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Single‑step genomic evaluation 
with metafounders for feed conversion ratio 
and average daily gain in Danish Landrace 
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Abstract 

Background:  The single-step genomic best linear unbiased prediction (SSGBLUP) method is a popular approach for 
genetic evaluation with high-density genotype data. To solve the problem that pedigree and genomic relationship 
matrices refer to different base populations, a single-step genomic method with metafounders (MF-SSGBLUP) was 
put forward. The aim of this study was to compare the predictive ability and bias of genomic evaluations obtained 
with MF-SSGBLUP and standard SSGBLUP. We examined feed conversion ratio (FCR) and average daily gain (ADG) 
in DanBred Landrace (LL) and Yorkshire (YY) pigs using both univariate and bivariate models, as well as the optimal 
weighting factors (ω), which represent the proportions of the genetic variance not captured by markers, for ADG and 
FCR in SSGBLUP and MF-SSGBLUP.

Results:  In general, SSGBLUP and MF-SSGBLUP showed similar predictive abilities and bias of genomic estimated 
breeding values (GEBV). In the LL population, the predictive ability for ADG reached 0.36 using uni- or bi-variate SSGB-
LUP or MF-SSGBLUP, while the predictive ability for FCR was highest (0.20) for the bivariate model using MF-SSGBLUP, 
but differences between analyses were very small. In the YY population, predictive ability for ADG was similar for the 
four analyses (up to 0.35), while the predictive ability for FCR was highest (0.36) for the uni- and bi-variate MF-SSGBLUP 
analyses. SSGBLUP and MF-SSGBLUP exhibited nearly the same bias. In general, the bivariate models had lower bias 
than the univariate models. In the LL population, the optimal ω for ADG was ~ 0.2 in the univariate or bivariate models 
using SSGBLUP or MF-SSGBLUP, and the optimal ω for FCR was 0.70 and 0.55 for SSGBLUP and MF-SSGBLUP, respec-
tively. In the YY population, the optimal ω ranged from 0.25 to 0. 35 for ADG across the four analyses and from 0.10 to 
0.30 for FCR.

Conclusions:  Our results indicate that MF-SSGBLUP performed slightly better than SSGBLUP for genomic evalua-
tion. There was little difference in the optimal weighting factors (ω) between SSGBLUP and MF-SSGBLUP. Overall, the 
bivariate model using MF-SSGBLUP is recommended for single-step genomic evaluation of ADG and FCR in DanBred 
Landrace and Yorkshire pigs.
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Background
Single-step genomic best linear unbiased prediction 
(SSGBLUP), as a standard genomic evaluation method 
using single nucleotide polymorphism (SNP) geno-
types, has been successfully used in the pig industry 
[1]. By using SSGBLUP, genomic selection (GS) can be 
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implemented even if some animals are not genotyped 
because it can integrate phenotypic records, pedigree, 
and genomic information on all relevant animals [2, 3]. 
However, some problems with SSGBLUP need to be 
solved. First, theoretically, the allele frequencies used 
to construct the genomic relationship matrix should be 
those of the base population of the pedigree [4]. How-
ever, allele frequencies in the base populations are usu-
ally unknown, because animals in the base population are 
often not genotyped [5]. Using allele frequencies other 
than those of the base population for the construction of 
the genomic relationship matrix causes incompatibility 
between the pedigree-based and marker-based relation-
ship matrices [6]. Second, to make the genomic relation-
ship matrix invertible and capture genetic variance that 
cannot be captured by SNPs, the genomic relationship 
matrix is usually combined with the pedigree-based rela-
tionship matrix, using a weighting factor (ω) that may 
be breed- and trait-specific, which needs to be further 
investigated. Some approaches are available to address 
these two problems, but they are not perfect. For exam-
ple, instead of allele frequencies in the base population, 
those of the genotyped population are used to construct 
the genomic relationship matrix. Other studies have 
adjusted the marker-based relationship matrix to make it 
compatible with the pedigree-based relationship matrix 
[7–9]. Some studies use the same weighting factor (ω) 
for different traits, leading to a decrease in the accuracy 
of estimated breeding values [10]. Although these solu-
tions have been widely used in SSGBLUP and appear to 
be effective in practice, they do not fully solve the above-
mentioned issues and further developments are needed 
to improve SSGBLUP.

To address the issue of unknown base allele frequencies 
and incompatibility of genomic and pedigree relationship 
matrices, Christensen [6] and Legarra et al. [5] defined a 
metafounder as a finite-sized pool of gametes from which 
alleles are randomly extracted to form diploids that rep-
resent animals in the base population [5]. Based on meta-
founder theory [5, 6], allele frequencies of 0.5 should be 
used to construct the genomic relationship matrix and 
referred to in the construction of the pedigree-based 
relationship matrix, such that compatibility between ped-
igree-based and marker-based relationship matrices is 
automatically achieved. Thus, metafounder theory solves 
the two above-mentioned issues of SSGBLUP.

Since this theory was formulated, a few studies have 
focused on the application of single-step genomic evalu-
ation coupled with metafounders, i.e. MF-SSGBLUP. For 
instance, Garcia-Baccino et  al. [11] used simulated data 
to investigate methods to estimate relatedness in the base 
population (γ). Using MF-SSGBLUP, Xiang et  al. [12] 
estimated breeding values for total number of piglets 

born in purebred pigs for two-way crossbred perfor-
mance, and van Grevenhof et al. [13] estimated breeding 
values of purebred pigs for three-way crossbred perfor-
mance, based on simulated data. In dairy cattle, Bradford 
et al. [14] compared the predictive performance of SSG-
BLUP with unknown parent groups and MF-SSGBLUP 
using simulated data. Kudinov et  al. [15] recommended 
MF-SSGBLUP for genomic prediction in red dairy cattle. 
Macedo et al. [16] reported that MF-SSGBLUP can yield 
unbiased estimates of breeding values when pedigree 
information is not complete.

