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Abstract This study investigated the spatial distribution of

brain activity on body schema (BS) modification induced

by natural body motion using two versions of a hand-

tracing task. In Task 1, participants traced Japanese Hira-

gana characters using the right forefinger, requiring no BS

expansion. In Task 2, participants performed the tracing

task with a long stick, requiring BS expansion. Spatial

distribution was analyzed using general linear model

(GLM)-based statistical parametric mapping of near-in-

frared spectroscopy data contaminated with motion arti-

facts caused by the hand-tracing task. Three methods were

utilized in series to counter the artifacts, and optimal

conditions and modifications were investigated: a model-

free method (Step 1), a convolution matrix method (Step

2), and a boxcar-function-based Gaussian convolution

method (Step 3). The results revealed four methodological

findings: (1) Deoxyhemoglobin was suitable for the GLM

because both Akaike information criterion and the variance

against the averaged hemodynamic response function were

smaller than for other signals, (2) a high-pass filter with a

cutoff frequency of .014 Hz was effective, (3) the hemo-

dynamic response function computed from a Gaussian

kernel function and its first- and second-derivative terms

should be included in the GLM model, and (4) correction

of non-autocorrelation and use of effective degrees of

freedom were critical. Investigating z-maps computed

according to these guidelines revealed that contiguous

areas of BA7–BA40–BA21 in the right hemisphere became

significantly activated (tð15Þ; p\:001, p\:01, and

p\:001, respectively) during BS modification while per-

forming the hand-tracing task.
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1 Introduction

In the human brain, peri-personal space [1] is represented

by embedding the spatial volume of external objects, such

as a hat (clothing) or a stick (tool), into an internal body

map [2]. In this process, people typically feel the object as

an extension of their own body [3]. The mechanism

underlying this sophisticated cognitive process is known as

body schema (BS) modification [4]. This mechanism is

considered a form of homuncular flexibility, involving

constant changes to the shape of the homunculus, which is

an approximate internal map of the human body in the

cortex that is often visualized as a distorted human

body [5]. The concept of the BS was initially proposed by

Head and Holmes [6], who defined it as a postural model of

the body that actively organizes and modifies the impres-

sions produced by incoming sensory impulses [6]. The

existence of the BS was confirmed in the 1990s by ana-

lyzing brain function in macaque monkeys [7]. The BS is

considered to be vital for spatial cognitive function and is

associated with various brain areas, including the sensori-

motor cortex [8], Broca’s area (BA44), the inferior parietal

lobule (BA40) [9], the primary motor cortex (BA4) [10],

and the mirror neuron system [11]. One experimental

approach to examining the BS involves the induction of a

‘‘confused’’ brain state by presenting mismatching visual

and haptic stimuli, as in the rubber hand illusion
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(RHI) [12, 13]. Similar variations, such as the visual–pro-

prioceptive synchrony judgment task [14] and the visual–

proprioceptive mismatch task [15], have also been exam-

ined. Other studies utilized motion illusions to examine the

BS more directly. Motion illusions arise when somatic

sensations are confused by physically vibrating the muscle

spindle that provides axial and limb position information to

the central nervous system [16]. Examples include illusory

arm movement [17], the Pinocchio illusion [18], and the

waist-shrinking illusion [19]. Electrical stimuli applied to

the skin can also induce similar motion illusions [20].

In addition, the BS plays a significant role in the ability

to drive a vehicle [21]. For example, a person’s sense of

car width is a form of BS modification [22]. For a skilled

driver, the whole spatial volume of the vehicle body is

perceived as an extension of the driver’s peri-personal

space [23]. Such spatial cognitive function is also involved

in teleoperation systems that require the operator to

manipulate a machine remotely [24]. In both driving a car

and remote operation of a robot, the machine (car or robot)

must be manipulated like one’s own body. This sensation

of body ownership is a type of BS modification [25, 26].

Additionally, the BS is heavily involved in some cog-

nitive disorders [27]. Alice in Wonderland syndrome (in-

volving distorted awareness of body size, mass, or its

position in space), autotopagnosia (involving mislocaliza-

tion of body parts and bodily sensations), and phantom

sensation (awareness of an amputated limb) are examples

of such disorders. Because the BS is related to such varied

human functions, a quantitative method for evaluating the

strength of BS modification may be useful both for reha-

bilitation of spatial cognition disorders and for the esti-

mation of spatial cognitive skill during vehicle operation.

