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Abstract: A growing body of literature is available about the valorization of food by-products to
produce functional foods that combine the basic nutritional impact with the improvement of the health
status of consumers. In this context, this study had two main objectives: (i) An innovative multistep
extraction process for the production of a refined olive oil enriched with phenolic compounds
(PE-ROO) extracted from olive pomace, olive leaves, or grape marc was presented and discussed.
(ii) The most promising PE-ROOs were selected and utilized in in vitro and in vivo trials in order
to determine their effectiveness in the management of high fat diet-induced-metabolic syndrome
and oxidative stress in rats. The best results were obtained when olive leaves were used as
source of phenols, regardless of the chemical composition of the solvent utilized for the extraction.
Furthermore, while ethanol/hexane mixture was confirmed as a good solvent for the extraction
of phenols compounds soluble in oil, the mix ROO/ethanol also showed a good extracting power
from olive leaves. Besides, the ROO enriched with phenols extracted from olive leaves revealed
an interesting beneficial effect to counteract high fat diet-induced-metabolic disorder and oxidative
stress in rats, closely followed by ROO enriched by utilizing grape marc.

Keywords: phenol-enriched olive oil; grape marc; olive pomace; olive leaves; phenols; in vitro model;
in vivo model; cardiovascular diseases; cancer diseases; metabolic syndrome

1. Introduction

In last few decades the increasing popularity of the Mediterranean diet (MedDiet) can be explained
by both its organoleptic properties together with the health benefits it confers [1]. In particular, the high
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intake of vegetables, fruits, legumes, nuts, cereals, and monounsaturated fat (e.g., olive oil) that
characterize this dietary pattern has been associated with positive effects in improving cardiovascular
health together with a reduction of both the cognitive decline and the risk of development of
Alzheimer’s disease [2]. The beneficial effects were shown by the MedDiet also in the “Metabolic
Syndrome” (MetS) and are mainly due to the antioxidant and anti-inflammatory properties of the
phytochemical components including phenols, mono- and poly-unsaturated fatty acids (MUFA and
PUFA), tocopherols [3,4].

In the frame of MedDiet, the main source of fat is represented by virgin olive oil (VOO) that can be
defined as a functional food endowed with a healthy profile thanks to the pleiotropic effects showed
by tocopherols and MUFA (represented by oleic acid) together with the phenolic fraction [1,5].

According to the European Union legislation [6], olive oil is classified into four categories reflecting
its quality and sensorial properties. Among them, ROO (refined olive oil) is a low-quality oil that
undergoes chemical or physical refining to become edible and it is gaining importance in the food
industry [1,7,8]. Fatty acid composition is similar in all the commercially available types of oils but
minor components, mainly phenolic compounds that are assumed to be one of the healthiest fractions
of olive oil, are depleted in ROO as they are lost during the extraction and refining procedures [1].
Due to the reduced or totally absent content of phenols [9,10], ROO is unstable and subjected to rapid
oxidation during storage [8,11–13]. Furthermore, since organoleptic properties of ROO are very poor,
it is usually commercialized and consumed as a component of mixed olive oil, which is ROO with a
low percentage (10–15%) of VOO to improve palatability.

Given their variable composition, a large variety of mixed olive oil (OO) can be found in the
market, with not only quite different total polyphenol content but also quite different polyphenol
compositions [14]. Thus, a good strategy to ensure an optimal intake of polyphenols through habitual
diet would be to produce enriched olive oil with well-known bioactive polyphenols [15–21].

On the other hand, the oxidative degradation of lipids, with particular regards to the oils
with minimal or no phenol content, represents a main concern for the shelf life assessment of
a great part of foodstuffs [3,13,14] so, in recent decades, the addition of external antioxidants in
the recipes to slow down as much as possible the lipid degradation in food material, has gained
growing attention [22,23]. In this context, while synthetic antioxidants (i.e., butylhydroxyanisole,
butylhydroxytoluene, tert-butylhydroquinone) have been used as food additives to overcome the
stability problems of oils and fats, recent reports reveal that these compounds may be implicated in
many health risks, including carcinogenesis [24]. Due to these safety concerns, there is an increasing
trend among food scientists to substitute these synthetic antioxidants with natural biological active
substances mainly extracted from plants and vegetables as well as food by-products (i.e., raw materials
derived from the same olive tree or the olive mill by-products) [25,26].

In the last few years, a growing body of literature has become available about the valorization
of olive pomace, olive leaves, and grape marc as a source of valuable antioxidant compounds to be
used to produce functional foods in a circular economy concept [25–30]. Besides, several studies
have focused on the optimization of new methods for the production of OO and ROO enriched
with natural antioxidants (namely phenols, tocopherols, carotenoids) extracted from different food
wastes [12,13,26,31]. However, to the best of our knowledge, the main issues related to the industrial
production of phenol-enriched refined olive oil (PE-ROO) are yet to be solved and no data is available
in the literature on the feasibility of the use of grape marc, olive leaves, and pomace as a source of safe
natural antioxidants to be used with this specific aim.

According to Sanchez-Medina and coworkers [18], there are three alternatives in the literature
for oil enrichment with these high added value compounds from food by-products: (1) liquid–liquid
extraction, in which the oil is put into contact with an alcoholic extract of phenols, which are transferred
to the oily phase as a function of their distribution factor, removing the alcoholic phase by centrifugation;
(2) solid–liquid extraction, in which the purified phenolic extract is dried under appropriate conditions
and the paste obtained is partially dissolved into the oil as a function of the solubility of the different
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paste components in the oily phase; (3) a combination of these procedures, in which the alcoholic
extract and the oil are put into contact and the two-phase system is subject to alcohol removal in a
rotary evaporator.

In this context, this study had two main objectives:

(i) In the first part of the paper an innovative multistep extraction process for the production of
a PE-ROO based on the use of the ROO as a component of the extraction mixture to recover
high-added-value phenolic compounds from olive pomace, olive leaves, and grape marc was
presented and discussed.

(ii) To verify if the nutraceutical value of the enriched olive oils was really improved, in the second
part of the research the most promising PE-ROOs were selected and utilized in in vitro and in vivo
trials in order to determine their effectiveness in the management of high fat diet-induced-MetS
and oxidative stress in rats.

