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Abstract: Over the years, natural-based scaffolds have presented impressive results for bone tissue
engineering (BTE) application. Further, outstanding interactions have been observed during the
interaction of graphene oxide (GO)-reinforced biomaterials with both specific cell cultures and injured
bone during in vivo experimental conditions. This research hereby addresses the potential of fish
gelatin/chitosan (GCs) hybrids reinforced with GO to support in vitro osteogenic differentiation
and, further, to investigate its behavior when implanted ectopically. Standard GCs formulation
was referenced against genipin (Gp) crosslinked blend and 0.5 wt.% additivated GO composite
(GCsGp/GO 0.5 wt.%). Pre-osteoblasts were put in contact with these composites and induced to
differentiate in vitro towards mature osteoblasts for 28 days. Specific bone makers were investigated
by qPCR and immunolabeling. Next, CD1 mice models were used to assess de novo osteogenic
potential by ectopic implantation in the subcutaneous dorsum pocket of the animals. After 4 weeks,
alkaline phosphate (ALP) and calcium deposits together with collagen synthesis were investigated by
biochemical analysis and histology, respectively. Further, ex vivo materials were studied after surgery
regarding biomineralization and morphological changes by means of qualitative and quantitative
methods. Furthermore, X-ray diffraction and Fourier-transform infrared spectroscopy underlined
the newly fashioned material structuration by virtue of mineralized extracellular matrix. Specific
bone markers determination stressed the osteogenic phenotype of the cells populating the material
in vitro and successfully differentiated towards mature bone cells. In vivo results of specific histo-
logical staining assays highlighted collagen formation and calcium deposits, which were further
validated by micro-CT. It was observed that the addition of 0.5 wt.% GO had an overall significant
positive effect on both in vitro differentiation and in vivo bone cell recruitment in the subcutaneous
region. These data support the GO bioactivity in osteogenesis mechanisms as being self-sufficient to
elevate osteoblast differentiation and bone formation in ectopic sites while lacking the most common
osteoinductive agents.

Keywords: graphene oxide; biopolymer blends; biomineralization; ectopic bone formation;
osteoinduction; ex vivo analysis
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1. Introduction

The field of regenerative medicine and tissue engineering (TE) has emerged as a
necessity for tissue substitutes in the case of major trauma. Therefore, the development of
novel biomaterials to efficiently support tissue repair and regeneration is a serious matter
in this research area. Thus, the goal of BTE relies on generating the expected support for
the repair of bone defects based on biocompatible scaffolds with unique properties that
enhance cell adhesion and formation of new bone extracellular matrix (bECM) and tissue.

High-performing artificial bone substitutes raise critical issues since engaging in
the fabrication of autografts with equal performance to the “gold standard” is still tech-
nologically out of reach. Particularly in BTE, calcium (Ca2+) mineral-enriched scaffolds
possess the ability to generate osteogenic signaling in osteoprogenitor populations [1]. Most
mineral-based substrates investigated for these purposes successfully cover the mechanical
features [2] but lack in the areas of morphological mimesis, pore interconnectivity, and
pairing with organic compounds, unless they are supplied from allo-/xeno- graft sources.
Even so, immunogenicity and unpredictable resorption rates can occur with low prospects
of restraint [3].

Over the years, several polymers, mostly natural compounds, have been found to
successfully mimic the bECM, thus generating a perfect microenvironment for cell prolifera-
tion, which is an important feature for BTE-designed scaffolds [4]. Fish gelatin, a derivate of
a major component of the ECM, allures with good biocompatibility [5], high degradability
rate [6] and low immunogenicity [7], while chitosan, due to its structural resemblance
with glycosaminoglycans naturally sited in bECM, augments cell adhesion [8]. Therefore,
gelatin and chitosan-based scaffolds have been demonstrated to meet the expected results
in the case of osteogenic differentiation and engagement in bone repair [9,10]. Genipin is
mostly used as a crosslinking agent for scaffold development due to its low toxicity and
biosafety features [11–13]. Modern techniques in biomaterial design include the reinforce-
ment of natural scaffolds with bioactive nanostructures. The oxygen-containing functional
groups found in the GO structure ensure a great interaction with cellular proteins, hence
significantly contributing to cellular behavior [14] in terms of cell growth and viability. GO
has turned out to be a reliable nano-component due to its biocompatibility, which has been
addressed in several studies over the years [15,16].

This carbon-based material turned out to present remarkable physiochemical charac-
teristics, which have resulted in good biocompatibility and proper support for a plethora of
next-generation targeted biomedical applications. Its versatility and tunable compatibility
with robust and diverse materials captivated the focus in the research on skin [17] and adi-
pose [18] regeneration, muscle (cardiac and skeletal [19]) engineering, nerve [20], as well as
de novo cartilage and bone tissue [21]. GO demonstrated excitingly good interaction with
many kinds of cell types, such as stem cells [22,23], neural cells [24,25], cardiomyocytes [26]
and endothelial [27] cells and osteoblasts [28], while the non-toxic effect of GO-reinforced
materials has been numerously reported in both in vitro and in vivo experimental con-
ditions [29,30]. Even though there is not a global consensus on the drawbacks that GO
additivities can be associated with, many results support that the impact of GO in the
osteogenic development is rather positive, as long as the concentration of GO is not very
high (~0.5 wt.%) [31–33].

Interestingly, studies have observed that the implantation of a scaffold engineered for
BTE purposes at an ectopic site still has the means to recruit bone cells and to generate
bone tissue, even if not surrounded by it [34]. Exquisite studies reported the implantation
of BTE-designed scaffolds in other areas (e.g., subcutaneously/in muscle) in order to prove
the osteoinductive and osteoconductive properties of the scaffolds [35–38]. These unique
events have been proven for biomaterials such as β-tricalcium phosphate scaffolds [39],
hydroxyapatite-based materials [40] and also phosphate graphene composites [41].

In our previous studies, we developed a new scaffold composed of fish gelatin/chitosan
crosslinked with genipin (GCsGp) and reinforced with various GO:biopolymer mass ra-
tios [15,42]. Appertaining on preliminary results, including thorough biocompatibility, we
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concurred and highlighted that the macromolecule network best performs if reinforced
with 0.5 wt.% GO.

Predicated on these positive outcomes, we designed a study whose novelty is manifold:
(i) complete characterization of partially investigated new BTE promising materials, (ii) sur-
vey of their specific osteoinductive features manifesting in ectopic sites and (iii) pioneering
structural analysis of this kind of ex vivo sample. Firstly, we substantiated the materials’
characterization to the full extent, building on our previous findings on these types of
composites. In this stage, we assessed their intrinsic osteoinductive properties in ectopic
sites in mice models. Thus, by implantation in a non-osteogenic area, the number of vari-
ables involved in bone formations was reduced, eliminating the effects of bone stimulating
cytokines, bone-forming cells and potentially bone-promoting mechano-transduction, and
therefore, the onset of osteogenesis was attributed exclusively to the scaffold itself.

Cell-laden hydrogels such as acid-g-chitosan-g-poly(N-isopropyl acrylamide) [43],
bone morphogenetic protein-2 embedded collagen [44] or thiolated chitosan [45] exhibited
promising bone formation when injected subcutaneously; furthermore, chitosan/calcium
phosphate putties developed ectopic bone-like tissue when implanted intramuscularly.