Possible BS measurement methods such as functional

magnetic resonance imaging (fMRI), positron emission

tomography (PET), and magnetoencephalography (MEG)

are, however, not adequate for evaluation, because they all

require the participant’s head to be fixed to a stationary

measurement unit mounted on the floor. Natural BS mod-

ification is difficult to induce using such stationary mea-

surement devices because participants cannot move their

bodies freely. Near-infrared spectroscopy (NIRS) is an

alternative measurement method in which the measurement

unit can be attached to the participant’s head while still

permitting head movement. NIRS may thus have useful

applications in daily life, and portable NIRS systems have

recently been marketed commercially.

While NIRS may be an appropriate measurement tech-

nique for measuring brain activity during daily tasks, the

relationship between NIRS activity and modifications to

the BS is not currently understood. While a brain map of

BS modification would be useful, no analysis procedure for

constructing a map from NIRS data contaminated by

motion artifacts has been established to date. Even mild

motion, such as an arm movement, causes strong artifacts

in NIRS data. As such, there are several experimental

limitations involved in current NIRS methods: the need for

participants to maintain a sitting posture, the restriction of

movement to the right upper arm only, the inability to twist

one’s head, and the need to avoid conversation, all of

which may induce cognition-related brain activity that

contaminates NIRS data.

Statistical parametric mapping (SPM) has recently

become a popular method for investigating the spatial

distribution of brain activity [28] in studies using fMRI and

PET. Several studies describing the application of SPM to

NIRS data have been reported [14, 29–31]. According to

the SPM procedure, characteristics of brain activity are

identified statistically using a general linear model

(GLM) [32] to evaluate the accuracy of fit of brain activity

against a canonical response pattern of cerebral blood flow.

Random effects are then analyzed using the accuracy of fit.

Because of the effort expended in recent decades to

develop the SPM software package [33], this approach has

been established as a standard analysis method for fMRI

and PET interpretation. SPM is thus becoming the de facto

standard for examining common features in human brain

activity. It is widely used for investigating brain functions

that relate to a wide brain area.

However, unlike fMRI and PET, various adjustments of

experimental design analysis are required in NIRS studies,

because of the following issues:

Issue 1 To be analyzed with the GLM, signals must

satisfy the assumption of normal

distribution [32]; however, the actual responses

of regional cerebral blood flow (rCBF) are not

necessarily normally distributed.

Issue 2 It is difficult to satisfy the GLM assumption of

non-autocorrelation of errors, since rCBF is time

dependent [14].

Issue 3 It is challenging to distinguish meaningful low-

frequency components in rCBF from true noise,

such as drift and bias.

These issues have often been implicitly ignored in previ-

ous studies because the default parameters of the SPM

software were applied without careful consideration [31].

In addition, motion artifacts strongly affect NIRS data

when analyzing brain activity that accompanies body

motion. As such, consideration of body motion is

inevitable because natural body motion is required to

combine the visual and haptic senses that are involved in

BS. Importantly, ill-conditioned data arising from motion

artifact contamination cannot satisfy the requirements of

the GLM–SPM because well-conditioned data are
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implicitly required for comparison with the canonical

waveform. For this reason, most previous studies of NIRS–

SPM have utilized experimental paradigms that prohibit

body motion (as in fMRI and MEG studies). As such, these

methods cannot be directly used to analyze BS modifica-

tion accompanying motion artifacts. Overall, the brain

areas associated with BS modification induced by sponta-

neous body motion have not yet been comprehensively

examined in humans, although these mechanisms have

been identified in the monkey brain [7], and fragmentary

human evidence has been reported [9, 11].

Consequently, existing studies of NIRS–SPM have been

unable to use the unique benefit of the NIRS method, which

permits movement of the head and body. Therefore, the

current study sought to establish a practical NIRS–SPM

procedure using a task that requires the control of hand and

arm movements. The main aims of this study were as

follows:

1. Creating guidelines for using NIRS–SPM to analyze

rCBF accompanied by body motion artifacts.

2. Quantifying the spatial distribution of human brain

activity during BS modification induced by natural and

spontaneous body motion.

Concerning the first aim, several conditions and modifi-

cations were investigated using the following three steps:

Step (1) a model-free method analyzing cerebral blood

volume (CBV), Step (2) a convolution matrix method

known as the orthodox GLM, and Step (3) a boxcar-

function-based Gaussian convolution method.

2 Experiment

2.1 Hand-tracing task

A hand-tracing task was devised to examine differences in

brain activity related to BS modification. In this task,

participants were instructed to trace the curve of Japanese

Hiragana characters that were printed on paper (Task 1) or

projected onto a screen (Task 2). In Task 1, participants

used the right forefinger to trace the characters. In Task 2,

participants used a 1.5-m stick held in the right hand to

trace characters that were projected 2.0 m in front of them.