2. Materials and Methods

2.1. Chemicals

Acetic acid, ethanol, sodium carbonate, ethoxyethane, iso-octane, chlorane 37.0%, sodium
hydroxide 0.1 N, sodium thiosulphate 0.01 N, potassium iodide, starch indicator solution
1.0%, ABTS (2,20-azinobis(3-ethylbenzothiazoline-6-sulphonic acid)), 4-(2-Hydroxyethyl)phenol,
Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), TrisHCl (2-amino-2-(hydroxymethyl)
propane-1,3-diol chlorane), and lithium perchlorate (LiClO4) were supplied by Sigma Aldrich
(Milan, Italy). 3,4,5-Trihydroxybenzoic acid was purchased from Carlo Erba (Milan, Italy).
3,3-bis(4-hydroxyphenyl)-2-benzofuran-1(3H)-one 1% and Folin–Ciocalteau reagent were obtained from
Titolchimica (Pontecchio Polesine, Italy). Methanol, hexane, and formic acid for HPLC analyses were
purchased from VWR (Milan, Italy). HPLC grade water (18 mΩ) was obtained by a Mill-Ω purification
system (Millipore Corp., Bedford, MA, USA). CelLytic™ MT Cell Lysis Reagent was obtained
from Life Technologies (Carlsbad, CA, USA). Streptavidin-conjugated HRP,3,3-diaminobenzidine
tetrahydrocloride (DAB), Eukitt® quick-hardening mounting medium fibrinogen, thrombin and VEGF
were from Merck KGaA (Darmstadt, Germany). Tissue-Tek O.C.T. was from Sakura (San Marcos,
CA, USA). Anti-COX-2 was from Origene (Rockville, MD, USA) [TA313292]; anti-ALDH1A1 and
anti-4-HNE were from Abcam (Cambridge, UK) [ab9883 and ab46544]; anti-Catalase and anti-β-actin
were from Merck KGaA (Darmstadt, Germany) [C0979 and A2228]; anti-mPGES-1 was from Cayman
Chemical (Ann Arbor, MI, USA) [160140]; anti-iNOS, anti-eNOS, p65, p22-phox, and anti-CD40 were
from Santa Cruz Biotechnology (Dallas, TX, USA) [sc-7271, sc-8008, sc-271968, and sc-975]. All reagents
were analytical grade and were used as received without further purification.

2.2. Raw Material

The ROO utilized as a matrix to carry out the phenolic enrichment was produced by a physical
refining process [13] at the industrial plant for vegetal oil refining SALOV S.p.A. (Massarosa, Italy).

Pomace and olive leaves (organic Moraiolo cv; organic Leccino cv) were collected at the end of a
traditional olive oil extraction process described in a previous paper [32] performed by Spremioliva
mod. C30, Mori-TEM srl, Italy.

Grape marc (organic Sangiovese cv) was collected at the end of a traditional wine making process
for red wine production according to working conditions previously described [33].

To avoid microbiological spoilage and prevent the oxidative degradation of phenolic compounds,
both pomace and grape marc were frozen and stored in inert atmosphere (N2 100%) until use.

Total phenols of pomace, grape marc, and olive leaves are reported in Table 1.
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Table 1. Total phenols of pomace, grape marc, and olive leaves. Data are expressed as mean ± confidence
interval (n = 3) at p ≤ 0.05.

Parameter Pomace Grape Marc Olive Leaves

Total phenols
(g gallic acid/L) (3.5 ± 0.1) (1.5 ± 0.2) (3.1 ± 0.2)

2.3. Preparation of Phenolic Extracts from Pomace (P), Olive Leaves (OL), and Grape Marc (GM) and
Phenol-Enriched ROO

Based on the recent literature [12] and on our previous experience in the recovery of antioxidant
compounds from different food by-products [13,23,34], the preparation of the PE-ROO was carried out
according to the scheme reported in Figure 1 and further discussed.
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To setup the recovery of the phenolic compounds from pomace, olive leaves, and grape marc,
we studied different extraction processes by utilizing four different solvent solutions: Ethanol (95.0%),
named sol. A; Ethanol/Refined Olive Oil (1:1 kg/kg), named sol. B; Ethanol/Hexane (1:1 kg/kg),
named sol. C (Figure 1); Hexane (97.0%) named sol. D.

At the end of each extraction run, after a cartridge filtering (Sep-Pak classic C18, Waters®),
the extract was rotary evaporated (Laborota 4000, Heidolph Instruments GMBH and Co. KG,
Schwabach, Germany) until all solvents were eliminated; the resulting dry extract was then dissolved
in 100 g of ROO (Figure 1).

Thus, 12 different phenol-enriched oils prototypes (PE-P-A ÷ PE-P-D, PE-GM-A ÷ PE-GM-D,
and PE-OL-A ÷ PE-OL-D) were prepared (Table 2).

Table 2. Sample codes.

Sample Description

ROO Refined Olive Oil (Control)
PE-P-A ROO + phenol extracted from Pomace by sol. A
PE-P-B ROO + phenol extracted from Pomace by sol. B
PE-P-C ROO + phenol extracted from Pomace by sol. C
PE-P-D ROO + phenol extracted from Pomace by sol. D

PE-GM-A ROO + phenol extracted from Grape Marc by sol. A
PE-GM-B ROO + phenol extracted from Grape Marc by sol. B
PE-GM-C ROO + phenol extracted from Grape Marc by sol. C
PE-GM-D ROO + phenol extracted from Grape Marc by sol. D
PE-OL-A ROO + phenol extracted from Olive Leaves by sol. A
PE-OL-B ROO + phenol extracted from Olive Leaves by sol. B
PE-OL-C ROO + phenol extracted from Olive Leaves by sol. C
PE-OL-D ROO + phenol extracted from Olive Leaves by sol. D

Finally, the phenol-enriched oil prototypes (PE-ROOs) were collected after centrifugation (IEC
CL31R Multispeed, Thermo Scientific, Melegnano, Milan, Italy) at 10,000 rpm (16,770 g), 5 min, 15 ◦C,
to eliminate any unsolved residues and maintained under inert atmosphere (N2 100%) at 12 ± 1 ◦C
until analysis.