To the best of our knowledge, our formulations are the only cell-barren polymer
hybrids of this kind that manifest ectopic osteogenesis while lacking bone progenitor
recruitment cues, differentiating inducers or Ca2+ and PO4

3− rich substrates. In addition,
we showed that its remarkable behavior is strengthened by the presence of graphene oxide,
known for synergistically promoting bone differentiation in hydroxyapatite composites [46]
or as an osteomimetic support designed by phosphate functionalization of graphenic
sheets [41].

Last but not least, we exploited these results from more than one perspective, and
the paper advances a creative means to approach the explanted mineralized scaffolds
from the standpoint of the engineer, issuing an uncommon process of physico-chemical
characterizations meant to support and refine established immunohistological techniques.

2. Results and Discussion

The fish gelatin/chitosan crosslinked with genipin and reinforced with different
GO biopolymer scaffolds have been previously analyzed by our group for their good
physico-chemical properties and biocompatibility [15,42]. The in vitro osteogenic potential
analysis and the de novo bone-forming capacity in vivo was compared for three materials:
i. GCs (to evaluate the baseline osteoinductivity of an unmodified hybrid substrate);
ii. GCsGp (to survey whether the osteoinductivity is conditioned by the biopolymer
network crosslinking) and iii. GCsGp/GO 0.5 wt.% (to apprehend the contribution of GO
to the de novo process of osteogenesis). These outcomes are supported by some studies
which have focused on chitosan or gelatin-based materials enriched with graphene and
its derivatives [22,47–49]. Thus, we used physical and morphological characterization of
the material before implantation and on day 28 post-implantation in order to evaluate
de novo osteoinductive properties of the materials by supplementation with GO in the
absence of bone stimulating cytokines, bone-forming cells and potentially bone-stimulation
mechano-transduction. The early stage of the osteogenesis under the material’s support
was evaluated by using biological tests, respectively biochemical, histochemical methods
and specific analysis of early and late markers of osteogenesis, both in vitro and in vivo.

2.1. A Priori Scaffold Characterization

Engineered biomaterials for BTE can issue and propagate stimuli in cells regulating
their early contact with a new lodging substrate, familiarization, adjustment and ultimately
their phenotype outcome. This is most likely to occur due to the materials’ chemistry,
physio-mechanical properties and distinctively tweaked nanostructuration [50].

Swollen freeze-dried GCs, GCsGp and GCsGp/GO 0.5% scaffolds, after reaching equi-
libria (2 h) [15], were subjected to mechanical testing meant to assess the effect of crosslink-
ing and GO reinforcements generated within the GCs network with regards to compressibil-
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ity. The measured values of E (plotted in Figure 1a as the average values ± SD) portray an
expected image whereby the stiffness of the materials is augmented first by Gp crosslinking
and additionally via GO embedding. In particular, compression modulus values are as
following: EGCs > EGCsGp > EGCsGp/GO 0.5% (81.67 kPa > 126.67 kPa > 179.50 kPa).
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Figure 1. (a) Plotting of the compression modulus of hydrated materials, before implantation;
(b) histogram depiction of the wall thickness size domain calculated in CTAn (Bruker); (c) color-
highlighted 3D renderings of (*) GCs, (**) GCsGp and (***) GCsGp/GO 0.5% scaffold captured
in CTVox.

The porous dry networks of the components were investigated by micro-CT analysis
with the purpose of endorsing the mechanical behavior. Figure 2b consists of a chart of the
incidence (in percentages) of dimensional domains as calculated for the scaffold walls. Gp,
as well as consequent GO reinforcement, are able to customize the solid phase templating
as a result of the GCs chains densification through crosslinking and additional centers
of physical interactions supplied by the carbon nanomaterial within. As a consequence,
scaffold walls tend to become thicker and stiffer—in agreement with the tendency of
the detrimental shift the ratio of thinner walls exhibit with Gp and GO supplementation
(Figure 1b). Moreover, the estimation of “intersection surface” values, areas of higher solid
density where congruent walls meet, merge and overlap, support the theory according to
which crosslinking and GO compositing of biopolymer blend favor the materialization of
areas of variable density and stiffness.
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In order to provide a visual representation of the stiffness gradient, we depicted
in Figure 1c a generic colored representation of the scaffold walls, pigmented in direct
proportionality with the initial grey tones CT images possessed based on X-ray absorbance.
Therefore, the areas where the colors are more pronounced feature superior agglomerations
of solid matter (thicker walls), and the pale areas are associated with the finest layouts of the
scaffolds. The classic greyscale (0–255) was converted in a reduced unit bar (0–1) for each
colorized microtomography, and wall distribution was depicted both unaltered and 30%
attenuated in the (0.7–1) region in order to highlight the volume spread of durotactic nuclei.

In the case of GCs, they seem homogeneously spread within the sample volume,
however light-consistent and sheer (Figure 1c *). GCsGp, on the other hand, features the
coarsest associations of high-density domains but remotely distributed and preferentially
toward the outer region of the scaffold (Figure 1c **). Antithetically, the GO composite
(Figure 1c ***) displays a very interesting distribution of durotactic poles, with the highest
isotropy in terms of both 3D distribution and dimensional extent. Consequently, its intrinsic
structuration enables it to manifest the best mechanical performance in wet states, endorsed
by synergistic Gp reticulation and GO embedding.

2.2. Effects of Graphene–Oxide Porous Biopolymer Hybrids on In Vitro Osteogenesis

In vitro osteogenic profile of GO-biopolymer composite resulted from experimental
assay trials against 3T3-E1cell line. During the differentiation of pre-osteoblasts, Runx-
related transcription factor 2 (runx2) is a master transcription factor, which is responsible
for the regulation of other important osteoblast markers such as collagen type I alpha I
(Col1a1) and osterix (SP7) [12]. In this study, qPCR evaluation of runx2 gene expression
was evaluated after 7 and 28 days of osteogenic induction (Figure 2a) and revealed that
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murine pre-osteoblast differentiated successfully started the differentiation towards the
osteogenic lineage. At 7 days, significant levels of runx2 expressions were found on the
composites enriched with 0.5% wt.% GO as compared to the controls, GCs (p < 0.01) and
GCsGp (p < 0.05). No significant differences were observed between the two tested controls,
GCs and GCsGp, respectively. The expression on day 28 was found to be significantly
(p < 0.05) lower as compared to the levels found after 7 days. This can be explained by the
fact that runx2 acts in a stage-dependent manner during this process and is considered an
early osteogenic marker, which is expected to present in higher expression levels within the
first week of osteogenic differentiation. Moreover, it has been stated that the two isoforms
of runx2, namely type I and type II, regulate different stages of a bone cell. Thus, runx2 type
I is present in pre-osteoblasts [51], whereas runx2 type II is necessary for terminal phases of
the osteogenic differentiation [52,53]. This comes in support of our results, which highlight
that runx2 expression is still present after 28 days. Even so, the differences remained
similar to those found at 7 days between the composites; namely, runx2 expression on
GCsGp/GO 0.5% wt.% systems was found to be significantly higher (p < 0.05) as compared
to GCs and GCsGp.