Importantly, Task 1 entails the use of the BS of partici-

pants’ own body only, whereas Task 2 involves an exten-

sion of the BS to the tip of the long stick. During both

tasks, participants sat on a chair, and the sitting position

was adjusted so that the participant could touch the char-

acters with the tip of the finger or stick. The size of pro-

jected characters was enlarged in proportion to the distance

to the screen to keep the perturbation of hand motion

similar in both tasks. To avoid inducing unnecessary brain

activation from environmental light and sound, participants

performed the tasks while wearing noise-canceling head-

phones inside a tent covered with a curtain. Thirty-second

rests were given after each task, as shown in Fig. 1a. The

investigator touched the shoulder of the participant to

signal the start and end of each task.

2.2 NIRS measurement

Previous evidence suggests that performing a hand-tracing

task would be likely to involve activation in the primary

motor area (M1), the primary somatosensory area (S1), and

the premotor area (PM) [34–37], because the action

involved in hand tracing requires the control of hand and arm

movements. The activation of these brain areas alone,

however, does not provide sufficient evidence to identify BS

modification. Hence, the present study also examined the

inferior parietal lobule (BA40). This brain region is not

thought to directly relate to hand motion, but is one of the

cortical areas associated with BS [9]. Therefore, in the cur-

rent experiment, areas around BA40 were monitored using

ETG-4000 (Hitachi Medico, Tokyo, Japan) using two 3� 3

holders, as shown in Fig. 2. A total of 24 data channels were

measured. The NIRS probes were attached to participants’

heads using the international 10–20 system so that C3(4) was

located at the forefront of the upper array of the holder, and

the second vertical line of the holderwas perpendicular to the

nasion–inion line, as shown in Fig. 2a. Thus, C3(C4) and

T3(T4) on the left (right) hemispheres corresponded to

Ch.17(Ch.3) and Ch.15(Ch.5), respectively.

The content and procedure of the experiment were

approved by the Tokyo Denki University Human Bioethics

Review Committee, and experiments were conducted after

explaining the experiment to the participants in full and

receiving written consent. Sixteen healthy university stu-

dents (20–23 years old) participated (N ¼ 16) in this

experiment.

3 Analyses

To determine the optimal conditions for NIRS–SPM

analysis dealing with rCBF contaminated by motion arti-

facts, Steps 1–3 were applied to the rCBF data, in

sequence. Step 1 examined the rCBF waveform to deter-

mine a hemodynamic response function (HRF) candidate

and tentatively select the NIRS hemoglobin type for the

GLM analysis. In Step 2, a low-frequency noise that causes

adverse effects on fitting time-sequential rCBF data to the

GLM was eliminated, and the degrees of freedom of the

SPM computation were modified in order to obtain correct

statistical results. In Step 3, an adequate canonical model in

GLM was found, to enhance the accuracy of fit, and an
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optimal condition for the NIRS–SPM was derived after

autocorrelation modification and the final choice of

hemoglobin type were identified. These steps fundamen-

tally adhere to the following basic stages of a general SPM

approach [28]:

First-level

analysis

A statistical test ascertains whether the

rCBF shows significantly different

responses according to the task

condition with respect to each

measurement channel (one-sample t test).

Second-level

analysis

After statistics obtained in the first-level

analysis are converted into z-values, an

average of the population to which the z-

values of all participants belong is tested

(random-effects analysis) [38].

The details of these steps and the analysis results are

explained below, in sequence.

3.1 Step 1: Model-free method

The increase of total hemoglobin (Hb) has often been used

to investigate brain activity in previous studies. However,

other wave patterns such as ‘‘both oxy-Hb and total-Hb

decrease’’ and ‘‘oxy-Hb, deoxy-Hb, and total-Hb increase’’

have also been used [39]. In the case of young adults, total-

Hb concentration tends to reflect both oxy and deoxy

changes, since the increase in oxy-Hb tends to be larger

than the decrease in deoxy-Hb [39].

It is, however, difficult to select a consistent pattern

because these Hb-based parameters also differ according to

the age of the participant, the purpose of the research,

measurement conditions, and the researchers’ preferences.

In practice, oxy-Hb is considered by some researchers to be

adequate for detecting local brain activity [14, 40, 41],

while other studies [29, 42, 43] support the use of deoxy-

Hb. Therefore, the first step in this study was to investigate

the most appropriate type of hemoglobin using a model-

free approach unrelated to the HRF.