Studies that compare MF-SSGBLUP and standard SSG-
BLUP for genomic evaluation on production traits such 
as feed conversion rate (FCR) and average daily gain 
(ADG) are lacking in pigs. In addition, only a few studies 
have applied these two methods in a multi-trait model, 
which is extensively used in pig breeding programs. 
Finally, the effect of using different weighting factors ω 
for the pedigree-based relationship matrix in MF-SSGB-
LUP on genomic predictions has not been investigated. 
Therefore, the aims of this study were to (1) compare esti-
mates of genetic parameters for ADG and FCR obtained 
with SSGBLUP and MF-SSGBLUP; (2) investigate and 
compare the accuracy and bias of GEBV using SSGBLUP 
and MF-SSGBLUP with univariate and bivariate animal 
models; and (3) find optimal weighting factors, ω, for 
ADG and FCR when using SSGBLUP or MF-SSGBLUP.

Methods
Phenotypic records
All datasets were provided by the SEGES Danish Pig 
Research Centre. The traits ADG (ADG = weight gain/
days) and FCR (FCR = feed intake/weight gain) were 
measured during the 30 to 100 kg interval for both Dan-
Bred Landrace (LL) and Yorkshire (YY) pigs between the 
years 2000 and 2017. Records for ADG were available on 
686,420 LL pigs, of which 18,889 also had FCR records, 
and on 570,493 YY pigs, of which 19,387 also had FCR 
records. Pedigrees of the two breeds were traced back 
to January 1, 1994, and included 700,960 LL pigs and 
582,114 YY pigs.

Genotypes
In total, 37,699 LL and 37,845 YY pigs were genotyped 
with the Illumina PorcineSNP60 Genotyping BeadChip, 
with approximately equal numbers by breed using ver-
sion 1 and version 2. SNPs were mapped to chromosomes 
based on the pig genome build 10.2 [17]. Genotype qual-
ity control was conducted separately for the two versions 
and the two breeds. First, animals with a genotype call 
rate lower than 90% were excluded. Then, SNPs with a 
genotype call rate lower than 90% and a minor allele fre-
quency lower than 0.05 were filtered out, as were SNPs 
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that deviated strongly from Hardy Weinberg equilibrium 
within breed (p < 10e−7). Fimpute v2.2 [18] was used to 
impute missing genotypes. After quality control, 37,621 
SNPs for 37,699 LL pigs and 36,687 SNPs for 37,845 YY 
pigs were retained for further analysis.

Methods to construct the relationship matrix
For SSGBLUP, the inverse of the combined genomic 
and pedigree-based relationship matrix ( H−1 ) was con-
structed following Christensen and Lund [3] and Chris-
tensen et al. [9], as:

where Ga,ω = (1− ω)Ga + ωA22 and A22 contains the 
pedigree-based relationships among the genotyped pigs. 
Matrix Ga is an adjusted version of the genomic relation-
ship matrix G , that was constructed following VanRaden’s 
[4] method 1 as: G = ZZ′

2
∑

pi(1−pi)
 , where Z is a matrix with 

entries 0–2pi , 1–2pi , 2–2pi for genotypes AA, AB, and 
BB, respectively, for SNP i ranging from 1 to m , where m 
is the number of markers. Theoretically, pi are the minor 
allele frequencies in the base population but, in practice, 
pi is often computed from the observed genotypes, and 
this was the case in our study. To be compatible with the 
pedigree-based relationship matrix, matrix G was scaled 
to create a matrix Ga , following the method described by 
Christensen et al. [9], as: Ga = βG+ α11′ , where β and α 
are obtained by solving the following equations: 
Avg

(
diag(G)

)
β+ α = Avg

(
diag(A22)

)
 and Avg(G)β+ α

= Avg(A22) . The inverse of the pedigree-based relation-
ship A matrix was constructed according to Henderson’s 
rule [19] by considering inbreeding coefficients in the 
relationship matrix computation. Matrix A22 , with 
inverse A−1

22  , was constructed following Colleau [20]. To 
investigate the effects of different weighting factors, ω, 
between the pedigree-based and genomic relationship 
matrices on genomic predictions in SSGBLUP, we tested 
values of ω ranging from 0.05 to 0.95 with an interval of 
0.05.

For MF-SSGBLUP, parameter γ, which represents the 
relatedness of the animals in the LL and YY base popula-
tions, must be estimated to construct the inverse of the 
combined relationship matrix. Christensen [6] and Garcia-
Baccino et  al. [11] reported that γ = 8σ 2

p  where σ 2
p  is the 

variance of the true allele frequencies in the base popula-
tion. To estimate γ, σ 2

p  was calculated by the method of 
generalized least squares reported by Garcia-Baccino et al. 
[11] and Xiang et  al. [12]. For this purpose, gene content 
at a SNP, i.e. the number of copies of a given reference 
allele (e.g. 0/1/2 for genotypes AA/AB/BB) was viewed as a 

H−1 =

[
0 0

0 G−1
a,ω − A−1

22

]
+ A−1,

quantitative trait with a heritability of 1, and all the variance 
was assumed to be additive genetic [21]. The linear model 
used for analysis of gene content, which was independently 
proposed by McPeek et al. [22] and Gengler et al. [23], was:

where mi is a vector of gene contents for SNP i across 
all animals; µi is the overall mean of gene content, with 
µi = 2pi , where pi is the allele frequency in the base 
population; ui is the vector of random genetic effects and 
was assumed to follow a multivariate normal distribu-
tion ui ∼ N