2.4. Quality Parameters

2.4.1. Free Fatty Acids, Peroxide Value, and Spectrophotometric Indexes

The general chemical parameters free fatty acids (FFA), peroxide value (PV), and spectrophotometric
indexes (K270 and K232) of the starting ROO and PE-ROO were determined by acid base titration,
iodometric titration, and spectrophotometric analysis in ultraviolet region (λ270 and λ232), respectively,
according to the analytical methods described in the Regulation 1348/2013 of the European Union
Commission and later modifications [35]. The analyses were performed at the laboratory of Food
Technology of DAFE (University of Pisa, Italy).

2.4.2. Phenolic Content

Total phenols were extracted from the oil as previously described [36]; the extracts were stored
under inert atmosphere (N2 100%) at −20 ◦C until use. Total phenols concentration was measured
by Folin-Ciocalteau colorimetric assay slightly modified: briefly, the extract (1 mL), Folin−Ciocalteu
reagent (1 mL), and 7.5% sodium carbonate (9 mL) and deionized water (14 mL), were added to a 25 mL
glass flask, mixed, and, after 120 min of incubation at room temperature, absorbance of the samples
was measured at 765 nm against a blank. Total phenols content was expressed using a calibration
curve prepared with gallic acid as the standard.
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2.4.3. Free-Radical Scavenging Capacity (FRSC)

FRSC was determined using both the DPPH assay (FRSCDPPH) [37] and the ABTS assay (FRSCABTS) [38].
The Trolox dose–response curve used was in the (0.2–1.5) mM range. FRSC was calculated as Trolox
Equivalent Antioxidant Capacity (TEAC) per mL of extract [23].

2.4.4. Intensity of Bitterness (IB) Determination

Bitter components were extracted from 1.00 ± 0.01 g of oil samples using 6 mL extraction columns
(Sep-Pak C18 Classic Cartridge, Waters s.p.a., Sesto San Giovanni (MI), Italy) and the IB was determined
following the method previously described [39] recording absorbance at 225 nm.

2.4.5. UHPLC-HR-ESI-MS/MS Analyses

The polar fractions of ROO control, PE-P-B, PE-GM-B, and PE-OL-B were obtained by extraction of
each sample with MeOH-H2O (volume fraction 70%) using the procedure described in Flori et al. [37].
The obtained extracts were dried by rotavapor, dissolved in MeOH, and centrifugated (4000 rpm).
Then, 5 µL of each extract was injected into an LC system composed by a Vanquish Flex Binary
ultra-high-performance liquid chromatography (UHPLC) and a high resolution-mass spectrometer
(HR-MS) Q Exactive Plus MS, Orbitrap-based FT-MS system, equipped by an electrospray (ESI) source
(Thermo Fischer Scientific Inc., Bremem, Germany). UHPLC were performed on a Kinetex® Biphenyl
column (100 × 2.1 mm, 2.6 µm) provided of a Security Guard TM Ultra Cartridge (Phenomenex,
Bologna, Italy). The elution was done by using a mixture of formic acid in MeOH 1 mL/L (solvent A)
and formic acid in H2O 1 mL/L (solvent B) at a flow rate 0.5 mL/min. The solvent gradient was as
follows: 0–10 min, 5–40% A; 10–21 min, 40–65% A. Spectra were acquired both in full (70,000 resolution,
220 ms maximum injection time) and data dependent-MS/MS scan (17,500 resolution, 60 ms maximum
injection time), using ESI interface in negative ion mode (scan range of m/z 150–1200). The following
ionization parameters were used: spray voltage 3400 V, capillary temperature 300 ◦C, sheath gas (N2)
35 arbitrary unit, auxiliary gas (N2) 8 arbitrary unit, collisionally activated dissociation (HCD) 18 eV.
Xcalibur software was used for data processing.

2.5. In Vivo Evaluation of Nutraceutical Value of Olive Oils

In vivo experiments were carried out according to both European (EEC Directive 2010/63)
and Italian (D.L. 4 March 2014 n.26) legislation (number protocol 144/2019-PR, 18 February 2019),
as previously reported [37]. Briefly, adult male Wistar rats (3–4 months old, ENVIGO) with a body
weight between 345 and 350 g were randomly divided into seven groups (five animals per group) and
treated for 21 days. The first group was treated with a standard diet (STD, ENVIGO); the others were
fed with a high fat diet (HFD, SAFE). In particular, the second group did not receive supplementations
(HFD), the third group was treated with extra-virgin olive oil (HFD + EVOO) 5.5% kg/kg (HFD + EVOO,
as reference group) mixed in powder feed [36,40]. The fourth group was treated with ROO 2% kg/kg
mixed in powder feed. Then, the other groups were supplemented with novel olive oil formulations:
PE-OL-B 2% kg/kg (in order to ensure the same intake of polyphenols as the EVOO, HFD + PE-OL-B),
PE-P-B 2% kg/kg (HFD + PE-P-B), and PE-GM-B 2% kg/kg (HFD + PE-GM-B). After 3 weeks, at the end
of the treatment, each animal was deprived of food and after 24 h was anesthetized with Thiopental
Sodium (70 mg/kg, MSD animal health). The blood was collected, through the caudal vein, to perform
a blood glucose test (Glucocard G meter, Menarini Diagnostics). Subsequently the animals were
sacrificed with an overdose of Thiopental Sodium. Organs (heart, aorta, and abdominal adipose tissue)
were removed, weighed, and stored for functional, enzymatic, and biochemical investigations.

2.5.1. Functional Analysis of Cardiac Mitochondrial Membrane Potential

Hearts deriving from animals 21 days-treated were cut into small 2–3 mm3 pieces in ice cold
isolation buffer (composition: Sucrose 250 mM, Tris 5 mM, EGTA 1 mM; pH 7.4) and processed as
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reported in Flori et al. [36]. Briefly, hearts were homogenized by Ultra-Turrax (model: IKA, T-18
Basic) and cardiac mitochondria were isolated through differential centrifugations. The pellet obtained,
corresponding to the mitochondrial fraction, was resuspended in minimal volume of buffer and
the mitochondrial protein concentration was determined spectrophotometrically by Bradford assay
(Bio-Rad, Hercules, CA, USA), using a microplate reader (EnSpire, PerkinElmer, Waltham, MA, USA).