Close examination of rCBF responses revealed that

regional cerebral blood volume (rCBV) in several channels

decreased at the beginning of Task 1 and increased for

several seconds at the beginning of Task 2. Based on this

observation, a null hypothesis of no difference was tested

using a paired t test against two values of rCBV, referred to

as S1�s and S2�s. These values were computed by integrating

the rCBF data for s seconds from the beginning of each

task.

Sl�s ¼
Xs=D

i¼0

ðylðiÞ � blÞ=ðs=DÞ ðl ¼ 1; 2Þ ð1Þ

bl :¼
X0

i¼�b5=Dc
ylðiÞ= b5=Dcð Þ; ð2Þ

where ylðiÞ is the rCBF data at the sampling count i on Task

l from the beginning of the task, the sampling interval D is

.1 s, bl is a bias computed by averaging 5 s of data just

before the beginning of task, and an operator b�c is a floor
function. The z-values converted from statistics computed

in this paired t test are shown in Table 1. The z-values were

computed for each channel using all participants’ data

(N ¼ 16), and other results obtained using different s values
are summarized in the same table. This table shows an

existence of significant differences in channels 4–10, 12,

and 15 for all types of Hb. This result demonstrates that

Tasks 1 and 2 induced significantly different brain activity

responses.

The current method was a relatively simple process, and

the results shown in Table 1 may possess lower reliability

because the parameters [an integral interval s in Eq. (1) and

About 2 min 
Rest

Task 1
30 sec 30 sec 30 sec15sec 30 sec

Task 2

Rest Rest

1

2

3

(a)

(b)

i=1             150                          450                           750                           1050                 1350

Fig. 1 a Experimental time

sequence, b design matrix X for

the GLM: b shows the elements

in the design matrix X in black

(value ¼ 1) and white

(value ¼ 0) in the gray image.

Refer to Sect. 3.2 for details of

the design matrix

Fig. 2 a Locations of probes, b channel layout
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a duration to compute the bias bl in Eq. (2)] were deter-

mined subjectively without a theoretical guarantee of

optimality, despite consideration of the task condition and

the actual NIRS response data. This method, however,

contributes to an improved understanding of a tendency in

a wide area of common brain activity from multi-channel

measurement data. Thus, we assumed the results shown in

Table 1 were provisional, and used them to judge the

validity of the assumption of the existence of a certain HRF

wave pattern for the subsequent Steps 2 and 3, which were

processed from objective criteria. Because the data in this

table indicate that the channels responding to the difference

between Tasks 1 and 2 were ch. 4–10, 12, and 15, a

canonical waveform of rCBF was computed using the

rCBF data measured in these channels for the HRF. That is,

we averaged all rCBF data measured in these channels

during each task period into one waveform for each task.

The results of the canonical forms are shown in Fig. 3. All

graphs in the figure show rounded trapezoidal waveforms

similar to the convolved response of a boxcar and a

Gaussian function. The results revealed that rCBF during

Task 1 decreased [see graphs (a1) (b1)] while rCBF during

Task 2 increased [see graph (a2) (b2)] for both oxy- and

deoxy-Hb. These findings indicated that a waveform sim-

ilar to that used in previous studies, involving the con-

volved response of a boxcar and a Gaussian function, was

appropriate for the current analysis. In addition, the aver-

aged rCBF waveform in all cases demonstrated substantial

variance because of motion artifacts, as indicated by the

long error bars in each graph. Notably, the variance in

deoxy-Hb was half that of oxy-Hb [as indicated by the

difference in the length of the error bars between graph (a1)

and graph (b1), and between graph (a2) and graph (b2)].

This result indicates that deoxy-Hb was less affected by

individual differences than oxy-Hb.

Taken together, these findings indicate that deoxy-Hb

may be better suited for GLM analysis using the convolved

response of a boxcar and a Gaussian function for analysis

of rCBF affected by motion artifacts. Therefore, the deoxy-

Hb NIRS data were mainly analyzed provisionally in the

following analyses. The validity of the selection of deoxy-

Hb was judged in Steps 2 and 3.