At the same time, expression of the osteopontin (opn) gene (Figure 2b) was evaluated
by qPCR. During osteogenesis, opn is highly expressed, as it produces an important protein,
which is present in the bECM when cells achieve the stage of mature osteoblasts [31]. As
compared to runx2, its levels of expression at 7 days of osteogenic differentiation were
barely detectable as opn is a late osteogenic marker, which is expressed during the last
weeks of osteogenesis.

Therefore, significant opn expression levels (p < 0.001) were found after 28 days of
induction for the composite containing 0.5% wt.% GO in comparison to the expression
levels found after 7 days of osteogenic induction (Figure 2b) on the same composite.
Moreover, qPCR results for opn expression indicated a significantly increased (p < 0.01)
expression on GCsGp/GO 0.5 wt.% in comparison to GCsGp control, after 28 days of
osteogenic induction. As these results are in concordance with the one obtained in the case
of runx2 expression, no significant opn expression levels were found on the two tested
controls. Thus, these results suggest that incorporation of GO to GCsGp materials has
significantly supported in vitro osteogenic differentiation of 3T3-E1 cells. A similar study
has underlined that the addition of GO to composites based on poly(lactic-co-glycoid)
acid surfaces [54] may enhance the expression of runx2 and opn during in vitro 3T3-E1
osteogenic differentiation. Moreover, it has been reported that in the presence of titanium
surfaces with reduced GO [55], osteoblasts present a higher expression of opn bone marker.

A similar pattern was recorded for immunohistochemical expression of both RUNX2
and OPN osteogenic markers (Figure 2c). Here, it can be observed that the expression
of both makers is present in the tested biosystems. The staining reveals the presence of
differentiated cells within the pores of the material, by expression of RUNX2. Another
study demonstrated that human mesenchymal stem cells have been found with a higher
protein expression of RUNX2 in the presence of GO-collagen scaffold when compared to
the collagen control [56]. The immunohistochemical staining for OPN expression showed
a more pronounced expression for the composites enriched with GO, as compared to the
GCs and GCsGp scaffolds. The expression of OPN and OCN by 3T3-E1 pre-osteoblasts has
also been investigated by Lee et al. [46] in composites based on hydroxyapatite reinforced
with reduced GO, where it was underscored that the presence of GO had an important
contribution to the osteogenic differentiation of pre-osteoblasts. Moreover, cell clusters
are predominantly present in the systems where GO was added, supporting once again
the idea that the addition of GO has a beneficial impact on the cellular behavior during
cell-scaffold interactions. These results come in support of the gene expression patterns
found by qPCR, thus demonstrating the achievement of mature osteoblasts from 3T3-E1
precursors in contact with GO-enriched scaffolds.

Cell morphology and distribution within the biocomposites were qualitatively eval-
uated by SEM. The obtained images revealed 7 days post-induction that cell adhesion
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occurred on all composites (Figure 3(A1–A3)). Interestingly, cells on GCsGp/GO 0.5% wt.%
formed groups and populated the scaffolds’ pores. It can be observed that morphologically
these cells present the characteristics of osteoblast precursors, namely a smooth surface
structure with low amounts of mineral accumulation.
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After 28 days of in vitro differentiation, cell adhesion and spread are reconfirmed. It
can be observed that cells exhibit different morphological features in opposition to those
captured 7 days post-induction. In this latter case, it can be clearly distinguished that cells
secreted a mineralized matrix on the surface and cells presented a cuboidal shape, thus
demonstrating the presence of mature osteoblasts in the pores of the materials.

ARS is a widely used histological staining to evaluate extracellular bone matrix accu-
mulation and namely to qualitatively certify the observations on the SEM images. Seven
days after osteogenic induction, only low amounts of calcium were detected in all scaffolds
by ARS histological staining (Figure 3(Ai–Aiii)). Even so, these low quantities demonstrate
the inception of the osteogenic differentiation in murine pre-osteoblasts. No significant dif-
ferences were observed between the three tested composites within 7 days from induction.
Twenty-eight days after induction, significant calcium accumulation can be observed in
all the materials, in contrast to those found on day 7 (Figure 3(Bi–Biii)). It can be noticed
that GO-enriched materials presented significantly more calcium aggregates in comparison
to GCs and GCsGp scaffolds. Therefore, GO embedding in crosslinked GCs featuring
the best pre-osteoblast differentiation motifs for in vitro osteogenesis is also confirmed by
ARS staining.

Our previous studies [57–59] on GO-based composites underlined the active engage-
ment of the 2D nanomaterial in cell adhesion and differentiation but also its welcome
nature to catalyze cell viability and proliferation. Furthermore, we prove that functional
GO-reinforced GCsGp scaffolds could serve as an osteoinductive matrix in vivo: seizing
native cells to the site and harnessing differentiation into osteoblast in a non-osteogenetic
area. We chose to study ectopic bone formation in the subcutaneous dorsal space of mice
because osteoinductivity is clearly demonstrated, while the ability to develop bone in
this non-specific location is more challenging and, thus, more persuasive of the innate
properties of the scaffold [41,60,61].

2.3. Effects of Graphene–Oxide Porous Biopolymer Hybrids on Ectopic Bone Formation

In the in vivo study, we investigated the ectopic osteogenic differentiation potential
of the scaffolds, without any advantage (dedicated cells, specific matrix, suitable growth
factors) provided by an osteogenic area, wherein osteoblastic differentiation is stimulated
by different signaling pathways (BMP, NF-kB, MAPK, Wnt) [62].

In vivo osteogenesis stimulated by GO addition in GCs networks was evaluated by
quantitative analysis of biomarkers (seric ALP, opn and runx2) and the span of bECM
deposits. Furthermore, by confocal microscopy, protein expression of opn and runx2 was
illustrated, while histological staining results were captured under the light microscope.
All of the mice survived until the retrieval of the implanted specimens, and there were no
general or local complications.

ALP is an early marker of osteogenic differentiation. The serum expression variations
of ALP based on the nature of the scaffolds are not very high and borderline significant,
but it still registers an increase with the addition of Gp, however, and is hindered by the
presence of GO (Figure 4a). Of note, the presence of Gp as a crosslinking agent in the
second tested control in this present study has channelled beneficial effects with respect
to in vitro osteogenic differentiation, along the same lines with other studies that have
explored the addition of this biomolecule in scaffolds designed for BTE [62,63].

The profile of osteogenic differentiation in implanted GCs, GCsGp and GCsGp/GO
0.5% wt.% was evaluated by qPCR analysis for two osteogenic markers, namely runx2 and
opn. qPCR results indicated that 28 days post insertion, cells populated the material, since
both osteogenic opn and runx2 genes were expressed in vivo (Figure 4b).

At the scaffold implantation site, the early osteogenesis process was quickly activated,
showing an increased gene expression of the essential transcription factor runx2 toward
Gp and Gp/GO enhanced scaffolds [64]. Furthermore, cell differentiation into mineralized
matrix producing osteoblast phenotype was also stimulated by the GO enriched substrate
during late osteogenesis, as shown by the immunopositivity of opn, which was strongly
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expressed 28 days after implantation. In a similar pattern, it was documented for runx2
and opn during osteoblast differentiation in vitro.
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Figure 4. (a) Seric ALP activity 28 days post-implantation of GCs, GCsGp and GCsGp/GO 0.5% wt.%
Scaffolds to mice; in vivo osteogenic profile analyses (b) mRNA expression of opn and runx2 four
weeks post-implantation (statistical significance #,* p < 0.05); (c) confocal microscopy protein expres-
sion of opn (red) and runx2 (green) and cell nuclei stained in blue four weeks post-implantation.

