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Osteoporosis is a common complex human disease. Until now, large-scale genome-
wide association studies (GWAS) using single genetic variant have reported some novel
osteoporosis susceptibility variants. However, these risk variants only explain a small
proportion of osteoporosis genetic risk, and most genetic risk is largely unknown.
Interestingly, the pathway analysis method has been used in investigation of
osteoporosis mechanisms and reported some novel pathways. Until now, it remains
unclear whether there are other risk pathways involved in BMD. Here, we selected a lip
BMD GWAS with 301,019 SNPs in 5,858 Europeans, and conducted a gene-based
analysis (SET SCREEN TEST) and a pathway-based analysis (WebGestalt). On the gene
level, BMD susceptibility genes reported by previous GWAS were identified to be the
top 10 significant signals. On the pathway level, we identified 27 significant KEGG
pathways. Three immune pathways including T cell receptor signaling pathway
(hsa04660), complement and coagulation cascades (hsa04610), and intestinal
immune network for IgA production (hsa04672) are ranked the top three significant
signals. Evidence from the PubMed and Google Scholar databases further supports our
findings. In summary, our findings provide complementary information to these nine
risk pathways.

Keywords: osteoporosis, bone mineral density, genome-wide association studies, pathway analysis,
immune pathways
INTRODUCTION

Osteoporosis is a complex disease with reduced bone mineral density (BMD) and increased fracture
risk (Wei et al., 2016). Until now, large-scale genome-wide association studies (GWAS) based on
single genetic variant have reported some novel osteoporosis susceptibility variants (Guo et al.,
2010; Richards et al., 2012; Wei et al., 2016). These osteoporosis genetic variants include rs2062375,
rs13182402, rs7605378, rs12775980, rs494453, and rs784288 (Guo et al., 2010; Hsu et al., 2010; Kou
et al., 2011; Hwang et al., 2013; Taylor et al., 2016). Meanwhile, some BMD related genetic variants
were also identified (Kemp et al., 2017; Kim, 2018; Styrkarsdottir et al., 2019). In 2017, Kemp et al.
performed a GWAS of heel BMD using 142,487 individuals from the UK Biobank (Kemp et al.,
2017). They identified 307 conditionally independent genetic variants with genome-wide
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significance at 203 loci including 153 novel loci (Kemp et al.,
2017). In 2018, Kim et al. conducted a GWAS of heel BMD using
the data from UK Biobank, and identified 1,362 independent
genetic variants with genome-wide significance around 899 loci
including 613 novel loci (Kim, 2018). In 2019, Styrkarsdottir
et al. performed a GWAS of hip and lumbar spine BMD, and
identified 13 independent genetic variants at 12 loci
(Styrkarsdottir et al., 2019).

However, these risk variants only explain a small proportion
of osteoporosis genetic risk, and most genetic risk is largely
unknown (Wei et al., 2016). Considering the limitations of
GWAS on single genetic variant level, some improved method
named pathway analysis of GWAS dataset or gene set analysis
has been proposed and widely used in multiple human
complex diseases (Eleftherohorinou et al., 2009; Hong et al.,
2010; Liu et al., 2012; Holmans et al., 2013; Liu et al., 2013; Liu
et al., 2014; Quan et al., 2015; Jiang et al., 2017; Liu
et al., 2017).

Interestingly, the pathway analysis method has also been used
in investigation of osteoporosis mechanisms and reported some
novel pathways (Zhang et al., 2010; Lee et al., 2012; Wei et al.,
2016). In addition to these risk pathways above, it remains
unclear whether there are other risk pathways involved in
BMD. Hence, we conducted a pathway analysis of hip BMD
GWAS with 301,019 SNPs in 5,858 Europeans using a published
gene-based analysis method (SET SCREEN TEST) (Moskvina
et al., 2011) and a pathway-based analysis method (WebGestalt)
(Zhang et al., 2005).
MATERIALS AND METHODS

The BMD GWAS Dataset
This study included 5,861 Icelandic persons, and 5,858 of 5,861
persons had measurements of hip bone mineral density
(Styrkarsdottir et al., 2008). For each DNA sample, the
Infinium HumanHap300 or the HumanCNV370 SNP chip
(Illumina) was used to genotype a total of 317,503 genetic
variants (Styrkarsdottir et al., 2008). After quality control, the
GWAS dataset finally included 301,019 common genetic variants
(Styrkarsdottir et al., 2008). In order to evaluate the association
between each genetic variant and BMD, a linear regression
method was utilized (Styrkarsdottir et al., 2008). Here, we used
the summary results from this BMD GWAS (Styrkarsdottir et al.,
2008). More detailed results are described in the original study
(Styrkarsdottir et al., 2008).