3.2 Step 2: Convolution matrix method

After Step 1, a GLM–SPM method presented in [44] called

the convolution matrix method was applied to the deoxy-

Hb responses because the validity of assuming a HRF was

confirmed in Step 1, as the procedure presented in [44] is

considered a basic version of various extended GLM–SPM

methods. To examine differences between the two versions

of the hand-tracing task, the following GLM equation was

assumed using independent variables xk ðk ¼ 1; 2Þ and a

response variable y.

jyðiÞ ¼ jb1 � x1ðiÞ þ jb2 � x2ðiÞ þ jd þ jeðiÞ; ð3Þ

where j ð¼ 1; . . .; 24Þ is an index of channel, bk are

unknown coefficient parameters (const.), d is a drift term

Table 1 Results of statistical tests using a model-free method in Step 1: z-values obtained using a paired t test, df ¼ 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
10 2.32 2.12 0.58 3.43 3.15 3.15 3.05 4.11 3.50 3.07 2.01 2.48 1.63 2.26 2.59 0.38 1.66 1.05 1.92 2.18 1.10 0.88 1.80 1.03
20 2.10 1.87 0.21 2.99 3.14 3.22 3.10 4.27 3.14 2.82 2.02 2.86 1.92 1.69 2.57 0.02 1.33 0.30 2.01 2.01 0.83 0.05 1.71 0.59

30 2.05 1.93 0.48 2.75 3.02 3.02 3.00 4.28 2.98 2.81 2.16 2.85 2.07 1.48 2.58 0.30 1.35 0.27 1.86 1.92 0.78 0.27 1.54 0.69
10 2.16 1.81 – 0.90 2.83 2.63 0.89 3.03 1.45 3.32 3.21 1.63 2.88 1.65 2.06 2.35 1.19 – 0.69 2.48 1.29 2.31 0.76 0.89 1.44 0.94
20 2.23 1.36 – 0.96 2.18 2.61 0.04 2.89 1.34 2.97 3.21 1.31 2.82 1.68 1.49 2.12 0.39 0.29 1.27 1.31 2.07 0.53 0.13 1.43 0.76

30 2.10 1.23 –1.00 1.78 2.57 – 0.18 2.71 1.27 2.74 3.18 1.45 2.68 1.63 1.38 1.99 0.68 – 0.15 0.98 1.29 1.98 0.59 0.38 1.35 0.91
10 2.79 2.05 – 0.22 3.41 2.95 3.24 3.15 3.04 3.62 3.31 1.97 2.67 1.83 2.41 2.69 0.67 1.56 1.64 1.73 2.32 1.01 0.91 1.70 1.02
20 2.24 1.71 – 0.39 2.92 2.94 2.26 3.13 2.96 3.22 3.14 1.80 2.91 2.13 1.79 2.61 0.14 1.26 0.56 1.84 2.11 0.74 0.08 1.64 0.66
30 2.19 1.70 – 0.31 2.66 2.86 2.17 2.99 3.03 3.04 3.11 1.95 2.84 2.17 1.57 2.55 0.45 1.27 0.48 1.71 2.02 0.73 0.31 1.51 0.78
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Fig. 3 Averaged waveform of hemodynamic responses at channels

showing significant differences in Task 1 (left graphs) and Task 2

(right graphs). Error bars in each graph indicate :5r of the measured

waveforms every 10 s
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(const.), and e is a residual that is assumed to be inde-

pendently and identically distributed normally with a

mean of zero. The maximum of the sampling counter i

and the total number of independent variables xk are

denoted as I and K, respectively. Equations defined by

Eq. (3) for all i are summarized in the following matrix

form:

jY ¼ X � jBþ jE; ð4Þ

where X 2 RI�ðKþ1Þ is a design matrix, Y 2 RI is a

response vector, B 2 RðKþ1Þ is a parameter vector, E 2 RI

is a residual vector, and X and B are defined as

X :¼

x1ð1Þ x2ð1Þ 1

..

. ..
. ..

.

x1ðIÞ x2ðIÞ 1

2
664

3
775;

jB :¼

jb1
jb2
jd

2
64

3
75: ð5Þ

First-level analysis This step investigated whether the

hemodynamic responses differed depending on the task

conditions by statistically investigating the magnitude of

estimations of coefficients in Eq. (3) with respect to each

channel for each participant. The details of this technique

are explained below.