After 28 days of in vivo state, both gene expressions were significantly lower in
GCs and GcsGp compared to the GO-reinforced scaffold (p < 0.05). These data suggest
the initiation of in vivo osteogenesis for all tested compositions, but with a significant
stimulation per the scaffold containing 0.5% GO. Thus, these results indicate that the
addition of GO brings an important contribution to the triggering and maturation of
in vivo osteogenic differentiation. The confocal microscopy revealed the same pattern for
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opn and runx2 positivity (Figure 4c). It can be noticed that runx2 protein expression (green
labeling) has been evidenced in the case of all three tested composites after 28 days of
in vivo ectopic implantation, suggesting the presence of bone cells within the structure of
the scaffold. Conversely, runx2 expression is stronger for all compositions as green staining
fluorescence is visually clearest. It is better regulated in vivo rather than in vitro, advancing
the idea that the master osteoblast regulator and transcription factor, promoter of key
collagen I, ALP, opn and osteocalcin downstream genes [65], better intervene in support of
osteoblast phenotype when in genuine physiological media. The obtained images indicate
a more intense labeling in the case of a GCsGp/GO 0.5% system. The same can be stated
in the case of opn protein expression (labeled in red), which has been found to be better
outlined in the system where GO was added. opn, nonetheless, down-regulates osteoclasts
cycles, is involved in bone matrix resorption, as it can bind calcium phosphates, and most
likely connects superficial cell receptors to the support matrix through its specific RGD
sequence [66]. For simply being expressed at the implantation site, one can analogize the
resembling phenomena of the native bone metabolism cycle to the incipient event of ectopic
bone formation within the implanted scaffolds.

Histological examination of the samples by H&E, Gömöri trichrome and ARS staining
was performed under a light microscope, which enabled the detection of cell infiltration
on all of the retrieved scaffolds implanted subcutaneously (Figure 5a). H&E staining
demonstrated that the number of cells spread into the GCsGp/GO 0.5% network is superior
to cell percolation observed against the controls. Furthermore, the highest amount of EC
matrix found embedded in the scaffold pores corresponds to GO composite too. The GCs
control, in particular, exhibits the poorest ECM penetration in the interconnected pore
network; still, well-defined sectors were formed, preferentially following the durotaxis
gradient (Figure 1c).

Gömöri’s trichrome staining was green positive in all samples, yet distinctly significant
for GCsGp/GO 0.5% scaffold (p < 0.001). In this respect, collagen subsequently connected
to create basic fibrous frameworks supporting bone formation. When reported to the bare
GCs control, the production and in bulk pore occupancy by the secreted collagen was
increased 3.7-fold upon GO and Gp supplementation and only by 1.2× for the scaffold
reinforced with crosslinking agent alone (Figure 5b). Moreover, we assert that calcium
mineral deposits developed against the foreign matrix of GCsGp/GO 0.5% and overlapped
across the collagen Gömöri’s positive areas is a prompt but firm mark of ectopic bone
formation. According to ARS staining, ectopic bone formation commenced mainly in
GO-filled scaffold (p < 0.001 compared to GCs), while less evidence of mineralization could
be identified in the two controls. In those cases, the nuclei of mineralization are rather
disconnected or in the process of convergence (Figure 5c).

The three staining assays concur in regards to the matter of the composition best
endowed to support de novo bone tissue ingrowth. Twenty-eight days post-implantation,
functional GO-reinforced 3D scaffold implants exhibited a better cellular infiltration and
matrix production compared to GCs and GCsGp. Conformal to these intermediary staining
outcomes, GO composites behaviorly outdo the in vivo performance of the controls. By its
distinct nature, GCsGp/GO 0.5% excels at indulging the ectopic percolation of individual
osteoblasts and finally the formation of the organic/inorganic osteogenic matrix.

GO embedded polymer-based frameworks for bone regeneration have been previously
reported by us [59]. Our experimental results support the finding that GO promotes ectopic
osteogenesis, as we have previously shown that with increasing graphene concentration in
chitosan scaffolds implanted in bone defects, early and late osteogenesis marker expression
is stimulated [57]. Other studies suggested innate osteoinductivity for GO, but the effects
were weak under those conditions [19,67,68].
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Figure 5. Histological analysis of the ectopic bone occurrence in GCs, GCsGp and GCsGp/GO
0.5% wt.% Scaffolds 28 days post-implantation. (a) Representative H&E, Gömöri trichrome and ARS
stainings. Scale Bar 20 µm; (b) The analysis of the area of collagen domains according to Gömöri
staining indicated that significantly more collagen was secreted within GCsGp/GO 0.5% wt.% Group
as opposed to GCs group (* p < 0.001); (c). ARS staining indicates that significantly more calcium
mineral deposits are present in the GCsGp/GO 0.5% wt.% group than GCs group (* p < 0.001).

2.4. Dynamic Changes in Graphene–Oxide Porous Biopolymer Hybrids during Ectopic
Bone Formation

Biomaterials, after explantation on day 28 after surgery, are only occasionally charac-
terized from the morphological point of view and scarcely structurally. This lot, however,
after retrieval, was subjected to some unconventional analyses to uncover possible clues



Int. J. Mol. Sci. 2022, 23, 491 12 of 26

pointing towards the certification of biochemical and immunohistochemical results. Firstly,
µCT provided the global image of ectopic mineral formed inside each specimen, and cus-
tomized image data analysis allowed a volumetric assessment of bone amount. By SEM,
sharpened morphological aspects were provided, while some new bECM structuration
theories were outlined empirically. FTIR and XRD spectra granted fundamental insight into
the bi-phasic nature of the neotissue, from the angle of its patterning with respect to the
remnant scaffold and the layout of the implant after long exposure to physiological media.
In addition, structural analysis enables the corroboration of the osteoblast’s phenotype
with the structuration of authentic bone by way of associating detected attributes of the
explants to the acknowledged particularities of genuine tissue.

GO intrinsic osteoconductivity is also highlighted by the results obtained through SEM
(Figure 6) and µCT (Figure 7) investigations. The SEM images of functional GO-reinforced
GCsGp scaffolds showed a higher population of cell scaffolds with a differentiated phe-
notype towards osteoblasts and extensively secreted matrix, compared to GCsGp and
GCs, respectively (Figure 6). On the pristine polymer scaffolds, bECM was formed in
a lower amount and, based on the image contrast and surface texture, with a higher
organic:inorganic ratio. The new collagenous deposits appear to be heavily laden with
inorganic phase, most probably germinal calcium phosphates; still, it is not until the mat-
ter of GO composition that the phosphate phase of the ECM exceeds the organic quota.
Furthermore, roughness is a heightened, topographical feature that favors the adhesion of
circulating bone progenitor cells and the growth of tissue overall.
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Figure 6. SEM micrographs of GCs, GCsGp and GCsGp/GO 0.5% wt.% scaffolds 28 days post-implantation.