Gene-Based Testing for BMD GWAS by a
Meta-Analysis Method
We selected a set screen test method implemented in PLINK to
perform a gene-based test of the whole GWAS dataset (Moskvina
et al., 2011). The method could combine all P values from all the
genetic variants in each corresponding gene by an approximate
Fisher’s test and could also adjust for the linkage disequilibrium
(LD) (Moskvina et al., 2011).
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For all genetic variants in a specific gene, if all these genetic
variants are independent, the Fisher’s statistic could be
calculated by

x20 = −2o
N

i=1
ln (pi)

where N is the number of selected genetic variants in a specific
gene and pi (i = 1, …, N) is the significance level about the
association each genetic variant with BMD, x0

2 follows a chi-
square distribution with the freedom degrees = 2N (Moskvina
et al., 2011).

If the selected genetic variants are not independent,

x2 = −2o
N

i=1
ln (pi) ∗ 4N=s 2

s 2 = 4N + o
N−1

i=1
o
N

j=I+1
cov( − 2l(pi),−2ln(pj))

cov( − 2 ln (pi),−2 ln (pj)) = pij(3:25 + 0:75pij)

where x2 follows the central chi-square distribution with 8N2/
s2 as degrees of freedom (Moskvina et al., 2011). Here, the LD
information is from the HapMap CEU population.

Pathway-Based Testing for BMD
GWAS Dataset
Here, we conducted a KEGG pathway analysis of the BMD risk
genes using WebGestalt (Zhang et al., 2005). The enrichment
analysis was performed using the hypergeometric test (Zhang
et al., 2005). Here, we selected the entire entrez gene set as the
reference gene assuming including N genes. We first assume that
we have identified S BMD risk genes using the gene-base test. For
a given pathway, we further assume that this pathway includesm
genes and K BMD risk genes. The significant levels observing K
BMD risk genes in a specific pathway is

P = 1 −o
K

i=0

�
S
i

��
N−S
m−i

�
�

N
m

�

Meanwhile, we limited the pathway analysis using the KEGG
pathways with at least 20 and at most 300 genes. A false discovery
rate (FDR) method was used to adjust the original significance
levels. Here, we define a pathway with adjusted P < 0.01 to be
statistically significant.
RESULTS

Gene-Based Test for BMD GWAS Dataset
Using the gene-based test, several BMD susceptibility genes
reported by previous GWAS were among the top 10 significant
signals, which included CKAP5 (the most significant signal with
P = 4.03E-07) (Styrkarsdottir et al., 2009), LRP4 (the most
significant signal with P = 6.72E-05) (Styrkarsdottir et al.,
2009), and C6orf97 (the 6th significant signal with P = 1.04E-
04) (Styrkarsdottir et al., 2009). Meanwhile, we identified other
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new BMD susceptibility genes, such as F2 (the second significant
signal with P = 1.58E-05), LALBA (the 4th significant signal with
P = 6.86E-05), and CPN2 (the 5th significant signal with P =
7.21E-05). Detailed information about the 5% significant genes is
described in Supplementary Table 1.

Pathway-Based Test for BMD
GWAS Dataset
We used the top 5% significant signals (14,008*5% = 700 genes
with P < 0.04239) from the gene-based test for following pathway
analysis. We identified 27 significant KEGG pathways (adjusted
P < 0.01) (Table 1). Based on the function classifications, these
pathways are mainly related to immunity, cellular processes,
environment, infection, cardiovascular diseases, metabolism, and
circulation. The top three significant signals are related with
immune system including T cell receptor signaling pathway
(hsa04660), complement and coagulation cascades (hsa04610),
and intestinal immune network for IgA production (hsa04672)
as described in Table 1. The detailed information is provided in
Supplementary Table 2.