The membrane potential (∆Ψm) of the isolated mitochondria was determined using a potentiometric
method. The lipophilic cation tetraphenylphosphonium (TPP+), used for this procedure, was detected
with a TPP+ sensitive mini electrode (WPI, TipTPP, Sarasota, FL, USA), coupled to a reference
electrode (WPI, Sarasota, FL, USA) and using data acquisition software (BiopacInc, Goleta, CA,
USA). Mitochondria (1 mg protein/mL) were then added to the incubation buffer (composition: KCl
120 mM, K2HPO4 5 mM, Hepes 10 mM, Succinic Acid 10 mM, MgCl2 2 mM, TPP+Cl− 10 µM; pH 7.4),
and continuously stirred with a small magnet to generate a mitochondrial suspension.

The membrane potential value was calculated according to the following experimental equation
derived from Nernst Equation (1):

∆Ψm = 60 x log

V0[TPP+ ]0
[TPP+ ]t

−Vt −K0P

VmP + KiP
(1)

where ∆Ψm is the mitochondrial membrane potential (mV), V0 is the volume of the incubation medium
before the addition of mitochondria, Vt is the volume of the incubation medium after the addition of
the mitochondria, Vm is the volume of the mitochondrial matrix (taken as 1 µL/mg protein), [TPP+]0

and [TPP+]t represent, respectively, the TPP+ concentrations recorded before addition and at time
t, P is the protein concentration expressed in mg, and K0 and Ki are apparent external and internal
partition coefficients of TPP+ (14.3 and 7.9 µL/mg, respectively).

2.5.2. Western Blot

Western blot was performed on tissue samples as described previously [36]. Briefly, aortas were
homogenized by Tissue Lyser II (#85300 Qiagen, Germantown, MD, USA), sonicated, and centrifuged.
Electrophoresis (50 µg of protein/sample) was carried out as described [36]. All experiments were
performed at least three times.

2.5.3. RNA Isolation and Quantitative RT-PCR

RNA isolation and quantitative RT-PCR (qRT-PCR) were performed on tissue samples as described
previously [36]. After samples homogenization using the Tissue Lyser II (#85300 Qiagen), total RNA
was purified using RNeasy Plus Kit (#74134 Qiagen) following manufacturer’s instructions. In total,
1 µg of RNA was reverse transcribed by Quanti Tect Reverse Transcription Kit (#205313 Qiagen),
and quantitative RT-PCR was performed using Quanti Nova SYBR Green PCR Kit (#208056 Qiagen) in
a Rotor-Gene qPCR machine (Qiagen). All experiments were performed at least three times.

2.5.4. Tube Formation from Vessel Rings

Vessel sprouting form rat aorta was evaluated as described previously [36]. Rat aorta were cut
in rings (1–2 mm) under sterile conditions. Vessels rings were included in a fibrin gel and after 24 h
VEGF was added (25 ng/mL). The organ culture was kept at 37 ◦C, 5% CO2. Quantitative analysis
was performed at day 3. Vessels were captured (Nikon Eclipse E400 and camera Nikon DS-5MC),
images were converted in black and white to subtract the background of fibrin gel, and sprouting was
manually measured by the means of an ocular grid as vessel length ± SD. Each experimental point was
run in triplicate.
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2.6. Statistical Analysis

Chemical data are expressed as the means of three independent experiments. The significance
of differences among means was determined by one-way ANOVA (CoStat, Version 6.451, CoHort
Software, Pacific Grove, CA, USA). Comparisons among means were performed by the Tukey’s test
(p < 0.05).

Regarding in vivo evaluation of nutraceutical value of Phenol-Enriched ROOs, as well as the
mitochondrial membrane potential, five different animals were used and data were expressed as
mean ± SEM and one-way ANOVA followed by Bonferroni’s post hoc test used to compare groups for
statistical differences (p < 0.05). All statistical procedures regarding in vivo evaluations were performed by
commercial software (GraphPad Prism, version 5.0 from GraphPad Software Inc., San Diego, CA, USA).

Regarding Western blot and qPCR analysis, the results are the means ± SD of at least three
independent experiments. The significance of differences among means was determined by one-way
ANOVA with Tukey post-test analysis (GraphPad Prism, Version 5.0; p < 0.05).

3. Results and Discussion

3.1. Chemical Characterization of Phenol-Enriched ROOs (PE-ROOs)

3.1.1. Quality Parameters

To verify the suitability of the proposed methods for the enrichment of ROO, the total phenols
content as well as the values of the general quality parameters (free acidity, peroxide value, K232,
and K270) of the 12 PE-ROOs were evaluated (Table 3) and compared with data determined for the
control (ROO).

As reported in Table 3, the values of the quality parameters determined in all the PE-ROOs were
within the range for the olive oil and makes them edible (FFA ≤ 1% oleic acid kg/kg; PV ≤ 15 meq
O2/kg; K270 ≤ 0.90) [35]. According to ANOVA, among these general quality indexes K232 was the only
parameter that showed some difference statistically significant (p ≤ 0.001) among treatments, with the
highest value when the extraction was carried out using pomace and solvent B.

The phenolic content (Table 3B) significantly increased (p ≤ 0.001) in all prototypes PE-ROOs
compared with the ROO used as reference and, for all the PE-ROOs, the values assumed appear close to
those indicated for several high quality extra-virgin olive oils labeled with IGP appellation [41]. In the
operating conditions adopted, according to ANOVA the best results were obtained when olive leaves
were used as a source of phenols, regardless of the chemical composition of the solvent utilized for
the extraction. As regards the solvent, the results showed significantly (p ≤ 0.001) different efficiency
for the ROO fortification depending on the matrix used: for pomace, ethanol seems to be the best
solvent according to the total phenols content; on the contrary, for grape marc and olive leaves the
mix Ethanol/Hexane (1:1 kg/kg) was elected the best extracting solution, probably for a synergic effect
between the two solvents [12]; always considering grape marc and olive leaves as sources for phenolic
recovering, the mix ROO/Ethanol (1:1 kg/kg) also showed a good extracting power, representing a
good compromise also considering its reduced toxicity.

In particular, when food grade solvent mixture was used (extract A and extract B), the concentration
of total phenols in the enriched oils was 5.3-fold greater than that determined in the starting ROO
when extract A (Ethanol 95.0%) was used; moreover, this value increased to reach 5.7 when extract B
(ROO/Ethanol (1:1 kg/kg)) was used for the oil enrichment.