First, the design matrix X was defined using a time-

series signal of a boxcar function with a value of 1 during

the task period and a value of 0 otherwise. Second, a

convolution matrix H 2 RðIþMÞ�I was defined using a

Gaussian function to approximate the response of the

rCBF. Estimates B̂ for B were computed as follows, using

the ordinary least squares (OLS) method [44].

jB̂ ¼ XT
aXa

� ��1
XT

aH � jY

Xa :¼ HX
ð6Þ

Specifically, the convolution matrix H was designed using

a Gaussian function with a 4.0-s full width half maximum

ðFWHM ¼ 4:0Þ [29], and the total length of Y was speci-

fied as 135 s (i.e., I ¼ 1350) because the data range

including the 15- and 30-s rests at the beginning of Task 1

and the end of Task 2, respectively, was examined, as

shown in previous Fig. 1b. Finally, for a statistical test of

the estimates B̂, a contrast matrix was chosen as

C ¼ ½ �1 1 0 �, and the Wald statistic (¼ CB̂/standard

error of slope coefficient) [45] was computed for each

channel and tested with a one-sample t test. Importantly,

the usual degrees of freedom (DoF) used in common GLM

methods computed by ðI � rankðXÞÞ [46] are likely to

overestimate the statistic [44] because large statistical

values are computed inaccurately when long time-series

data are analyzed. To avoid this issue, we used the fol-

lowing alternative Wald statistic t, which was modified

using an effective DoF [47]

t ¼ C � jB̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2C XT

aXa

� ��1
XT

aVXa XT
aXa

� ��1
CT

q
;

ð7Þ

where V :¼ HHT and �2 2 R1 is an unbiased estimator.

Here �2 is computed from a residual-forming matrix R 2
RðIþMÞ�ðIþMÞ and a vector of residuals r 2 RðIþMÞ as

�2 ¼ rTr=traceðRVÞ
r :¼ RH � jY

R :¼ I� Xa XT
aXa

� ��1
XT

a :

ð8Þ

Although Eq. (7) can be computed without the direct use of

the effective DoF v, the value of v was required to convert

the t into a z-value during the second-level analysis. Hence,

v was computed [47] by

v ¼ trace RVð Þ2=trace RVRVð Þ: ð9Þ

In the present analysis, the effective DoF was approxi-

mately 30, while a normal DoF may have been as large as

1350. This example shows that modification using the

effective DoF was indispensable for the NIRS–SPM anal-

ysis to avoid over-estimation in statistical computation.

Second-level analysis In this analysis, the statistic

t computed by Eq. (7) was converted into a z-value using

the effective DoF v and tested whether all z-values from all

participants were statistically larger than zero for each

channel (random-effects analysis).

The general form of the GLM described in Eq. (3)

assumes neither a drift nor a trend effect. To fulfill this

assumption, the signal is typically passed through a high-

pass filter (HPF) to eliminate these effects before applying

the OLS. Accurate statistical results cannot be obtained

when an inadequate HPF is used. Therefore, in the fol-

lowing analysis, an HPF was tuned based on the Akaike

information criterion (AIC). Specifically, the following

three types of filters were applied based on a past NIRS

study [29]: using no filter and HPFs with cutoff frequencies

of .008 and .014 Hz. Table 2 shows the means of all AIC

values (at the first-level analysis) and z-values for all 24

channels (at the second-level analysis). Each mean (and

standard deviation) was computed by averaging all AICs in

all channels for all participants. Similar results obtained by

applying this method to oxy- and total-Hb data are also

shown in gray in the same table to illustrate the trends

caused by different HPFs. These findings revealed that the

AIC was improved with a larger cutoff frequency. That is,

the AIC obtained using a .014-Hz HPF was improved by

approximately 8% compared with the other AICs calcu-

lated without the HPF. Therefore, an HPF with a cutoff

frequency of .014 Hz with an effective DoF was used for

the subsequent step.
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3.3 Step 3: Boxcar-function-based Gaussian

convolution method

It is possible that the method used in Step 2 overestimated

the actual differences because the number of channels

showing significant differences in Step 2 (shown in

Table 2) was roughly twice that of Step 1 (shown in

Table 1). Therefore, we tested another well-used GLM

approach that is also implemented in the popular SPM12

software [33]. Furthermore, we tested two modifications

intended to deal with problems specific to NIRS.

In Step 3, we first assumed a GLM similar to Eq. (3)

using the same boxcar function ukðiÞ [29]. Importantly, this

differed from Step 1 in terms of the definition of an inde-

pendent variable xkðiÞ that was convoluted by ukðiÞ with a

Gaussian kernel function g(i) as

xkðiÞ ¼ ðg � ukÞðiÞ ¼
Xall

n

gðnÞ � ukði� nÞ

gðiÞ ¼ exp �ðD � iÞ2

2r2

 !

r ¼ FWHM

2
ffiffiffiffiffiffiffiffiffi
2ln2

p :

ð10Þ

The xk computed by Eq. (10) was used after being nor-

malized with its maximum amplitude, and xkðiÞ for all

k was assigned in a design matrix X as a column vector.