Moreover, these findings are supported by the E modulus measurement. EGCsGp/GO 0.5,
despite being within the order of kPa while native bone sites reach 26 GPa [69], significantly
favors the bone formation compared to the two control subjected in our study. GO, besides
patterning the architecture of the 3D network [15], provides loci of amplified stiffness that
delineates cell-friendly durotactic gradients [58], in particular, beneficial for BTE [70].

µCT rendering showed that the biomineral deposits after 28 days of subcutaneous
implantation reside preferentially on the outskirts of the scaffold, penetrating the volume
to a lower extent. This phenomenon might be due to the fact that, initially, the recruited
progenitor cells populate the interface of the living tissue with the artificial material. The
proliferation within the volume can also be influenced by the size of the pores and the cell’s
robustness to infiltrate through the interconnecting channels.

The resolution of the scan is 1.5 µm (pixel equivalent), so individual cells cannot be
displayed; however, the aspect of the inorganic phase of the newly formed bECM suggests
that tissue formation occurs in clusters casually spread at the interphase. These organiza-
tional domains feature a dense and compact aspect, as well as rough topography, resulted
from the agglomeration of quasi-spherical phosphate deposits with slight irregularities.
Incipient clusters of mineralization can also be identified in the innermost areas of the
scaffolds, adhered to the resilient stiffer walls.
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Figure 7. Colorized µCT images of (a) GCs, (b) GCsGp and (c) GCsGp/GO 0.5% wt.% scaffolds
explanted 28 days; (*) marks indicate captures whereby the bi-phasic nature of the samples was
separately highlighted and (**) marks indicate sectional views of the central morphology of the
samples. (d) Charted data correlating mechanical properties and mineral formation based on the
constitutional nature of the composites.

The 3D analysis enables the visualization of the dense crystalline phosphate agglomer-
ation in light shades of gray and white while the lower density domains (original porous
composite and collagenous share of the bECM) in darker tones. For a better visualization,
in Figure 7a,a*,b,b*,c,c*, the mineral deposits were depicted in colors and the organic phase
in white. Figure 7a**,b**,c** illustrates various angles and cross-sections of the tomograms
without color alterations. Crystalline domains are contrastingly highlighted from the non-
mineralized areas and delineate a gradient density sketch whereby the explant resembles
a light-cored/dense-shelled model, as depicted in the cross-sectional views in Figure 8.
Furthermore, the porous architecture of the materials is preserved in all compositions, even
in the case of the uncrosslinked control. This remarkable stability might be due to the
fact that the subcutaneous implantation inferred space constrictions, which limited the
expected solvability.

The CT datasets processing enabled the determination of organic/inorganic fractions
in each composite, as cataloged in Table 1. Considering the scanning resolution, the total
volume of the object was calculated by counting the three-dimensional pixel building blocks
(voxel) of the tomograms and translating the voxel size to metric units; the object volume
does not include the volume of the pores within. Mineral volume and non-mineral volume
were determined by establishing a threshold level in the gray scale pallet of each tomogram,
a clear separation of the inorganic/organic phases based on the image contrast. These
quantitative data are detailed in Table 1, and the mineral percentage in each composition
(vs. the object volume) is consistent with immunohistochemical and biomarkers assays and
substantiates these findings.
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Table 1. Quantitative µCT measurements performed on the GCs, GCsGp and GCsGp/GO
0.5% samples.

Ex Vivo Sample Object (Total)
Volume (mm3)

Mineral
Volume (mm3)

Non-Mineral
Volume (mm3)

Mineral
Percentage (%)

GCs 9.85 2.11 7.74 21.47
GCsGp 9.33 2.99 6.34 32.05

GCsGp/GO 0.5% 10.11 3.96 6.15 39.23

In addition, we plotted the mineral ratios of pairing composites against compression
modulus ratios (Figure 7d) to survey the correspondence between the mechanics and osteo-
genesis, indicating linear and univocal proclivity between the two features. The durotaxis
(cell guidance according to stiffness gradients) of GCs, GCsGp and GCsGp/GO 0.5% can
be pinpointed by unified interpretation of compression test results and quantitative µCT
data; the ratios between the E values and mineral formation follow a linear slope of direct
proportionality. Durotaxis by itself confined the performance of the formulations (under
both in vivo and in vitro angles) to linear variability.
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The nature of the dense crystalline domains in particular was further overviewed
by FTIR and XRD. Figure 8 depicts the FTIR complex spectra of the explanted materi-
als merging specific signal of both initial scaffolds and de novo material formation. The
νOH broad domain of 3600–3000 cm−1 displays a shredded profile due to the plethora
of local maximums of absorption connected to H bonding in remains of the initial im-
planted materials, the newly formed hybrid bECM and the interface of the two (Figure 8a).
Furthermore, as some suggest, the domain can be seen as a heterogeneous area where
proteic νNH signals (often ~3400 cm−1) [71] mingle with the νOH band [30]. Thoroughly
addressing the convoluted band in similar scaffolding materials can be of remarkable
interest in understanding the structural evolution of bioactive materials for BTE during
the process of integration and regeneration. Symmetric and asymmetric stretching of the
C–H bond appear within the 3000–2800 cm−1 range, indicating either specific to residues
on the polysaccharide backbone [72] or lipidic tainting/formations in the bECM [73,74]; in
GCs (2924 and 2858 cm−1) and GCsGp (2922 and 2850 cm−1), the maximum of absorption
manifests slight shifts probably due to the important variations in the amount of new min-
eral formations and the molecular constraints that emerge as a result. In the GO composite,
the symmetric stretching signal disappears as a broad domain in which a maximum of
2951 cm−1 is singularized.

Regarding protein structuration, amide I, II and III signals occur in all compositions. A
signal at ~1730 cm−1 distinguishes with the Gp crosslinking and, consequently, with a GO
addition that can be attributed to νC=O in amide I. Furthermore, the peaks in the range of
1700–1500 cm−1 are linked to amidic vibrations [75]. The amide II signal is weaker in GCs
(1544 cm−1) due to the less chemically stable structure and incidental gelatin dissolution
and increases with the control material’s crosslinking and compositing, manifesting a blue
shift towards 1547 cm−1 [76]. Nonetheless, amide I fingerprint redshifts in GCsGp and
GCsGp/GO 0.5% (towards 1643 and 1647 cm−1) [77]. In a similar fashion, the signals are
stronger as a result of the collagen-based organic matrix formed in vivo and probably also
as a result of the tendency of gelatin to renaturate to collagenic triple helical form. Amide
III absorption peaks in the 1247–1240 cm−1 range [78]. GCs and GCsGp also exhibit weaker
peaks at 1321 and 1375 cm−1 and 1335 and 1398 cm−1, which can be attributed to CO2
saturation of Ca2+ phosphates, whereas the GO composite features a stronger single peak
at 1386 cm−1 [79,80]. Such variations indicate intimate interactions of mineral phases with
the organic artificial matrix as well as the collagenous bECM. With respect to control, Gp
and GO customization of the fish gelatin–chitosan hybrid generates material structurations
that more resemble the natural bone molecular architecture [81]. Crosslinking on its own
could partly renaturate the gelatin structure, while GO was shown to pattern the protein’s
helicity closer to its natural state [82]. Moreover, the appearance of more defined peaks is
supported by the protein rich content of the bECM secreted in the in vivo models. Initial
matrix footprints emerge at ~1450 cm−1, where δCH2 signals lodge, related in particular to
the proline ring [83].

