliefs, trade union membership, genetic or health sta-
tus or sexual orientation in the model’ (adapted from [2]). 
The level of proof required for a regulatory body may be 
that the explanation is not on the basis of an approxi-
mation and should be directly based on the model of 
concern. Comparatively, if we are looking to generate 
hypotheses for future research, the results of which can 
be verified via other means, then the same level of rigour 
may not be needed and a wider range of techniques can 
be used.

An area that needs significant additional work is the 
examination of the language of explanations that are 
provided. Many explanations are created and evaluated 
by computer scientists, and things like rules in decision 
trees and the coefficients of numerical models are a lan-
guage that is most familiar to people from numerical dis-
ciplines. Engaging a wider range of stakeholders in the 
context where a model might be applied to help drive 
what could be a reasonable explanation will help broaden 
and enrich the languages that we have to explain mod-
els. It may mean that methods for explanation become 
less amenable to statistical analysis, and this might mean 
that other forms of evaluation must be considered, with 
either measurable secondary effects (e.g., model uptake, 
improved delivery of care) or qualitative analyses being 
necessary.

Conclusions
The motivation behind explanations of AI and compu-
tational models are grounded in practical applications, 
especially in sensitive contexts. In the same contexts, 
mental models and the elicitation thereof have been use-
ful in improving teamwork. By considering an AI as part 
of the team, we can be motivated by the mental models 
approach in defining and generating explanations for 
the AI. In contrast to previous definitions, our defini-
tion focuses on the context in which the AI is used, and 
requires the specification of the language, audience, and 
purpose of the model. By contextualising the AI, explicit 
engagement with the audience and other stakeholders 
becomes a necessary part of the development of explana-
tions. Further research in this area should be on the basis 
of this stakeholder engagement, and the work presented 
here provides a framework for that work.
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