(
0,Aσ 2

u

)
 [24], where A is the pedigree-based 

additive genetic relationship matrix; matrix W is an inci-
dence matrix relating individuals to their genotypes; and 
ei is a vector of error terms. We used σ 2

u = 0.999 and 
σ 2
e = 0.001 , such that heritability was almost 1. Similar to 

Xiang et al. [25], the overall mean µi for each locus i was 
estimated as the best linear unbiased estimate (BLUE) 
using the BLUPF90 [26] software. Then, the estimate of 
the base allele frequency p̂i was calculated as half of the 
µ̂i . The variance of base population allele frequencies, σ̂ 2

p  , 
was obtained, followed by γ̂ = 8σ̂ 2

p .
After estimating γ, the inverse combined relationship 

matrix H(γ)−1 was constructed for the LL and YY popula-
tions as follows:

where GMF,ω = (1− ω)GMF + ωA
(
γ̂
)
22

 , and A
(
γ̂
)
22

 
contain the pedigree-based relationships among the gen-
otyped pigs. The marker-based relationship matrix was 
derived as GMF =

(
M − 1m1

′
n

)(
M − 1m1

′
n

)′/
s , where 

M is a matrix with entries 0, 1, and 2 for genotypes AA, 
AB, and BB, respectively; 1m and 1n are vectors of ones of 
lengths m for the number of markers and n for the num-
ber of animals, respectively; and s is a scaling parameter 
equal to m

2
 [27]. The calculation of H

(
γ̂
)−1 was based on 

the method reported by Garcia-Baccino et al. [11]. Values 
of ω ranging from 0.05 to 0.95 with an interval of 0.05 
were investigated. The inverse of the pedigree-based rela-
tionship matrix A

(
γ̂
)−1 was constructed according to 

Henderson’s [19] rules and matrix A
(
γ̂
)
22

 was con-
structed following the method described by Colleau [20], 
with a minor modification based on metafounders [5]. 
Matrix A

(
γ̂
)−1

22
 is the inverse of A

(
γ̂
)
22

.

Statistical models
Both univariate and bivariate animal models were applied 
to estimate breeding values for ADG and FCR for both LL 
and YY pigs. The statistical models for analysis of ADG and 
FCR were as follows:

mi = 1µi +Wui + ei,

H
(
γ̂
)−1

=

[
0 0

0 G−1
MF,ω − A

(
γ̂
)−1

22

]
+ A

(
γ̂
)−1

,



Page 4 of 11Fu et al. Genet Sel Evol           (2021) 53:79 

where yADG and yFCR are vectors of phenotypic records 
for ADG and FCR, respectively; βADG and βFCR are the 
vectors of fixed effects, which include contemporary 
groups effects (animals present at the same point of 
time), sex effect, and covariates on initial weights for 
ADG and FCR, respectively; aADG , aFCR , lADG , and pADG 
are the vectors of random effects, with aADG and aFCR 
representing the additive genetic effects for ADG and 
FCR, respectively; lADG and pADG are vectors of random 
birth litter effects and random pen effects for ADG; X , Z , 
K , W are the corresponding incidence matrices; and 
eADG and eFCR are vectors of random residual effects. 
Random litter and pen effects were assumed to follow 
normal distributions, i.e., lADG ∼ N

(
0, Iσ 2

litter

)
 and 

pADG ∼ N
(
0, Iσ 2

pen

)
 , where I is an identity matrix. In the 

univariate models, vectors aADG and aFCR were assumed 
to be normally distributed with a mean of 0 and (co)vari-
ance structures var(aADG) = Hσ 2

a_UNI_ADG and 
var(aFCR) = Hσ 2

a_UNI_FCR for SSGBLUP, and var(aADG)
= H(γ)σ 2

a_UNI_MF_ADG and var(aFCR) = H(γ)σ 2

a_UNI_MF_FCR 
for MF-SSGBLUP, where σ 2

a_UNI_ADG , σ 2
a_UNI_FCR , 

σ 2
a_UNI_MF_ADG , and σ 2

a_UNI_MF_FCR are, respectively, the 
additive genetic variances for ADG and FCR in the uni-
variate models using SSGBLUP and MF-SSGBLUP. In the 
bivariate model, aADG and aFCR were assumed to follow a 
multivariate normal distribution:

where σ 2
a_BI_ADG , σ 2

a_BI_FCR , σ 2
a_BI_MF_ADG and 

σ 2
a_BI_MF_FCR are the additive genetic variances for ADG 

and FCR in the bivariate model for SSGBLUP and MF-
SSGBLUP, respectively, and σa_BI_ADG,a_BI_FCR and 
σa_BI_MF_ADG,a_BI_MF_FCR are the additive genetic covari-
ances between ADG and FCR in the bivariate model for 
SSGBLUP and MF-SSGBLUP, respectively. It should be 
noted that the (co)variance components in MF-SSGBLUP 
cannot be directly compared with those in SSGBLUP 
based on the assumption that animals in the base popu-
lation were unrelated. In MF-SSGBLUP, all the genetic 
(co)variance components, including the additive genetic 

yADG =XADGβADG + ZADGaADG

+ KADGlADG +WADGpADG + eADG ,

yFCR = XFCRβFCR + ZFCRaFCR + eFCR,

(
aADG
aFCR

)
∼ N

(
0,

(
σ 2
a_BI_ADG σa_BI_ADG,a_BI_FCR

σa_BI_FCR,a_BI_ADG σ 2
a_BI_FCR

)
⊗H

)
for SSGBLUP

and

(
aADG
aFCR

)
∼ N

(
0,

(
σ 2
a_BI_MF_ADG σa_BI_MF_ADG,a_BI_MF_FCR

σa_BI_MF_FCR,a_BI_MF_ADG σ 2
a_BI_MF_FCR

)
⊗H(γ)

)
for MF-SSGBLUP,

variances for ADG and FCR and the genetic covariance 
between ADG and FCR, were multiplied by (1− γ/2) , 
with γ estimated separately for the LL and YY popula-
tions [5, 26].