As shown in Table 3, the intensity of bitterness (IB) was directly proportional to the total phenolic
content and the differences among values showed a significant level corresponding to a p value ≤ 0.001.
Additionally, in contrast with the PE-OLs, pomace and grape marc samples could be classified as
non-bitter or almost imperceptibly bitter oils, as they showed a value of IB ≤ 2.5, that was assumed as a
reference point to indicate by chemical analysis the appearance of some bitter taste [39]. Further studies
are needed to perform a proper panel test to confirm this evidence by sensory characterization as well.
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Table 3. (A) Chemical characterization (free fatty acids (FFA), peroxide value (PV), and spectrophotometric
indexes (K270 and K232)) of phenol-enriched ROOs; (B) phenolic content, antioxidant capacity,
and intensity of bitterness of phenol-enriched ROOs. Each value represents mean ± standard deviation
(n = 3).

(A)

Sample
FFA (% Oleic
Acid kg/kg)

n.s.1

PV (mEq.O2/kg
Oil)
n.s.

K232 *** K270
n.s.

Control Solvent 2 (0.18 ± 0.01) (7.62 ± 0.05) (1.60 ± 0.01) b (0.62 ± 0.01)

Pomace

A (0.18 ± 0.01) (8.02 ± 0.01) (1.60 ± 0.01) b (0.62 ± 0.01)
B (0.18 ± 0.01) (8.01 ± 0.01) (1.73 ± 0.01) a (0.63 ± 0.01)
C (0.18 ± 0.01) (8.00 ± 0.01) (1.66 ± 0.01) ab (0.68 ± 0.03)
D (0.18 ± 0.01) (8.03 ± 0.02) (1.68 ± 0.02) ab (0.670.01)

Grape Marc

A (0.18 ± 0.01) (8.01 ± 0.01) (1.66 ± 0.01) ab (0.68 ± 0.02)
B (0.18 ± 0.01) (8.00 ± 0.01) (1.67 ± 0.01) ab (0.63 ± 0.01)
C (0.18 ± 0.01) (8.01 ± 0.01) (1.68 ± 0.01) ab (0.62 ± 0.01)
D (0.18 ± 0.01) (8.02 ± 0.02) (1.68 ± 0.02) ab (0.63 ± 0.01)

Olive
Leaves

A (0.18 ± 0.01) (8.02 ± 0.01) (1.65 ± 0.01) ab (0.67 ± 0.02)
B (0.18 ± 0.01) (8.03 ± 0.01) (1.66 ± 0.01) ab (0.65 ± 0.01)
C (0.18 ± 0.01) (8.01 ± 0.01) (1.68 ± 0.01) bc (0.68 ± 0.03)
D (0.18 ± 0.01) (8.00 ± 0.01) (1.68 ± 0.02) bc (0.67 ± 0.02)

(B)

Sample
Total Phenols
(mg/kg Gallic

Acid) *** 1

FRSC ABTS (µmol
TEAC/mL) ***

FRSC DPPH (µmol
TEAC/mL) ***

Intensity of
Bitterness (IB) ***

Control Solvent 2 (50 ± 1) g (0.38 ± 0.02) e (0.26 ± 0.01) e (0.00 ± 0.01) d

Pomace

A (210 ± 3) c (0.52 ± 0.01) d (0.41 ± 0.01) d (0.82 ± 0.01) cd

B (260 ± 2) b (0.61 ± 0.02) c (0.50 ± 0.01) c (1.66 ± 0.02) bc

C (143 ± 1) de (0.79 ± 0.03) b (0.65 ± 0.02) b (2.22 ± 0.01) b

D (120 ± 1) e (0.41 ± 0.01) e (0.30 ± 0.01) e (1.70 ± 0.03) bc

Grape Marc

A (143 ± 1) de (0.38 ± 0.01) e (0.27 ± 0.01) e (0.50 ± 0.01) d

B (90 ± 2) f (0.50 ± 0.02) d (0.42 ± 0.02) d (0.10 ± 0.01) d

C (170 ± 1) d (0.38 ± 0.01) e (0.26 ± 0.01) e (0.18 ± 0.01) d

D (75 ± 1) fg (0.38 ± 0.01) e (0.26 ± 0.01) e (0.17 ± 0.01) d

Olive
Leaves

A (263 ± 2) b (0.62 ± 0.02) c (0.50 ± 0.01) (4.75 ± 0.02) a

B (287 ± 4) b (0.75 ± 0.02) b (0.62 ± 0.02) b (4.15 ± 0.01) a

C (698 ± 5) a (0.97 ± 0.04) a (0.80 ± 0.02) a (4.45 ± 0.02) a

D (220 ± 1) c (0.50 ± 0.01) d (0.40 ± 0.01) d (4.50 ± 0.01) a

1 Significance level—***: p ≤ 0.001 (F = 15,521); ns: not significant (p > 0.05). Within the same column, parameters
sharing the different letters have a significantly different mean value.2 Composition of different solvent solutions:
Ethanol (95.0%), named sol. A; ROO/Ethanol (1:1 kg/kg), named sol. B; Ethanol/Hexane (1:1 kg/kg), named sol. C,
Hexane (97.0%) named sol. D.

According to ANOVA together with all the above discussed considerations, solution B (ROO/Ethanol
(1:1 kg/kg)) was selected as the best solvent in terms of its safety, together with its efficacy for the
increasing of phenolic content in ROO. For these reasons, all the PE-ROOs obtained by solution B (named
PE-P-B, PE-GM-B, PE-OL-B) together with the ROO utilized as control were further characterized to
individuate their UHPLC-HR-ESI-MS profiles and utilized to evaluate their nutraceutical properties in
rats with high fat diet-induced-metabolic syndrome and oxidative stress.

3.1.2. UHPLC-HR-ESI-MS Profiles

The polar fractions of PE-ROOs obtained by extraction with solvent B were subjected to qualitative
analyses by UHPLC-HR-ESI-MS. The obtained chromatographic profiles operating in negative ion
mode are showed in Figure 2, while detected compounds are described in Table S1. Compounds were
tentatively identified according to MS and literature data [37,42–48]. Several substances were not
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completely identified but based on the MS fragmentation patterns their structure was correlated to
some principal skeletons. Other peaks remained completely unidentified.
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ROO from olive pomace (PE-P-B), olive leaves (PE-OL-B), and grape marc (PE-GM-B). Peak data are
listed in Table S1.