Verification by PubMed and Google
Scholar Literature Search
We further verified these findings from pathway analysis using
publicly available literatures in PubMed and Google Scholar
databases. Interestingly, growing evidence supports the
involvement of dilated cardiomyopathy and hypertrophic
Frontiers in Genetics | www.frontiersin.org 3
cardiomyopathy, T cell receptor signaling pathway, wnt
signaling pathway, and regulation of actin cytoskeleton in
MBD. More detailed information is described in Table 2.
DISCUSSION

Until now, pathway analysis of BMD GWAS datasets has
identified several risk pathways. However, most genetic
variants, risk genes, and genetic pathways influencing
osteoporosis are unknown. In order to identify novel BMD risk
pathways, we conducted a pathway analysis of hip BMD GWAS
with 301,019 genetic variants in 5,858 Europeans using the meta-
analysis method (SET SCREEN TEST) in PLINK (Moskvina
et al., 2011) and a pathway-based analysis method (WebGestalt)
(Zhang et al., 2005).

On the gene level, we confirmed previous identified BMD
susceptibility genes such as CKAP5 (Styrkarsdottir et al., 2009),
LRP4 (Styrkarsdottir et al., 2009), and C6orf97 (Styrkarsdottir
et al., 2009). All these genes are ranked top 10 significant signals.
We also identified some new BMD susceptibility genes, which
were significantly associated with BMDwith P < 0.0001. Take the
second significant signal F2 for example, F2 could encode
coagulation factor II, thrombin (Sato et al., 2016). Pro-
thrombin is cut to generate thrombin in the coagulation
cascade, and further reduce the blood loss (Sato et al., 2016). It
is common that procoagulant state could active thrombin in
TABLE 1 | Significant KEGG pathways with P < 0.01 by pathway-based analysis of BMD GWAS.

Classification Pathway ID Pathway Name C O E R rawP adjP

Immune system hsa04660 T cell receptor signaling pathway 108 9 1.61 5.58 3.68E-05 8.00E-04
Immune system hsa04610 Complement and coagulation cascades 69 7 1.03 6.79 7.76E-05 8.00E-04
Immune system hsa04672 Intestinal immune network for IgA production 48 6 0.72 8.37 7.80E-05 8.00E-04
Cardiovascular diseases hsa05414 Dilated cardiomyopathy 90 8 1.34 5.95 6.26E-05 8.00E-04
Infectious diseases: parasitic hsa05146 Amoebiasis 106 8 1.58 5.05 2.00E-04 1.30E-03
Metabolism hsa00564 Glycerophospholipid metabolism 80 7 1.19 5.86 2.00E-04 1.30E-03
Environmental information processing hsa04310 Wnt signaling pathway 150 9 2.24 4.02 4.00E-04 2.30E-03
Infectious diseases: bacterial hsa05120 Epithelial cell signaling in Helicobacter pylori infection 68 6 1.02 5.91 5.00E-04 2.60E-03
Circulatory system hsa04972 Pancreatic secretion 101 7 1.51 4.64 8.00E-04 3.50E-03
Infectious diseases: parasitic hsa05145 Toxoplasmosis 132 8 1.97 4.06 9.00E-04 3.50E-03
Cellular processes hsa04144 Endocytosis 201 10 3 3.33 1.00E-03 3.50E-03
Endocrine system hsa04916 Melanogenesis 101 7 1.51 4.64 8.00E-04 3.50E-03
Infectious diseases: viral hsa05160 Hepatitis C 134 8 2 4 1.00E-03 3.50E-03
Cellular processes hsa04146 Peroxisome 79 6 1.18 5.09 1.20E-03 3.90E-03
Cardiovascular diseases hsa05410 Hypertrophic cardiomyopathy (HCM) 83 6 1.24 4.84 1.50E-03 4.30E-03
Cellular processes hsa04114 Oocyte meiosis 112 7 1.67 4.19 1.50E-03 4.30E-03
Immune system hsa04621 NOD-like receptor signaling pathway 58 5 0.87 5.77 1.70E-03 4.40E-03
Environmental information processing hsa04512 ECM-receptor interaction 85 6 1.27 4.73 1.70E-03 4.40E-03
Environmental information processing hsa04630 Jak-STAT signaling pathway 155 8 2.31 3.46 2.40E-03 5.90E-03
Environmental information processing hsa04080 Neuroactive ligand-receptor interaction 272 11 4.06 2.71 2.80E-03 6.60E-03
Genetic information processing hsa03040 Spliceosome 127 7 1.9 3.69 3.10E-03 6.70E-03
Metabolism hsa00230 Purine metabolism 162 8 2.42 3.31 3.10E-03 6.70E-03
Cellular processes hsa04510 Focal adhesion 200 9 2.99 3.01 3.30E-03 6.90E-03
Environmental information processing hsa04514 Cell adhesion molecules (CAMs) 133 7 1.99 3.52 4.00E-03 7.80E-03
Circulatory system hsa04976 Bile secretion 71 5 1.06 4.72 4.20E-03 7.80E-03
Immune system hsa04622 RIG-I-like receptor signaling pathway 71 5 1.06 4.72 4.20E-03 7.80E-03
Cellular processes hsa04810 Regulation of actin cytoskeleton 213 9 3.18 2.83 5.00E-03 9.00E-03
Marc
h 2020
 | Volume 11
C, number of reference genes in the category; O, number of genes in the gene set and also in the category; E, expected number in the category; R, ratio of enrichment; rawP, p value from
hypergeometric test; adjP, p value adjusted by the multiple test adjustment.
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bone fracture sites (Sato et al., 2016). Take CPN2 for example,
two genetic variants rs11711157 and rs3732477 near CPN2
have been reported to be associated with BMD in Koreans
(Kim et al., 2013). These findings suggest that the meta-
analysis method (SET SCREEN TEST) is effective to identify
BMD susceptibility genes.