Methods and genetic parameters
Using the HE regression algorithm in the HIBLUP soft-
ware (https://​hiblup.​github.​io/), all available data for the 
LL and YY pigs were used to estimate (co)variance com-
ponents and heritabilities ( h2 ) with ω = 0.25 for both 
ADG and FCR using four methods: (1) SSGBLUP method 
with a univariate model (UNI_SSGBLUP); (2) MF-SSGB-
LUP method with a univariate model (UNI_MF-SSGB-
LUP); (3) SSGBLUP method with a bivariate model 
(BI_SSGBLUP), and (4) MF-SSGBLUP method with a 
bivariate model (BI_MF-SSGBLUP). Estimation of the 
genetic correlation between ADG and FCR was per-
formed only with the two bivariate methods, i.e., BI_SSG-
BLUP and BI_MF-SSGBLUP. The four methods were 
evaluated for both the LL and YY populations. For UNI_
SSGBLUP, heritability was calculated as h2UNI_ADG

=
σ 2

a_UNI_ADG

σ 2

a_UNI_ADG +σ 2

UNI_litter +σ 2

UNI_pen +σ 2

e_UNI_ADG

 and 

h2UNI_FCR =
σ 2

a_UNI_FCR

σ 2

a_UNI_FCR +σ 2

e_UNI_FCR

 for ADG and FCR,  

respectively. For BI_SSGBLUP, heritability was calculated 
as h2BI_ADG =

σ 2

a_BI_ADG

σ 2

a_BI_ADG +σ 2

BI_litter +σ 2

BI_pen +σ 2

e_BI_ADG

 and 

h2BI_FCR =
σ 2
a_BI_FCR

σ 2
a_BI_FCR +σ 2

e_BI_FCR

 for ADG and FCR, 

respectively. For UNI_MF-SSGBLUP and BI_MF- 
SSGBLUP, all variance components had to be scaled, as 

mentioned above. Thus, for UNI_MF-SSGBLUP,  
heritability was calculated as h2UNI_MF_ADG =

σ 2

a_UNI_MF_ADG ∗(1−γ/2)

σ 2

a_UNI_MF_ADG ∗(1−γ/2)+σ 2

UNI_MF_litter +σ 2

UNI_MF_pen +σ 2

e_UNI_MF_ADG

 

and h2UNI_MF_FCR =
σ 2

a_UNI_MF_FCR ∗(1−γ/2)

σ 2

a_UNI_MF_FCR ∗(1−γ/2)+σ 2

e_UNI_MF_FCR

 
for ADG and FCR, respectively. For BI_MF-SSGBLUP, 
heritability was calculated as h2BI_MF_ADG =

σ 2

a_BI_MF_ADG ∗(1−γ/2)

σ 2

a_BI_MF_ADG ∗(1−γ/2)+σ 2

BI_MF_litter +σ 2

BI_MF_pen +σ 2

e_BI_MF_ADG

 

and h2BI_MF_FCR =
σ 2
a_BI_MF_FCR ∗(1−γ/2)

σ 2
a_BI_MF_FCR ∗(1−γ/2)+σ 2

e_BI_MF_FCR

 

for ADG and FCR, respectively. The genetic correlation 

https://hiblup.github.io/
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between ADG and FCR was calculated as rg =
σa_BI_ADG,a_BI_FCR√
σ 2

a_BI_ADG ∗σ 2

a_BI_FCR

 and σa_BI_MF_ADG,a_BI_MF_FCR√
σ 2

a_BI_MF_ADG ∗σ 2

a_BI_MF_FCR

 for 

BI_SSGBLUP and BI_MF-SSGBLUP, respectively.

Predictive ability
Genomic predictions for the four methods of analysis 
were obtained using the preconditioned conjugate gradi-
ent algorithm in the DMU software [28], using different ω 
(ranging from 0.05 to 0.95). Notably, in the univariate and 
bivariate models, each time only one ω was used to con-
struct the relationship matrix. Predictive abilities were 
determined as the correlations between corrected pheno-
types ( Yc ) and genomic estimated breeding values ( ̂a ) in 
different methods ( cor

(
Yc, â

)
 ), in a validation population, 

following the method reported by Christensen et  al. [9]. 
Corrected phenotypes were obtained by adjusting for all 
the fixed and random effects except the additive genetic 
effect. To avoid biases in the calculation of Yc towards a 
specific single-step method, a univariate pedigree-based 
BLUP was used to estimate all the fixed effects and ran-
dom effects to obtain Yc . As an indicator of the dispersion 
bias of the genomic predictions, regression coefficients of 
the corrected phenotypes ( Yc ) on the genomic estimated 
breeding values ( ̂a ) were calculated for each method.

Animals with phenotypes were divided into training 
populations and validation populations by using a cutoff 
date on date of birth (May 1st, 2016). The two training 
populations included 654,908 (29,825 genotyped) LL pigs 
and 541,301 (30,144 genotyped) YY pigs. The two valida-
tion populations included all pigs born between May 1st, 
2016 and February 1st, 2017, i.e. 31,515 (7700 genotyped) 
LL pigs and 29,192 (7645 genotyped) YY pigs. Each vali-
dation population was divided into a genotyped sub-
group and a non-genotyped subgroup. The numbers of 
animals in each dataset are summarized in Table 1. The 
predictive ability was investigated for each subgroup and 
for the total validation population for both the YY and LL 
populations.