The ROO control is characterized by the presence of hydroxytyrosol and its derivatives, together
with well-known secoiridoids, such as elenolic acid and both oleuropein and ligstroside aglycone
derivatives, occurring as different isomers. Among flavonoids, luteolin (compound 17) was detected.
These results are in agreement with the chemical profile of olive oil reported by previous studies [36,48].

Compared to the ROO control, PE-P-B showed a very similar chemical composition, but also
some modifications. In particular, two different forms of secoiridoids were detected, supposed to
be ligstroside (compound 18) and oleuropein derivative (compound 19) on the basis of MS/MS data.
In addition, compounds 37 and 46 were proposed as dihydrohybenzoic acid derivatives based on the
observation of characteristic fragment ions at m/z 153.05, 109.06, 91.05. However, compounds 29, 33, 38,
41, and 45 (oleuropein aglycon derivatives) were revealed in PE-P-B in small amount compared to
the control.

Similarly, the PE-OL-B extract lacked many secoiridoids observed in ROO control, such as elenolic
acid (compound 11) and related forms (compounds 3 and 9), together with oleuropein aglycone
derivatives (compounds 29, 33, 38, 41, and 45). On the other hand, hydroxytyrosol (compound 1) and
its derivatives (compounds 5 and 13) are well represented. The extract is also characterized by the
presence of components that are absent in the control, such as secoiridoids 28 and 31, the flavonoid
methoxyluteolin (compound 32), and two unidentified molecules (compounds 37 and 40) whose
structures seem to be correlated to dihydroxybenzoic acid derivatives. Olive leaves are known to be
rich in secoiridoids (oleuropein and ligstroside derivatives) as well as in benzoic acid derivatives [49].

The chemical profile of PE-GM-B extract differed strongly from control one, preserving mainly
hydroxytyrosol (compound 1), hydroxytyrosol acetate (compound 12), oleacin (compound 23),
and oleuropein aglycones (compounds 29, 33, 38, and 41). Many components were derived from grape
marc, such as isopropyl malic acid (compound 2), gallic acid ethyl ester (compound 4), dihydroxybenzoic
acid ethylester (compound 7), quercetin (compound 8), and its hexoside (compound 14), azelaic acid
(compound 10), and kaempferol (compound 24) [47].
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3.2. In Vivo Evaluation of Nutraceutical Value of Phenol-Enriched ROOs (PE-ROOs)

3.2.1. Effects of Supplementation with Olive Oils on Body Weight Gain in HFD-Fed Rats

In order to evaluate the nutraceutical value of the above PE-ROOs in vivo experiments were performed.
In particular, a high fat diet is described as a well-known preclinical model of metabolic disorder.
A diet with high levels of saturated fats (HFD) contributes to significantly (p ≤ 0.05) increase body
weight. Indeed, a body weight percentage increase of 10.0% ± 1.0% occurs in animals fed with STD
for 3 weeks, while animals fed with the HFD of 15.0% ± 0.9%. Conversely, animals supplemented
with EVOO showed a slightly reduced (not statistically significant) body weight gain (13.0% ± 1.0%).
As expected, at the third week, animals fed with HFD + ROO showed a marked (p ≤ 0.05) increase in
body weight gain (18.0% ± 2.0%). Likewise, animals supplemented with novel products obtained by
enrichment of ROO with by-products of olive oil and wine-making industry, overall showed a profile
like ROO, and without relevant effects (Figure 3A).
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Figure 3. (A) Body weight gain of the animals at the third week of treatment (end of treatment).
(B) waist circumference measured at the end of treatment. * indicates a statistically significant difference
between the HFD group and the STD group. # indicates statistically significant difference vs. HFD.
Single symbol corresponds to p ≤ 0.05. Double symbol corresponds to p ≤ 0.01.

In accordance with the body weight gain, at the third week a significant increase of waist circumference
and BMI were reported in HFD-fed rats. EVOO supplementation, as previously reported [36],
significantly (p ≤ 0.01) contributed to contain these parameters, while ROO supplementation was
without significant effects. The novel products of olive oils (PE-OL-B, PE-GM-B, and PE-P-B) improved
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this parameter, but only the supplementation with PE-OL-B and PE-P-B more evidently and significantly
(p ≤ 0.01 and p ≤ 0.05, respectively) contained the waist circumference (Figure 3B). Similar results were
observed for the BMI parameter (data not shown).

Beside the body weight, HFD promoted a significant (p ≤ 0.005) increase of visceral adipose tissue
if compared with the STD group, while EVOO supplementation brought this parameter back to the
levels of the STD group. Surprisingly, ROO supplementation also significantly contained adipose mass
and the three novel ROO-transformed oils showed a similar behavior. Interestingly, PE-OL-B achieved
a more evident and significant effect if compared with ROO (Figure 4).
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Triple symbol corresponds to p ≤ 0.005.

After 3 weeks of treatment, fasting blood glucose was measured and significantly (p ≤ 0.01) higher
levels of glycemia were reported; though it was indeed not possible to highlight a diabetic condition,
an alteration of glucose homeostasis was evident (Figure 5). EVOO supplementation reduced the
glucose levels after the treatment, while ROO only modestly made it. Notably, dietary intake of
PE-OL-B significantly (p ≤ 0.05) reduced glucose levels coming back to the STD group levels. On the
contrary PE-P-B and PE-GM-B did not positively influence this parameter (Figure 5).
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Figure 5. Fasting blood glucose levels (mg/dL) after 3 weeks of treatment with different diets. * indicates
a statistically significant difference between the HFD group and the STD group. # indicates statistically
significant difference vs. HFD. Single symbol corresponds to p ≤ 0.05. Double symbol corresponds
to p ≤ 0.01.