On the pathway level, we identified 27 significant KEGG
pathways. Three immune pathways including T cell receptor
signaling pathway (hsa04660), complement and coagulation
cascades (hsa04610), and intestinal immune network for IgA
production (hsa04672) are ranked the top three significant
signals. In addition, we also identified other kinks of pathways
associated with cellular processes, environmental information
processing, infectious diseases, cardiovascular diseases,
metabolism, and circulatory system, are also identified. In
order to further evaluate the potential roles of these newly
identified risk pathways, we conducted a comprehensive
literature review. Interestingly, growing evidence from the
PubMed and Google Scholar databases further supports the
involvement of dilated cardiomyopathy, hypertrophic
cardiomyopathy, T cell receptor signaling pathway, wnt
signaling pathway, and regulation of actin cytoskeleton in
MBD, as provided in Table 2.

In a recent study, Guo et al. conducted a pathway and
network analysis of genes related to osteoporosis (Guo et al.,
2019). They first retrieved 94 osteoporosis genes from PubMed
(Guo et al., 2019). They further conducted an enrichment
Frontiers in Genetics | www.frontiersin.org 4
analysis, and found that these osteoporosis genes were
significantly enriched in biological processes related to bone
metabolism and the immune system (Guo et al., 2019). Take
wnt signaling pathway for example, we identified wnt signaling
to be the 7th significant pathway, as provided in Table 1.
Interestingly, Guo et al. identified wnt signaling to be the
second significant pathway with P = 3.71 × 10−13 (Guo et al.,
2019). Hence, our findings are consistent with recent findings.

Our study has a main difference with previous studies. In
recent years, most studies focus on the single genetic variant
associated with BMD, osteoporosis, or fracture (Kemp et al.,
2017; Kim, 2018; Styrkarsdottir et al., 2019). However, these
genetic variants only explain a small proportion of osteoporosis
genetic risk (Wei et al., 2016). Hence, pathway analysis of GWAS
dataset may overcome the limitations of single genetic variant.
However, our current study still has some limitations. First, the
sample size is relatively small and lacks validation cohort to test
the robustness of these findings. In future study, we will further
select other BMD GWAS datasets with large-scale sample size to
demonstrate our findings. Second, we only selected one gene
based method and one pathway based method. In future, we will
verify our findings using other gene and pathway based methods.
Third, we selected the top 5% significant signals from the gene-
based test for following pathway analysis, as did in recent studies
(Yoon et al., 2018; Ierodiakonou et al., 2019; White et al., 2019).
Using this strategy, we selected 700 BMD risk genes with P <
0.04239. In fact, there are a total of 813 BMD risk genes with P <
TABLE 2 | Literature evidences supporting that genes in measles pathway are associated with bone mineral density or osteoporosis.