The gray image of X is shown in Fig. 1b. To examine the

response variable signal y(i), the response vector Y was

composed from time-series rCBF data that were filtered

using an HPF with a cutoff frequency of .014 Hz, as

described in Sect. 3.2. Summarizing X and Y into a matrix

equation described in Eq. (4), an estimate B̂ was computed

using the OLS method by

B̂ ¼ XTX
� ��1�XT � Y: ð11Þ

Modification 1: Correction of autocorrelation Although

there was no autocorrelation for the error e assumed in

Eq. (3), this assumption was not satisfied by the actual

measured data (described as Issue 1 in Introduction) [14].

For this reason, the OLS estimate is an unbiased esti-

mator, but it is not the best linear unbiased estimator

(BLUE). Hence, the statistical evaluation becomes inac-

curate [30] and a type I error (‘‘false’’ brain activation) is

more likely to occur. Non-autocorrelation was thus

recovered in Step 3 using the Cochrane–Orcutt

method [48].

First, the following residual error E 2 RI was computed

using an estimated parameter B̂ obtained by the OLS

method without correction of non-autocorrelation.

E ¼ Y� XB̂ ð12Þ

Using elements ½�eð1Þ; �eð2Þ; . . .; �eðIÞ�T :¼ E in the vector E,

the Durbin–Watson ratio (DW) was computed by

DW :¼
PI

i¼2ð�eðiÞ � ð�eði� 1ÞÞ2
PI

i¼2ð�eðiÞÞ
2

2 ½0; 4�: ð13Þ

Next, to examine the original e(i), a first-order autocorre-

lation model described by

eðiÞ ¼ q � eði� 1Þ þ wðiÞ ð14Þ

was assumed using a constant q and a new signal w with a

mean of zero and no autocorrelation. An alternative value q̂
for q was specified as

q̂ ¼ 1� DW=2 ð15Þ

using the value of DW computed by Eq. (13). Finally, we

performed a new OLS estimate using the following auto-

correlation-corrected x� and y� from Eqs. (16) and (17).

Then, the newly estimated B̂2nd was used in a first-level

analysis of the SPM.

Table 2 Results of statistical test using a convolution matrix method in Step 2: mean values of AIC (at a first-level analysis) and z-values (at a

second-level analysis, df = 15)

M SD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

no filter –5030 2583 3.92 2.03 1.93 5.18 3.51 2.79 2.87 4.83 3.33 3.75 2.88 3.65 1.06 1.85 2.95 2.13 2.65 2.38 3.09 2.37 2.66 2.57 2.82 2.19
0.008 –5304 2533 3.40 2.65 1.52 4.16 4.12 2.41 3.17 5.31 3.21 3.51 2.73 3.89 1.71 1.78 3.44 2.43 2.41 2.53 2.44 3.35 3.30 2.89 3.14 2.35
0.014 –5460 2455 3.14 2.75 1.65 4.21 4.17 2.29 3.32 5.18 3.01 3.52 2.57 3.91 1.78 1.80 3.41 2.59 2.38 2.46 2.11 3.31 3.46 2.89 3.26 2.24

no filter –7041 3012 2.42 1.42 1.38 2.57 3.01 2.35 2.22 4.26 3.49 4.50 1.42 3.71 1.36 0.44 2.82 0.37 –0.04 1.81 2.01 2.75 2.20 1.56 2.20 2.05
0.008 –7369 2558 2.76 1.68 1.20 2.92 3.41 1.84 2.79 4.62 3.89 3.97 2.30 4.09 1.68 1.97 2.80 1.19 0.48 2.22 2.49 3.07 3.13 2.18 2.22 2.35
0.014 –7539 2607 2.65 1.37 1.00 2.53 3.08 1.58 2.53 4.46 3.58 3.72 2.22 3.82 1.51 1.83 2.60 0.97 0.27 1.90 2.15 2.56 3.13 2.13 2.09 2.25

no filter –4479 2896 3.90 2.34 2.08 4.91 3.50 3.46 2.81 4.53 3.54 4.28 2.84 4.07 1.22 1.76 3.81 2.17 2.47 2.20 3.47 2.78 2.77 2.72 2.55 2.86
0.008 –4793 2491 3.46 2.55 1.54 4.75 4.11 2.94 3.23 5.08 3.49 3.90 2.78 4.40 1.99 1.92 3.81 2.75 2.28 2.66 2.92 3.41 3.53 3.13 2.62 2.97
0.014 –4940 2549 3.39 2.41 1.60 4.66 4.05 2.91 3.25 4.91 3.23 3.74 2.51 4.19 2.07 1.98 3.59 2.82 2.29 2.62 2.51 3.17 3.70 3.08 2.71 2.81