Finally, the myocardial tissue was used to evaluate the mitochondrial membrane potential.
The mitochondrial membrane potential is a parameter closely correlated with the metabolic efficiency
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of heart mitochondria and therefore with their ability to produce ATP and tolerate insults, as can be
observed in animals with a condition like metabolic disorder. Under physiological conditions ∆Ψ
is about −190 mV, while after 3 weeks of a HFD diet ∆Ψ appeared to be significantly depolarized
(about −175 mV). The addition of EVOO reported the ∆Ψ to the standard values, while ROO did
not modify the HFD-induced impairment. Interestingly, the use of PE-OL-B for supplementation
revealed an interesting significant (p ≤ 0.05) beneficial effect on mitochondrial function, showing a ∆Ψ
value superimposable to that of EVOO (Figure 6). These results suggested that PE-OL-B is the most
promising product developed with this innovative technique.
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3.2.2. PE-ROOs on Aortic Vessel Inflammatory and Oxidative Stress Markers

High dietary fat intake and high blood glucose are closely associated with cardiovascular risk
factors, including the oxidative stress and impaired antioxidants defense mechanisms, and inflammation
in micro- and macro-vessels [50,51]. Here, rat aortic tissues were used to measure the protein expression
and mRNA levels of Catalase, superoxide dismutase-1 (SOD-1), p22phox, aldehyde dehydrogenase1A1
(ALDH1A1), inducible nitric oxide synthase (iNOS), and cycloxigenase-2 (COX-2) (Figure 7A,B) via
Western blot and qPCR assays. In accordance with an increase of the body weight and glucose,
HFD significantly (p ≤ 0.05) increased the expression of COX-2 (2 fold vs. STD) and iNOS proteins
(1.5 fold vs. STD) in rat aortic tissues (Figure 7A,B). As previously reported, EVOO cosupplementation
reverted the inflammatory profile of aortic tissues and increased the tissue expression of antioxidant
ALDH1A1 enzyme [36]. ROO showed no significant effect on iNOS expression, nor was it able to
significantly reverse the effect of HFD on ALDH1A1 expression. Of note is the effect of the ROO on
COX-2 expression, which was significantly (p ≤ 0.05) reduced when compared to the effect of the HFD.
Similarly, the novel oils (PE-OL-B, PE-P-B, PE-GM-B) had a significant (p ≤ 0.05) impact on COX-2,
while iNOS protein expression was brought back to basal level only after PE-OL-B treatment.

Constituents from PE-OL-B and PE-GM-B supplemented into ROO showed also protective effects
against oxidative stress markers, by restoring ALDH1A1 protein expression in aortic tissues and
declining p22phox expression. SOD-1 and Catalase protein levels were not significantly affected by
HFD nor by HFD cosupplemented with ROO or PE-OL-B, PE-P-B, PE-GM-B.

Consistently, at transcription level, we observed a significant (p ≤ 0.05) increase of iNOS and
COX-2 expression in aortic tissues of rats fed with HFD, which were blunted by the cosupplement with
EVOO (Figure 8). Similarly, PE-OL-B and PE-GM-B decreased COX-2 gene expression, while ROO had
no effect. Furthermore, although we observed a trend toward a decrease, ROO and the novel olive oils
did not significantly change iNOS expression at gene level (Figure 8).
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HFD also significantly (p ≤ 0.05) reduced the transcription of ALDH1A1 gene in aortic tissues,
and EVOO restored its expression at the levels of the STD group (Figure 8). Notably, dietary intake of
PE-OL-B and PE-GM-B significantly (p ≤ 0.05) increased ALDH1A1 expression coming back to the
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Figure 7. Diet supplementation of HFD fed rats with EVOO, ROO, PE-OL-B, PE-P-B, and PE-GM-B
affects the expression of inflammatory and oxidative stress proteins in aortic vessel tissues. (A) Western
blot analysis of oxidative stress factors (Catalase, SOD-1, p22phox, and ALDH1A1) and inflammatory
factors (iNOS, COX-2) in the aorta tissues. (B) Quantification of Western blots. Data are determined by
ratio of arbitrary density unit (ADU) target protein/β-actin, and reported as fold change vs. STD which
was assigned to 1. Data are means ± SD (n = 3). * p ≤ 0.05 vs. STD; # p ≤ 0.05; ## p ≤ 0.01 vs. HFD;
### p ≤ 0.001 vs. HFD.

3.2.3. PE-ROOs on Aortic Endothelial Function

To investigate the contribution of ROO, PE-OL-B, PE-P-B, PE-GM-B on the endothelial function,
cells sprouting activity was performed. As shown in Figure 9, aortic rings of the STD rat group
developed a net of microvessels in response to VEGF (25 ng/mL). HFD significantly (p ≤ 0.05) reduced
the vessel sprouting formation which was reverted by EVOO supplementation. ROO had no significant
effect, while PE-OL-B and PE-P-B displayed the ability to revert the negative effect of HFD on the
outgrowths of branching microvessels. Surprisingly, PE-GM-B showed the greater induction of vessel
sprouting. Taken together these data demonstrated a significant (p ≤ 0.05) protective effect of novel
oils on endothelial functionality.



Foods 2020, 9, 1390 15 of 21
Foods 2020, 9, x FOR PEER REVIEW 15 of 22 

 

 
Figure 8. Diet supplementation of HFD fed rats with EVOO, ROO, PE-OL-B, PE-P-B, and PE-GM-B 
affects mRNA expression of inflammatory enzymes and ALDH1A1. Data are determined by the 
comparative Ct method (ΔΔCt) normalized to GAPDH expression and reported as fold change vs. 
STD group which was assigned to 1. Data are means ± SD (n = 3). * p ≤ 0.05 vs. STD; # p ≤ 0.05 vs. HFD; 
## p ≤ 0.01 vs. HFD. 