In GCs, the strongest signal originates at 1055 cm−1 for the vibrations of νPO4
3−

moiety in stoichiometric apatite formations [84]. After GCs crosslinking and GO embedding,
its broadness is diminished and the peaks are split to 1061, 1034 and 1066, 1022 cm−1,
respectively [85]. The lower wavenumbers emerging are indications of CO3

2− substitutions
of Ca2+ and, thus, of fluctuations in crystallinity. The 1061/1034 and 1066/1022 ratios are
flipped since the lower wavenumber absorbance is more enhanced in the case of GCsGp/Go
0.5% and still, within the domain of 1000–900 cm−1, particularly for the unsubstituted
(crystalline) apatitic environment, a sharpening tendency is observed [85]. The decline
in the crystallinity of in vivo biominerals is also partway supported by the 1164 cm−1 (in
GCsGp) and 1165 cm−1 (GCsGp/Go 0.5%) peaks of less crystalline apatites; in addition,
within the range of 900–750 cm−1, pyrophoshate specific signals emerge as markers of
less ordered Ca2+ domains while above 600 cm−1, νOH vibrations from stoichiometric
hydroxyapatite are highlighted.



Int. J. Mol. Sci. 2022, 23, 491 16 of 26

In the fingerprint region of 600–400 cm−1 (Figure 8b), the control (
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The main target of XRD studies was to establish the influence of GO on GC composites’
general mode of structuration and ability to encourage osteoinduction by crystallinity
index determination. According to the spectra displayed in Figure 9a, the XRD pattern
of unloaded composite consists of two diffraction peaks located at 8.5◦ and 11.7◦, one
weak diffraction at 17.9◦ and a broad band around 21.5◦ [2]. The intensity maxima at 8.5◦

and 17.9◦ are assigned to the G domains (organized/unorganized). Their correspondent
d-spacing values of 1.03 and 0.49 nm are in direct relation to the diameter of triple helical
structures (lateral packing of gelatin) and to the isotropic amorphous region (the distance
between amino-acid components), respectively [89,90]. The peak from 11.7◦ and the
broadening domain at 21◦ ascribe to the semi-crystalline chitosan [91,92].
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XRD spectra revealed that the addition of GO within the GCs matrix seems to cause
alterations [2] within the unmodified samples spectrum, as the 11.7◦ peak associated with
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chitosan’s crystal I [93] and 21◦ band paired to the crystal II structure [94] significantly
sharpen. Hence, it can be assumed that the identified sharpening is associated with a
higher degree of crystallinity of the polysaccharide [95]; crystallization firstly occurred
after crosslinking and accelerated with the GO embedding [30] within the matrix. This is
confirmed by the crystallinity index (CI) that resulted from

CI = [(Icr − Iam)/I110] × 100, (1)

where Icr is the maximum intensity of the diffraction peak of Cs, and Iam is the intensity
of amorphous diffraction at 2θ = 16◦ [96]. CI values determined for GCs, GCsGp and
GCsGp/GO 0.5% were: 30.84◦, 32.4◦ and 33.55◦, plotted in Figure 9c against the ones
calculated for the ex vivo specimens.

G–Cs interactions partially result from hydrogen bonds and electrostatic interactions
between carbonyl, amino and hydroxyl groups in polymer chains and genipin crosslink-
ing. Generally, they facilitate the miscibility of the protein and polysaccharide but im-
pede gelatin renaturation by decreasing the number of triple helices in the composite
mass [97]. Nonetheless, by adding GO, gelatin renaturation reoccurs, as indicated by the
8.5◦ peak individualization.

The lack of GO signals within the FTIR spectra can be due to equipment limitations
of detecting both the well dispersed and low amounts of GO sheets. Nevertheless, XRD
characterization pointed out the fact that once GO sheets are incorporated within the
hybrids, a slight sharpening of the maximum at 21◦ occurs, as well as an increase in intensity
for the peak at 11.7◦ can be observed, suggesting that GO holds the ability to promote GCs
crystalline features. With respect to the GCs pair affinity, the partial overlapping of the 17.9◦

peak with the 21◦ band is the result of crosslinking between the different species’ chains.
The absence of GO specific intensity maximum from the composite’s spectra supports the
idea of adequate GO nanosheet dispersion throughout the materials volume.

The XRD patterns of explanted scaffold (Figure 9b) reveal the tendency of the material
to rearrange in more ordered patterns with Gp and moreover with GO addition. Explanted
GCs exhibit a rather amorphous structuration with the exception of three sharper but weak
peaks in the range of 31–34◦. These signals appear in the more complex scaffolds too,
featuring fewer broad extents and stronger intensities. Furthermore, the existence of sharp
peaks, which generally characterize the hydroxyapatite at 25.9◦, 28.9◦, 31.9◦/32.4◦/32.0◦,
32.3◦/32.1◦/32.0◦, 33.0◦/33.2◦/33.2◦, 46.7◦, 49.8◦ and 53.2◦ corresponding to the diffraction
planes (002), (120), (121), (112), (300), (222), (123) and (004) [98], respectively, indicate the
presence of native-similar bECM in the explant structure. Meanwhile, the patterns of
the crosslinked and composite matrices show two broad diffraction peaks centered at
2θ 11◦ and a broad band above 16◦, which indicates their semi-crystalline nature. The peak
identified at 11◦, as well as the broad band are attributed to the semi-crystalline structure
of chitosan and the unorganized and endorsed organized domains of gelatin.

The XRD spectra suggest that overall crystallinity increases in the following order:
GCs < GCsGp < GCsGp/GO 0.5%. The CI index calculated for the three specimens follow
the same trend—linearly correlated with the CI of original scaffolds. This suggests that
FTIR analysis cannot support crystallinity observations on its own; to reiterate, the FTIR
spectra pointed out that upon customizing the control material, contrasting variations in
stoichiometric and non-stoichiometric apatite vibrations were detected, with difficulty in
providing a substantial judgment on the most ordered composition.

3. Materials and Methods
3.1. Scaffold Preparation

Graphene oxide powder, crab shell-derived medium molecular weight chitosan with
75–85% deacetylation degree, coldwater fish gelatin, genipin (purity > 98%—HPLC grade),
and acetic acid (99.7%) were purchased from Sigma Aldrich (St. Louis, MO, USA) and
used without prior purification. The composites’ synthesis was carried out in double
distilled water.
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Gelatin/chitosan (GCs), genipin crosslinked gelatin/chitosan blend (GCsGp) and
0.5 wt.% graphene oxide-reinforced genipin crosslinked gelatin/chitosan blend (GCsGp/GO
0.5%) scaffolds were prepared under identical conditions as previously reported [13]. Briefly,
a GO dispersion procedure was carried out using a VCX 750 ultrasonic device from Sonics
and Materials, Inc. (Newton, CT, USA) provided with a Ti-6Al-4V probe tip and a 750 W
processor operating at 20 kHz. The amplitude of the probe tip vibrations was set at 70%
throughout the 1 h GO exfoliation procedure. Gelatin was solubilized in water/GO aqueous
dispersions (5% w/v) and mixed with the chitosan solution prepared in mild acidic solution
(1% v/v). For a total of 50 mL solution, 8.33 mL of gelatin solution was homogenized with
41.67 mL chitosan solution. The crosslinking was carried out with genipin (1% w/w). Next,
materials were frozen at −80 ◦C and freeze-dried (−55 ◦C).