A Hotelling–Williams t-test at a 5% confidence level 
was performed to evaluate the statistically significant dif-
ferences in predictive ability between methods. The value 
of ω that resulted in the highest accuracy of genomic pre-
dictions was considered the optimal ω. However, if sev-
eral values of ω resulted in accuracies that were close to 
the highest accuracy, the value of ω with the lowest bias 
was considered the optimal weighting factor.

Results
Genetic parameters
Tables 2 and 3 show the estimated genetic parameters 
with a ω of 0.25 for ADG and FCR for the four methods 

of analysis and estimates of the genetic correlation 
between ADG and FCR for the bivariate analyses (BI_
SSGBLUP and BI_MF-SSGBLUP) for the LL and YY 
populations, respectively. For MF-SSGBLUP, parameter 
γ was estimated at γ̂L = 0.605 and γ̂Y  = 0.553 for the LL 
and YY populations, respectively. 

For the LL population, estimates of the additive 
genetic variance for ADG and FCR were similar for 
the four methods (Tables  2 and 3). Estimates of herit-
abilities for ADG ( h2a_ADG ) and FCR ( h2a_FCR ) were also 
almost identical for the four methods, with h2a_ADG 
ranging from 0.23 to 0.24 and h2a_FCR ranging from 
0.10 to 0.11, but with very high standard errors (SE), 
i.e. ranging from 0.04 to 0.05 for h2a_ADG and from 0.05 
to 0.07 for h2a_FCR . The estimate of the genetic correla-
tion between ADG and FCR was higher negative with 
BI_MF-SSGBLUP ( rg = − 0.27, SE = 0.10) than with BI_ 
SSGBLUP ( rg = − 0.19, SE = 0.09).

Results for the YY population were similar to those 
for the LL population. Variance component estimates 
were similar for the four methods, except for estimates 
of the additive genetic variance for ADG and FCR, 
which were slightly greater with the use of metafound-
ers (UNI_MF-SSGBLUP and BI_MF-SSGBLUP) than 
for the two SSGBLUP methods. Estimates of heritabil-
ity were consistent for the four methods and ranged 
from 0.26 to 0.28 for ADG, with SE from 0.03 to 0.04, 
and from 0.19 to 0.20 for FCR, with SE from 0.03 to 
0.04. The BI_MF-SSGBLUP and BI_ SSGBLUP methods 
resulted in the same estimate of the genetic correlation 

Table 1  Numbers of animals with records for average daily gain 
(ADG) and feed conversion ratio (FCR) and with genotypes in the 
training and validation datasets for the two populations

All genotyped animals have ADG records, but only some of them have FCR 
records

ADG average daily gain, FCR feed conversion ratio

Genotyped: genotyped individuals in the population

Genotyped and FCR: genotyped individuals with FCR records in the population

Training Validation

Landrace

 ADG 654,908 31,512

 FCR 17,901 988

 Genotyped 29,825 7700

 Genotyped and FCR 2660 902

Yorkshire

 ADG 541,301 29,192

 FCR 18,478 909

 Genotyped 30,144 7,645

 Genotyped and FCR 2802 870
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between ADG and FCR (− 0.46, with SE ranging from 
0.12 to 0.13).

Predictive ability
The effect of the weighting factor (ω) on accuracy 
for ADG and FCR for the four methods are shown 
in Fig.  1. For the LL population, the four methods 
resulted in nearly the same accuracy for ADG, with the 
highest accuracy equal to 0.355. The optimal weight-
ing factors (ω) were 0.20, 0.15, 0.20, and 0.25 for UNI_
SSGBLUP, UNI_MF-SSGBLUP, BI_SSGBLUP, and 
BI_MF-SSGBLUP, respectively. For FCR, the predictive 
ability was slightly higher for the bivariate (0.19) than for 

the univariate methods (0.16). The optimal ω was 0.70 
for UNI_SSGBLUP and BI_SSGBLUP, and 0.55 for UNI_
MF-SSGBLUP and BI_MF-SSGBLUP. For the YY popu-
lation, the curves of the predictive ability for ADG as a 
function of ω for the four methods nearly overlapped at 
the top (Fig. 1). The highest predictive ability (0.347) was 
obtained when ω was set to 0.30 for all four methods. 
For FCR, the univariate models performed slightly better 
than the bivariate models when ω was lower than 0.85, 
i.e. the predictive ability was highest, 0.355, with ω equal 
to 0.10 and 0.15 for UNI_SSGBLUP and UNI_MF-SSGB-
LUP, respectively, and 0.344 with a ω of 0.25 and 0.30 for 
BI_SSGBLUP and BI_MF-SSGBLUP, respectively.

Table 2  Estimates of variance components, heritabilities, and genetic correlations for average daily gain (ADG) and feed conversion 
ratio (FCR) in Landrace pigs using pedigree-based univariate BLUP and univariate (UNI) or bivariate (BI) single-step genomic prediction 
models with or without metafounders (MF)

Variance components for genetic parameters correspond to the usual genetic variance (in MF-SSGBLUP, all the variance components are multiplied by ( 1− γL)/2 ), 
which is the variance among unrelated individuals in the base population

σ 2
a_ADG

 is the additive genetic variance for ADG, σ 2
a_FCR

 is the additive genetic variance for FCR; σa_ADG,a_FCR is genetic covariance between ADG and FCR; σ 2
litter

 is the 
variance of litter effect for ADG; σ 2

e_ADG
 is the residual variance for ADG; σ 2

e_FCR
 is the residual variance for FCR

Numbers between brackets are the standard errors of the corresponding parameters

σ
2
a_ADG

σa_ADG,a_FCRσ
2
a_FCR

σ
2
pen σ

2
litter

σ
2
e_ADG

σ
2
e_FCR

h2
a_ADG

h2
a_FCR

rg

Pedigree-
based univari-
ate BLUP

1916.33 
(98.71)