Pathway Supporting evidence Ref

Dilated
cardiomyopathy
and
hypertrophic
cardiomyopathy

Evidence has also shown that both Dilated cardiomyopathy and Hypertrophic cardiomyopathy could result in heart failure (Olson
et al., 1998; Li et al., 2006). Cross-sectional studies have shown that more than 50% of patients with congestive heart failure (CHF)
have decreased bone mineral density (BMD) (Frost et al., 2007). Heart failure (HF) is associated with several factors that contribute
to both reduced bone mineral density and increased risk of osteoporosis-related fractures (Lyons et al., 2011).

(Olson et al.,
1998; Li et al.,
2006; Frost
et al., 2007;
Lyons et al.,

2011)
T cell receptor
signaling
pathway

T lymphocytes and their products act as key regulators of osteoclast formation, life span, and activity. This review presents this
understanding of the process of T lymphocytes and their products mediating osteoporosis and explores some of the most recent
findings and hypotheses to explain their action in bone (Zhao et al., 2009). Our results show that activated T cells can regulate
systemic and local bone loss through OPGL. In summary, activated T cells produce OPGL and can directly trigger
osteoclastogenesis in vitro; activated T cells from ctla4-/- mice have a destructive effect on bone mineral density in vivo that can be
reversed through inhibition of OPGL; and inhibition of OPGL through OPG can completely prevent bone and cartilage loss in a T-
cell-dependent arthritis model (Kong et al., 1999).

(Kong et al.,
1999; Zhao
et al., 2009)

Wnt signaling
pathway

Wnt signaling pathway regulates bone mineral density (BMD) through the lipoprotein receptor-related protein (LRP) 5, a receptor of
this signaling. Genetic variations at the LRP5 gene locus are associated with osteoporosis. These data suggest that genetic
variations in Wnt signaling genes may affect the pathogenesis of osteoporosis (Perez-Castrillon et al., 2009). Wnt signaling has
emerged to play major roles in almost all aspects of skeletal development and homeostasis. Wnt signaling has become a focal
point of intensive studies in skeletal development and disease. Promising effective therapeutic agents for bone diseases are being
developed by targeting the Wnt signaling pathway (Regard et al., 2012). We identified 56 loci (32 new) associated with BMD at
genome-wide significance (P < 5 × 10−8). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell
differentiation, endochondral ossification, and Wnt signaling pathways (Estrada et al., 2012).

(Perez-Castrillon
et al., 2009;
Estrada et al.,
2012; Regard
et al., 2012)

Regulation of
actin
cytoskeleton

The focal adhesion, the actin cytoskeleton and cell-cycle are connected pathways (Zintzaras et al., 2011). Data from 211 studies
that investigated the association between BMD and gene variants involved in these pathways were catalogued in a web-based
information system and analyzed (Zintzaras et al., 2011). The results showed that genes in these three pathways are implicated in
the pathogenesis of low BMD (Zintzaras et al., 2011). Genome-wide linkage studies have highlighted the chromosomal region
3p14-p22 as a quantitative trait locus for BMD (Mullin et al., 2013). The FLNB gene, which is thought to have a role in cytoskeletal
actin dynamics, is located within this chromosomal region and presents as a strong candidate for BMD regulation (Mullin et al.,
2013). Mullin et al. identified significant associations between SNPs in the FLNB gene and BMD in Caucasian women (Mullin
et al., 2013).

(Zintzaras et al.,
2011; Mullin
et al., 2013)
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0.05. Hence, our current pathway analysis findings are consistent
with those using 813 BMD risk genes (data now shown).
However, selection of different thresholds may have different
findings, as described in recent studies (Yoon et al., 2018;
Ierodiakonou et al., 2019; White et al., 2019).

In summary, two studies reported regulation-of-autophagy
and other eight significant pathways (Zhang et al., 2010; Lee
et al., 2012). Our findings provide complementary information
to these nine risk pathways. Meanwhile, future studies using
large-scale sample sizes should further verify our findings.
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