3.2. Former Material Characterization
3.2.1. Compression Tests

Compression tests were performed using a Brookfield CT3 texture analyzer equipped
with a 4500 g cell. Freeze-dried samples with a diameter of 5 mm and a height of 3 mm
were swollen at equilibrium, removed from the aqueous media and blotted dry before
testing. The compressions were performed at a speed of 0.05 mm/s at room temperature.
All measurements were performed in triplicate. A stress–strain graph was plotted using
the dedicated software, and the compression modulus (E) was computed at 2% strain (in
the linear part of the curve).

3.2.2. Micro-Computed Tomography (µCT)

Freeze dried specimens of the GCs, GCsGp and GCsGp/GO 0.5% wt.% scaffold
batch were scanned with Bruker µCT 1272 high-resolution equipment under the following
conditions: no filter, 45 kV source voltage, 200 µA current intensity, 550 ms exposure per
frame. The scanning was performed while samples rotated 180◦, with a rotation step of
0.15. Every recorder projection was the averaged result of 6 acquisitions. Throughout
the scaffold lot, the scanning resolution (image pixel size) was fixed at 4 µm. Tomogram
reconstruction was performed in Bruker NRecon 1.7.1.6 software (Kontich, Belgium) and
rendered in CTVox 3.3.0.0 (Bruker), while sample analysis was performed in CTAn 1.17.7.2
software (Bruker, Kontich, Belgium). For each composite, 4 cylindrical volume-of-interest
(VOI) datasets (constrained in terms of diameter and height) were extracted. VOIs were
subjected to an image-processing task list consisting of thresholding, despeckling, and 3D
analysis (to quantify wall thickness and “intersection surface”). Wall thickness distribution
was depicted while the values calculated for the intersection surface are tabulated in the
adjacent inset (both with standard deviation ± SD).

3.3. In Vitro and In Vivo Biological Assessment
3.3.1. In Vitro Differentiation of 3T3-E1 Cell Line in Contact with GCsGp/GO Biomaterials

Murine pre-osteoblasts from the MC 3T3-E1 cell line (ATCC) were seeded on GCs,
GCsGp and GCsGp/GO composites at a density of 6.5 × 105 cells/cm2 and incubated
for 24 h in standard conditions (37 ◦C, 5% CO2 and humidity). Then, culture media
was discharged and replaced with a commercially available osteogenic induction cocktail
media (StemPro Osteogenesis Differentiation Kit, Thermo Fischer Scientific, Waltham, MA,
USA). The osteogenic process was monitored for 28 days of in vitro cell culture and the
differentiation media was changed every 3 days. The in vitro differentiation was evaluated
at 7 and 28 days post-induction.

3.3.2. Animals and Subcutaneous Mouse Model of Ectopic Bone Formation

CD1 male mice (6 weeks old, weight: 20–25 g) were used. Mice handling was car-
ried out in accordance with the EU Directive 2010/63/EU and national legislation (Law
No.43/2014). All experimental procedures have been approved by the Vasile Goldis West-
ern University Ethics Committee for Research. Animals were housed in individually
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IVC cages, with ad libitum access to food/water, with standard conditions of tempera-
ture/relative humidity and a light/dark cycle of 12/12 h.

Surgical procedures were executed under anesthesia by intraperitoneal (i.p.) ad-
ministration of 100 mg/kg b.w. ketamine hydrochloride and 10 mg/kg b.w. xylazine
hydrochloride. Scaffolds were implanted ectopically into a subcutaneous pocket in the
dorsum of the animals (Figure 10), randomly assigned to three groups (n = 10/group):
1 (GCs), 2 (GCsGp), 3 (GCsGp/GO 0.5 wt.%). After 28 days, mice were euthanatized, and
the subcutaneous explants were removed and collected for further analysis.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 18 of 27 
 

 

 

Figure 10. Experimental design. (a) Preparation of subcutaneous pocket in the dorsum of mice; (bb, 

c) ectopic subcutaneous implantation of the scaffold; (d) closure of the overlaying skin; (e) scaffolds 

before implantation; (f) GCsGp/GO 0.5% wt. scaffold 28 days after subcutaneously implantation to 

mice. 

G–Cs interactions partially result from hydrogen bonds and electrostatic interactions 

between carbonyl, amino and hydroxyl groups in polymer chains and genipin crosslink-

ing. Generally, they facilitate the miscibility of the protein and polysaccharide but impede 

gelatin renaturation by decreasing the number of triple helices in the composite mass [97]. 

Nonetheless, by adding GO, gelatin renaturation reoccurs, as indicated by the 8.5° peak 

individualization. 

The lack of GO signals within the FTIR spectra can be due to equipment limitations 

of detecting both the well dispersed and low amounts of GO sheets. Nevertheless, XRD 

characterization pointed out the fact that once GO sheets are incorporated within the hy-

brids, a slight sharpening of the maximum at 21° occurs, as well as an increase in intensity 

for the peak at 11.7° can be observed, suggesting that GO holds the ability to promote GCs 

crystalline features. With respect to the GCs pair affinity, the partial overlapping of the 

17.9° peak with the 21° band is the result of crosslinking between the different species’ 

chains. The absence of GO specific intensity maximum from the composite’s spectra sup-

ports the idea of adequate GO nanosheet dispersion throughout the materials volume. 

The XRD patterns of explanted scaffold (Figure 9b) reveal the tendency of the mate-

rial to rearrange in more ordered patterns with Gp and moreover with GO addition. Ex-

planted GCs exhibit a rather amorphous structuration with the exception of three sharper 

but weak peaks in the range of 31–34°. These signals appear in the more complex scaffolds 

too, featuring fewer broad extents and stronger intensities. Furthermore, the existence of 

sharp peaks, which generally characterize the hydroxyapatite at 25.9°, 28.9°, 

31.9°/32.4°/32.0°, 32.3°/32.1°/32.0°, 33.0°/33.2°/33.2°, 46.7°, 49.8° and 53.2° corresponding 

to the diffraction planes (002), (120), (121), (112), (300), (222), (123) and (004) [98], respec-

tively, indicate the presence of native-similar bECM in the explant structure. Meanwhile, 

the patterns of the crosslinked and composite matrices show two broad diffraction peaks 

Figure 10. Experimental design. (a) Preparation of subcutaneous pocket in the dorsum of mice;
(b,c) ectopic subcutaneous implantation of the scaffold; (d) closure of the overlaying skin;
(e) scaffolds before implantation; (f) GCsGp/GO 0.5% wt.% scaffold 28 days after subcutaneously
implantation to mice.

3.3.3. Biochemistry

Blood samples were collected by cardiac puncture into sterile containers, without
anticoagulant. Biochemical analysis was carried out to determine the serum level of alkaline
phosphatase (ALP) using a biochemical analyzer (Mindray BS-120, ShenzenMindray Bio-
Medical Electronics).