− 0.56 
(0.44)

4.12 × 10–3 
(2.55 × 10–3)

633.35 
(69.57)

455.57 
(77.25)

4544.12 
(96.21)

2.82 × 10–2 
(2.49 × 10–3)

0.25 
(0.05)

0.13 
(0.06)

− 0.20 (0.11)

UNI_SSGBLUP 1899.91 
(99.30)

– 3.44 × 10–3 
(2.61 × 10–3)

669.29 
(64.02)

510.24 
(81.99)

4787.67 
(95.34)

2.87 × 10–2 
(2.53 × 10–3)

0.24 
(0.04)

0.11 
(0.06)

–

BI_SSGBLUP 1882.02 
(96.75)

− 0.48 
(0.42)

3.35 × 10–3 
(2.42 × 10–3)

691.50 
(50.15)

527.58 
(63.81)

4885.49 
(90.25)

2.88 × 10–2 
(2.47 × 10–3)

0.24 
(0.04)

0.10 
(0.06)

− 0.19 (0.09)

UNI_MF-
SSGBLUP

1885.58 
(102.48)

– 3.46 × 10–3 
(2.59 × 10–3)

721.22 
(59.25)

529.21 
(65.23)

4894.98 
(95.54)

2.88 × 10–2 
(2.61 × 10–4)

0.23 
(0.04)

0.11 
(0.07)

–

BI_MF-SSG-
BLUP

1887.71 
(97.14)

− 0.68 
(0.43)

3.48 × 10–3 
(2.41 × 10–3)

727.64 
(53.62)

532.84 
(63.94)

4916.36 
(91.40)

2.87 × 10–2 
(2.50 × 10–3)

0.23 
(0.05)

0.11 
(0.05)

− 0.27 (0.10)

Table 3  Estimates of variance components, heritabilities, and genetic correlations for average daily gain (ADG) and feed conversion 
ratio (FCR) in Yorkshire pigs using pedigree-based univariate BLUP and univariate (UNI) or bivariate (BI) single-step genomic prediction 
models with or without metafounders (MF)

Variance components for genetic parameters correspond to the usual genetic variance (in MF-SSGBLUP, all the variance components are multiplied by ( 1− γY )/2 ), 
which is the variance among unrelated individuals in the base population

σ 2
a_ADG

 is the additive genetic variance for ADG, σ 2
a_FCR

 is the additive genetic variance for FCR; σa_ADG,a_FCR is genetic covariance between ADG and FCR; σ 2
litter

 is the 
variance of litter effect for ADG; σ 2

e_ADG
 is the residual variance for ADG; σ 2

e_FCR
 is the residual variance for FCR

Numbers between brackets are the standard errors of the corresponding parameters

σ
2
a_ADG

σa_ADG,a_FCRσ
2
a_FCR

σ
2
pen σ

2
litter

σ
2
e_ADG

σ
2
e_FCR

h2
a_ADG

h2
a_FCR

rg

Univariate animal 
model BLUP

2039.74 
(117.88)

− 1.19 
(0.22)

3.60 × 10–3 
(6.47 × 10–4)

577.24 
(57.33)

445.98 
(62.07)

5144.01 
(94.21)

1.55 × 10–2 
(6.19 × 10–3)

0.25 
(0.05)

0.19 
(0.05)

− 0.44 (0.15)

UNI_SSGBLUP 2168.95 
(116.30)

– 3.75 × 10–3 
(5.95 × 10–4)

571.73 
(56.91)

422.21 
(61.32)

5092.61 
(93.86)

1.54 × 10–2 
(5.69 × 10–3)

0.26 
(0.04)

0.19 
(0.04)

–

BI_ SSGBLUP 2174.28 
(110.43)

− 1.28 
(0.31)

3.58 × 10–3 
(5.26 × 10–4)

568.85 
(54.42)

418.41 
(70.61)

5080.37 
(100.25)

1.56 × 10–2 
(4.22 × 10–3)

0.26 
(0.03)

0.19 
(0.04)

− 0.46 (0.13)

UNI_MF-SSGBLUP 2305.03 
(122.34)

– 3.79 × 10–3 
(6.31 × 10–4)

570.11 
(56.87)

415.72 
(61.25)

5077.82 
(93.91)

1.56 × 10–2 
(5.72 × 10–4)

0.27 
(0.03)

0.20 
(0.03)

–

BI_MF-SSGBLUP 2311.95 
(118.92)

− 1.37 
(0.22)

3.86 × 10–3 
(5.91 × 10–4)

567.00 
(60.40)

411.53 
(57.75)

5065.37 
(88.41)

1.55 × 10–2 
(5.01 × 10–4)

0.28 
(0.03)

0.20 
(0.03)

− 0.46 (0.12)
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Taken together, when the same value of ω was used, the 
predictive ability did not significantly differ between the 
four methods. The predictive ability of method BI_MF-
SSGBLUP was slightly superior compared to that of the 
other methods.

In order to compare the predictive abilities for geno-
typed and non-genotyped animals, the LL and YY vali-
dation populations were divided into a genotyped and 
a non-genotyped subgroup, and the predictive abilities 
for ADG and FCR were calculated at the optimal ω for 
each subgroup. The results are in Table  4. As shown in 
Fig.  1, the optimal ω for SSGBLUP and MF-SSGBLUP 
was nearly the same for a given trait and population. 
Thus, we only investigated the predictive abilities for the 
genotyped and non-genotyped subgroups at the optimal 
ω of 0.20, 0.70, 0.25, and 0.10 for to ADG in LL, FCR in 
LL, ADG in YY, and FCR in YY, respectively. Based on 
Table 4, for both the univariate and the bivariate models, 
the predictive abilities of SSGBLUP and MF-SSGBLUP 
were similar for both subgroups but the predictive abil-
ity was higher for the genotyped subgroups than for the 
non-genotyped subgroups.