3.2.3. PE-ROOs on Aortic Endothelial Function 

To investigate the contribution of ROO, PE-OL-B, PE-P-B, PE-GM-B on the endothelial function, 
cells sprouting activity was performed. As shown in Figure 9, aortic rings of the STD rat group 
developed a net of microvessels in response to VEGF (25 ng/mL). HFD significantly (p ≤ 0.05) reduced 
the vessel sprouting formation which was reverted by EVOO supplementation. ROO had no 
significant effect, while PE-OL-B and PE-P-B displayed the ability to revert the negative effect of HFD 
on the outgrowths of branching microvessels. Surprisingly, PE-GM-B showed the greater induction 
of vessel sprouting. Taken together these data demonstrated a significant (p ≤ 0.05) protective effect 
of novel oils on endothelial functionality. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

iNOS COX-2 ALDH1A1

Ao
rti

c 
tis

su
es

 
Re

la
tiv

e 
m

RN
A

(F
ol

d 
ch

an
ge

)

STD HFD EVOO ROO PE-OL-B PE-P-B PE-GM-B

*

#
#

##

#

*

#

*

# #

Figure 8. Diet supplementation of HFD fed rats with EVOO, ROO, PE-OL-B, PE-P-B, and PE-GM-B
affects mRNA expression of inflammatory enzymes and ALDH1A1. Data are determined by the
comparative Ct method (∆∆Ct) normalized to GAPDH expression and reported as fold change vs. STD
group which was assigned to 1. Data are means ± SD (n = 3). * p ≤ 0.05 vs. STD; # p ≤ 0.05 vs. HFD;
## p ≤ 0.01 vs. HFD.
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4. Conclusions

According to Reboredo-Rodriguez and co-workers [14] by 2035 70 million people will be aged
>65 years old, thus the prevention of pathologies by diet is an important public health challenge in
order to reduce the morbidity and mortality and the cost to society. Besides, the role played in health
prevention by different types of olive oils appear deeply related with their content in minor compounds
with antioxidant and anti-inflammatory properties [52].

In recent years refined olive oils are gaining importance in the food industry even thanks to the
increasing importance of olive oil in the global market. As ROOs generally show reduced or absent
minor components because of the refining process, some different strategies to produce functional
ROOs with improved nutraceutical value were recently investigated [8,12,25,53]. When the content
in antioxidant and anti-inflammatory compounds was significantly increased, the enriched ROOs
generally showed an extended shelf life as well as an encouraging behavior in counteracting health
degeneration in both in vivo and in vitro models.

In this context, in the present research, an innovative method to significantly improve the
nutraceutical value of refined olive oil was developed and discussed. According to a circular economy
concept the feasibility of the utilization of three different food by-products (namely olive leaves, pomace,
and grape marc) as a source of natural phenolic compounds was verified and critically discussed
and, to the best of our knowledges, no data are available in literature in this specific topic. Moreover,
the utilization of a mixture ROO/Ethanol (1:1 kg/kg) as extraction solvent was also tested.

In conclusion all prototypes of phenol-enriched refined olive oils (PE-ROOs) showed a significantly
improved phenolic content compared with the refined olive oil (ROO), used as reference together
with a specific pattern of phenolic compounds as a function of the food waste utilized for the oil
enrichment. Thanks to this innovative process, the enriched refined olive oils can reach a concentration
of total phenols close to those indicated for several high-quality extra-virgin olive oils labeled with
IGP appellation.

In the operating conditions adopted, the best results were obtained when olive leaves were used
as source of phenols, regardless of the chemical composition of the solvent utilized for the extraction.
Furthermore, while hexane was confirmed as a good solvent for the extraction of phenols compounds
soluble in oil, the mix ROO/Ethanol (1:1 kg/kg) also showed a good extracting power from olive
leaves together with a reduced toxicity and lower environmental impact. Beyond the technological
approach, interestingly this work demonstrated that the novel refined enriched olive oils (PE-OL-B,
PE-GM-B, and PE-P-B) showed a greater nutraceutical value compared to ROO, utilized as control.
In fact, they reduced the impact of a high fat diet-induced-metabolic disorder and oxidative stress in
rats. Among all, PE-OL-B, closely followed by PE-GM-B, significantly reduced the increase in adipose
mass, waist circumference, BMI parameters, glucose level, and improved the mitochondrial membrane
potential. Consistently, in aortic vessels, the two PE-ROOs reduced the expression of inflammatory
iNOS and COX-2 enzymes and increased that of the antioxidant ALDH1A1 enzyme. Furthermore,
the use of PE-OL-B for supplementation revealed an interesting beneficial effect on mitochondrial
function and a significant protective effect on endothelial functionality.

Starting from this evidence, in future, perspective panel tests followed by a consumer test should
be assessed to define the sensorial profile of the selected novel enriched oil (PE-OL-B) as well as the
consumer acceptability both at national and international level. A set of experimental runs to determine
the shelf life of the PE-OL-B and to individuate the best operating conditions to be adopted for storage
should also be performed. Finally, the scaling up to produce the proposed novel oil at prototypal level
first and industrial level after should be set up, together with a specific analysis of the costs of the
innovative process.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-8158/9/10/1390/s1,
Table S1: UHPLC-HR-ESI-MS/MS data of components.
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Abbreviations

3:4-DHPEA 3,4-dihydroxyphenyl ethanol,
ABTS 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)
ADU arbitrary density unit
ALDH1A1 aldehyde dehydrogenase 1A1
BMI Body mass index
COX-2 cycloxigenase-2
DAFE Department of Agriculture, Food and Environment
DPPH 2,2-diphenyl-1-picrylhydrazyl

EGTA
ethylene glycol-bis(β-aminoethyl
ether)-N,N,N′,N′-tetraacetic acid

ESI electrospray ionization
EVOO extra-virgin olive oil
FFA free fatty acids
FRSC free-radical scavenging capacity
GAPDH glyceraldehyde-3-phosphate dehydrogenase
GM grape marc
HCD collisionally activated dissociation
HFD high fat diet
HR-MS high resolution-mass spectrometry
IB intensity of bitterness
iNOS inducible nitric oxide synthase
MedDiet Mediterranean diet
MetS metabolic syndrome
MUFA monounsaturated fatty acids
OL olive leaves
OO olive oil
P pomace
PE phenol-enriched
PGI protected geographical indication
PUFA polyunsaturated fatty acids
PV peroxide value
qRT-PCR quantitative real time polymerase chain reaction
ROO refined olive oil
SD standard deviation
SEM standard error of the mean
SOD-1 superoxide dismutase-1
STD standard diet
TEAC Trolox equivalent antioxidant capacity
TPP+ cation tetraphenylphosphonium
tR retention time
UHPLC ultra-high-performance liquid chromatography
VEGF vascular endothelial growth factor
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VOO virgin olive oil
∆∆Ct comparative Ct method
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