3.3.4. Histology

The in vitro samples and the in vivo explants were fixed for 24 h in 4% paraformalde-
hyde, embedded in paraffin and cut in 5.0 µm thick sections. All samples were stained with
Hematoxylin and Eosin (H&E) for morphological analysis and Alizarin Red S (ARS), to
label calcium deposits as indicative of mineralization from cells displaying an osteogenic
phenotype. Ex vivo explants were also stained by a Gömöri’s trichrome kit (Leica Biosys-
tems) to demonstrate collagen synthesis. Microscopic sections were analyzed with an
Olympus BX43 microscope.
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3.3.5. Immunohistochemistry

Immunohistochemical staining was performed on in vitro slides, with anti-mouse
RUNX2 (diluted at 1:100; sc-390715, Santa Cruz Biotechnology, CA, USA) and OPN (diluted
at 1:100; sc-73631, Santa Cruz Biotechnology, CA, USA) primary antibodies. For visualiza-
tion, Novocastra Peroxidase/DAB kit (Leica Biosystems, Nussloch, Germany) was utilized,
according to the manufacturers’ instructions.

3.3.6. Immunofluorescence

The in vivo sections were incubated with primary antibodies against RUNX2 (di-
luted at 1:100; sc-390715, Santa Cruz Biotechnology, CA, USA) and OPN (diluted at 1:100;
sc-73631, Santa Cruz Biotechnology, CA, USA), and then with secondary antibody con-
jugated with Alexa Fluor 488 flourescent dye (diluted at 1:200; A-11029, Thermo Fischer
Scientific, Waltham, MA, USA). Finally, cell nuclei were visualized by DAPI and viewed un-
der the confocal Leica TCS SP8 microscope system (Leica Biosystems, Nussloch, Germany).

3.3.7. qPCR Analysis of Osteogenic Markers

Total RNA isolation was achieved by using TRIzol (Thermo Fisher Scientific, Waltham,
MA, USA) and further RNA integrity number (RIN) was analyzed using an Agilent
2100 bioanalyzer. cDNA was synthesized using an iScript DNA synthesis kit (BioRad,
Hercules, CA, USA) and was amplified by PCR using Veriti 96-well Thermal Cycler (Ap-
plied Biosystems, Waltham, MA, USA). qPCR was performed using SYBR Select Master
Mix (Thermo Fisher Scientific, Waltham, MA, USA) and Viia7 equipment (Thermo Fisher
Scientific, Waltham, MA, USA). Every sample was evaluated in triplicate and the gene ex-
pression of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as a reference
gene (Table 2).

Table 2. List of primers used for qPCR analysis of osteogenic differentiation in 3T3-E1/GCsGp/
GO biosystems.

Genes Primers

opn Forward: 5′-CTGGCAGCTCAGAGGAGAAG-3
Reverse: 5′-TTCTGTGGCGCAAGGAGATT-3

runx2 Forward: 5′-ATCCCCATCCATCCACTCCA-3
Reverse: 5′-GGGGTGTAGGTAAAGGTGGC-3′

gapdh Forward: 5′-AACTTTGGCATTGTGGAAGG-3′

Reverse: 5′-ACACATTGGGGGTAGGAACA-3′

3.3.8. Statistical Analysis

The resulted data were statistically evaluated using one-way ANOVA method fol-
lowed by a Bonferroni multiple comparison test. For this matter, GraphPad Prism 6.0
software (San Diego, CA, USA) for Windows 10 was used. All results are presented
as mean ± SD of n = 3 experiments, and p-values < 0.05 were considered to be
statistically significant.

3.4. Ex Vivo Material Characterization (28 Days Post-Implantation)
3.4.1. Fourier-Transform Infrared Spectrometry (FTIR)

FTIR investigations were carried on a SHIMADZU 8900 (Kyoto, Japan) on the subcu-
taneously explants, collected 28 days after material’s implantation, under Attenuated Total
Reflectance (ATR) mode. The spectra resulted from the average of 32 acquisition with a
resolution of 4 cm−1 over the range of 400–4000 cm−1.

3.4.2. X-ray Diffraction (XRD)

X-ray diffraction measurements were performed at room temperature using a Pan-
alytical X’Pert Pro MPD (Malvern, UK) instrument provided with a Cu Kα radiation
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source. For analogy reasons, XRD spectra were recorded before implantation and 28 days
post-implantation.

3.4.3. Scanning Electron Microscopy (SEM)

Both of the in vitro and in vivo samples were processed according to the technique
described previously [33] and analyzed under scanning electron microscope—Quanta
Inspect F SEM device equipped with a field emission gun (Fei Company, Hillsboro, OR,
USA) with 1.2 nm resolution.

3.4.4. Micro-Computed Tomography

Explated scaffolds were scanned with the same equipment as before the surgical
procedure, under different parameters: 50 kV source voltage, 200 µA source current,
1200 ms exposure, 1.5 µm image pixel size. The rotation step was increased to 0.2◦ while
the scan was performed upon a 360◦ sample rotation to avoid artifacts that may appear
due to the presence of high-density mineral. Every projection was the averaged result of
3 acquisitions. Reconstruction, 3D illustration and bone mineral analysis were carried out
in the same dedicated pieces of software provided by Bruker.

4. Conclusions

The aim of this study was to design a porous biopolymer hybrid as solutions to the lack
of autologous bone needed to regenerate large defects in orthopedics. This is a pioneering
account that graphene oxide incorporation in fish gelatin/chitosan/genipin scaffolds up-
regulates both osteogenic differentiations in vitro and above all bone formation in ectopic
sites when implanted in mice models.

To sum up, the data presented in this paper demonstrated that the addition of GO
to the GCsGp composite enhances the expression of runx2 and opn during osteogenic
differentiation. Moreover, data on collagen production and ectopic calcium deposits within
the explanted composites originated from histology staining and underlined the capacity
of the biomaterial alone to recruit bone cells in an ectopic site. Further, µCT results pro-
vided a measure of quality control over the Ca2+ biomineral survey. Overall, GCsGp/GO
0.5% wt was validated as the material with the strongest osteoinductive character, empha-
sizing, once again, the high gain from low GO supplementation of the polysaccharide-
protein conjugate.

Bone formation within artificial materials is a process that is far from being fully com-
prehended down to its finely tuned mechanisms especially in the case of multi-component
materials, which lack well-known bone-forming inducers and are structurally extremely
complex. The present study covers the multi-angle investigation of a substrate of G and
Cs, which we customized to a more bone-oriented scaffold by Gp crosslinking and GO
embedding. These optimizations lead to a composite with osteoinduction-friendlier chem-
istry, crystallinity and durotaxis. The previously discussed results corroborate an overview
understanding of material structuration and the GO-enabled features that best favor best
the bone tissue formation in the experiment designed for this study. Quantitatively, the
bECM secreted by the cells recruited to the implantation site was higher in the GO compos-
ite with the remark that the stoichiometry of in situ formed apatite was slightly below the
GCs and GCsGp.

Among our perspectives, we consider addressing this issue upon a longer timeframe
in order to gain insights on the osteoinductive manifestation of GCsGpGO materials and
its aftereffects with respect to time. The variety of physical particularities and key chemical
signals it provided enables the ranking of this survey as the first report on the osteogenic
differentiation in vitro and bone formation in ectopic sites on the echelon of Ca2+ free GO
embedded GCs blends.
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