The effect of the weighting factor (ω) on bias of 
genomic predictions for ADG and FCR for the four 

methods are shown in Fig.  2. In general, the regression 
coefficient increased as ω increased. For the LL popula-
tion, when ω was set to 0.95, the regression coefficients 
were closest to 1. For ADG, the effect of ω on the regres-
sion coefficient was nearly the same for the four methods; 
for FCR, the regression coefficients deviated more from 
1 for the univariate models than for the bivariate mod-
els. For the YY population, the regression coefficient for 
ADG with method BI_MF-SSGBLUP was closest to 1 
with a ω of 0.70, indicating that this method was the best 
among the four methods in terms of bias. For FCR, there 
were no dramatic differences in bias between the four 
methods. When ω was set to 0.15, the bias of genomic 
predictions was lowest for all four methods. When the 
optimal ω was used, the bias of genomic predictions was 
lower for the non-genotyped subgroup than for the geno-
typed subgroup for all four methods (see Table 5).

Discussion
In this work, we compared predictive abilities of genomic 
predictions for two economically important production 
traits, ADG and FCR, in DanBred Landrace and York-
shire populations between using regular SSGBLUP and 

Fig. 1  Accuracy for ADG and FCR. The effect of the weighting factor (ω) on accuracy for ADG and FCR for the four methods for two populations, 
where the X-axis represents ω ranging from 0.05 to 0.95, and the Y-axis indicates the correlation coefficients between corrected phenotypes ( Yc ) 
and genomic estimated breeding values ( ̂a)
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MF-SSGBLUP. First, we estimated γ to construct the 
H(γ)−1 matrix for MF-SSGBLUP. Then, we compared 
genetic parameters estimates and predictive abilities 
between SSGBLUP and MF-SSGBLUP, both for univari-
ate and bivariate models. This study also explored the 
optimal weighting factor, ω, on pedigree relationships for 
ADG and FCR for both SSGBLUP and MF-SSGBLUP.

Estimation of γ for MF‑SSGBLUP
For use in MF-SSGBLUP, we obtained estimates of γ of 
0.605 and 0.553 for the LL and YY populations, respec-
tively, which differed from those reported previously for 
the same populations (0.756 for LL and 0.730 for YY) 
[12]. Legarra et al. [5] have pointed out that several fac-
tors can affect estimates of γ, such as effective population 
size and the SNP panel used. The populations used in 
the current study and in previous studies [12] originated 
from the same ancestors, thus the effective population 
size was not responsible for the difference in γ estimates. 
However, in our study we used fewer SNPs (about 37,500 
SNPs) than in the previous study (41,000 SNPs), which 
is due to a difference in the quality control criteria on 
minor allele frequencies between the two studies, which 
was 0.05 for both the LL and YY populations, while Xiang 
et al.’s [12] used a threshold of 0.01. Thus, the additional 
SNPs in their study had a lower allele frequency, which 
increased the percentage of homozygotes and resulted in 
greater estimates of γ [12].

Genetic parameters
When using MF-SSGBLUP and SSGBLUP, although 
both the univariate and bivariate models produced simi-
lar genetic (co)variance estimates, the slightly smaller 
standard errors for the bivariate models indicated that 
bivariate models can reduce the uncertainty of genetic 
parameter estimates compared to the univariate models. 
Estimates of the genetic correlation between ADG and 
FCR were based on the bivariate models. Although MF-
SSGBLUP resulted in a higher negative (− 0.27) estimate 
than SSGBLUP (− 0.19) for the LL population, this differ-
ence was not significant. And MF-SSGBLUP and SSGB-
LUP resulted in the same estimate for the YY population.

Estimates of heritability were similar for the four meth-
ods within a population, and the heritability estimate for 
FCR was considerably lower for the LL (about 0.11) than 
the YY (about 0.20) population. In the literature, a range 
of heritabilities for FCR has been reported. For exam-
ple, Kavlak and Uimari [29] reported an estimate of 0.28 
for Finnish Yorkshires; Dube et  al. [30] estimates rang-
ing from 0.21 to 0.27 for South African Yorkshires; and 
Hoque et al. [31] reported an estimate of 0.27 for Duroc 
pigs. In this study, the SE of the estimate of heritability 
for FCR was substantial (about 0.05). Thus, further stud-
ies are needed to compute the relevant genetic parame-
ters based on larger datasets.

Predictive ability
Martini et  al. [32] have reported that a high weighting 
factor ω increases the variance of EBV. Therefore, we 

Table 4  Accuracies of genomic predictions for average daily gain (ADG) and feed conversion ratio (FCR) in different validation groups 
for univariate (UNI) or bivariate (BI) single-step genomic prediction models with or without metafounders (MF), each with their optimal 
weighting factor (ω) in the two populations

The four methods are UNI_SSGBLUP, UNI_MF-SSGBLUP, BI_SSGBLUP and BI_MF-SSGBLUP

Validation groups are the validation population including all the young pigs born between 1 May 2016 and 1 February 2017, and two subgroups of genotyped and 
non-genotyped animals

The results for ADG and FCR bivariate single-step genomic prediction models are obtained with their optimal ω respectively

Superscript letters indicate significant differences (p < 0.05) by the Hotelling–Williams t-test

Population Trait Validation group UNI_SSGBLUP UNI_MF-SSGBLUP BI_SSGBLUP BI_MF-SSGBLUP

Landrace ADG (ω = 0.20) All 0.355a 0.356a 0.355a 0.356a

Genotyped 0.410a 0.410a 0.410a 0.410a

Non-genotyped 0.327a 0.327a 0.326a 0.327a

FCR (ω = 0.70) All 0.192a 0.193a 0.193a 0.196b

Genotyped 0.200a 0.206b 0.201a 0.206b

Non-genotyped 0.167a 0.170a 0.179b 0.180b

Yorkshire ADG (ω = 0.25) All 0.347a 0.347a 0.347a 0.347a

Genotyped 0.395a 0.395a 0.394a 0.394a

Non-genotyped 0.309a 0.309a 0.309a 0.308a

FCR (ω = 0.10) All 0.355a 0.355a 0.344b 0.344b

Genotyped 0.370a 0.367a 0.357b 0.356b

Non-genotyped 0.118a 0.121a 0.117a 0.114a
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explored the optimization of ω. However, predictive abil-
ity was only slightly changed by ω. The ω with the highest 
predictive ability was defined as the optimal ω. For ADG, 
the optimal ω was almost the same (around 0.2) for the 
LL and YY populations, but for FCR, the optimal ω was 
substantially higher for the LL (around 0.7) than for the 
YY (around 0.1) population. This may be caused by a dif-
ference in the proportions of genetic variances accounted 
for by 50  K SNPs between the two populations. Miao 
et  al. [33] showed that the genes that affect FCR differ 
between LL and YY [33], thus the gene-linked SNPs may 
capture different proportions of the total genetic variance 
for the two populations.

In this study, predictive ability was higher than that 
reported in a previous study [9], likely because of the 
larger population size both in terms of number of phe-
notypic records and amount of genomic information. 
In our study, the estimated accuracy for ADG and FCR 
with SSGBLUP was higher than that reported for total 
number of piglets born in a previous study on the same 
populations [26], likely because the latter trait has a lower 
heritability than ADG and FCR. As shown in Table 4, the 
predictive ability for ADG and FCR was higher for the 

genotyped subgroups than for the non-genotyped sub-
groups for all four methods, consistent with previous 
reports [9, 12]. However, Guo et al. [34] reported that the 
predictive reliability of non-genotyped subgroups was 
higher than that of genotyped subgroups for total num-
ber of piglets born and litter size at day 5 after birth in 
the LL population, which they attributed to pre-selection 
of the genotyped animals, which reduced the correla-
tions between phenotypes and genotypes. In this study, 
although genotyped animals were also pre-selected, the 
number of genotyped animals after pre-selection was still 
large enough to provide sufficient information to make 
genomic predictions of genotyped animals more accurate 
than those of non-genotyped animals. Furthermore, the 
regression coefficients were lower for the genotyped sub-
groups than for the non-genotyped subgroups, while the 
bias of non-genotyped subgroups was similar to that of 
the whole validation population.

Theoretically, genomic relationships should be con-
structed using base allele frequencies [4] and some stud-
ies [35] have used estimated base allele frequencies to 
construct the genomic relationship matrix for genomic 
prediction. Thus, predictive abilities and bias were also 

Fig. 2  Bias for ADG and FCR. The effect of the weighting factor (ω) on bias of genomic predictions for ADG and FCR for the four methods for two 
populations, where the X-axis represents ω ranging from 0.05 to 0.95, and the Y-axis indicates the regression coefficients of corrected phenotypes 
( Yc ) on genomic estimated breeding values ( ̂a)
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evaluated for a bivariate SSGBLUP model with a genomic 
relationship matrix constructed using estimated base 
allele frequencies, using the optimal ω of 0.20, 0.70, 
0.25, and 0.10 for ADG in LL, FCR in LL, ADG in YY, 
and FCR in YY, respectively. We obtained the following 
predictive abilities and bias: 0.245 and 0.743, respectively 
for ADG in LL pigs, 0.114 and 0.642 for FCR in LL pigs, 
0.198 and 0.567 for ADG in YY pigs, and 0.141 and 0.550 
for FCR in YY pigs. These values were much lower than 
those obtained with SSGBLUP with a genomic relation-
ship matrix constructed using observed allele frequen-
cies. There are two possible explanations why the use of a 
genomic relationship matrix constructed using base allele 
frequencies resulted in worse predictive performance 
than the methods evaluated in this study: first, we used 
estimates of variance components using SSGBLUP with 
a genomic relationship matrix that was constructed using 
the observed allele frequencies; second, the estimated 
base allele frequencies may not have been accurate. How-
ever, we found that the performance of MF-SSGBLUP 
was at least as good as that of SSGBLUP, which indicates 
that the variance of the estimated base allele frequencies 
was reliable, since the self-relationship γ was estimated 
using this variance.

Overall, MF-SSGBLUP performed slightly better for 
genomic prediction for ADG and FCR than SSGBLUP, 
although the differences were not always statistically sig-
nificant. This finding is in agreement with the theory [5]. 
Thus, overall we recommend the use of MF-SSGBLUP 
for genomic evaluation in pigs.

Conclusions
The single-step genomic evaluation method with a meta-
founder (MF-SSGBLUP) was successfully implemented for 
genomic prediction of ADG and FCR in Danish Landrace 
and Yorkshire populations and was found to be slightly 
superior to the regular single-step method. The optimal 
weighting factor (ω) on pedigree information was slightly 
different for SSGBLUP versus MF-SSGBLUP. Based on our 
results, the bivariate model with a metafounder approach 
is recommended to estimate breeding values for correlated 
production traits such as ADG and FCR.
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