Type
of CBF

Deoxy

Total

Oxy

Channel numberAICCufoff
freq. [Hz]

Blue cells show z[ 2:33 ðp\:01Þ and red cells show z[ 3:09 ðp\:001Þ. (Color table online)
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x�ðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q̂2

p
� xð1Þ i ¼ 1

xðiÞ � q̂ � xði� 1Þ i ¼ 2; . . .; I

�
ð16Þ

y�ðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q̂2

p
� yð1Þ i ¼ 1

yðiÞ � q̂ � yði� 1Þ i ¼ 2; . . .; I

�
ð17Þ

Modification 2: Consideration of higher-order element

Previous research proposed that the use of the derivative

component of an HRF can be effective for NIRS–GLM

analysis [31]. This suggestion corresponds well with the

current data because an overshoot-like waveform around

the rising and falling edges appeared to be approximated by

a derivative term of the canonical HRF, as shown in Fig. 3.

Therefore, two new GLM models were considered: (a) a

fourth-order model using a new design matrix X1d 2
RI�ð4þ1Þ that included the first-derivative terms of xk
described by Eq. (10); and (b) a sixth-order model using

another new design matrix X2d 2 RI�ð6þ1Þ that included the
first- and second-derivative terms. The three models using

X, X1d, and X2d were called HRF-solo (only HRF),

HRF?1.d. (HRF with its first-derivative term), and

HRF?2.d. (HRF with its first- and second-derivative

terms), respectively.

Total accuracy verification and optimal condition The

results obtained from the first- and second-level analyses

using Modifications 1 and 2 are summarized in Table 3.

This table shows the means of DW and AIC values relevant

to all data channels from all participants. Additional results

of the analyses of oxy- and total-Hb data are shown in gray

to demonstrate the effects obtained by Modifications 1 and

2. Regarding AIC, the other two cases of ‘‘no correction of

non-autocorrelation (No AR)’’ and ‘‘correction by

Cochrane–Orcutt method (AR(1)), i.e., Modification 1’’ are

shown in the same table.

Examination of the values of DW related to Modifi-

cation 1 revealed that they were relatively close to zero

in all cases; hence, the assumption of non-autocorrelation

of errors e was not satisfied. This finding supports the

notion that the method used in Step 2 overestimated the

statistic, because it did not involve a correction process

for non-autocorrelation. The AIC indices also support

potential overestimation at Step 2, since the AIC values

in AR(1) were two or three times smaller than in No

AR. Therefore, the current results demonstrate that cor-

rection for non-autocorrelation is indispensable for

NIRS–SPM analysis, whereas several previous studies

[31, 46, 47] have not taken this point into consideration.

In the analysis of Modification 2, Table 3 reveals that

the AIC value improved slightly when the GLM con-

tained higher-order derivative terms. In summary, we

found that a GLM model using elements of HRF?2.d.

with correction for non-autocorrelation was the most

appropriate for analysis of the rCBF measured during the

hand-tracing tasks.

Next the appropriateness of the selection of deoxy-Hb

was tested after Modifications 1 and 2 were applied. For the

AIC values under AR(1) conditions shown in Table 3,

differences between the deoxy-Hb and oxy-Hb groups, and

between the deoxy-Hb and total-Hb groups, were investi-

gated by Welch’s t test, respectively. Because each group

included all AIC values computed using HRF-solo,

HRF?1.d., and HRF?2.d. models, the number of samples

in each group was N ¼ 3 models �24 channels �16 par-

ticipants ¼ 1152. The test revealed that the average of the

AIC values computed using deoxy-Hb was significantly

smaller than the average of the values computed using oxy-

Hb and total Hb, as shown on the right side of the

table (the deoxy-Hb vs the oxy-Hb groups: tð1700:4Þ ¼
�24:3; p\:0001, the deoxy-Hb vs the total-Hb groups:

tð2299:9Þ ¼ �4:52; p\:0001). Therefore, it can be con-

cluded that deoxy-Hb is better suited for analysis of rCBF

since the accuracy of fit to GLM was higher when deoxy-

Hb NIRS data were used. Thus, only deoxy-Hb data were

used in the subsequent analyses.

We repeated the first- and second-level analyses using

these modifications with the optimal conditions. The results

are shown in Table 4. The results computed under condi-

tions other than HRF?2.d., i.e., HRF-solo and HRF?1.d.,

are also shown in gray in the table. Contrast matrices were

chosen as C ¼ ½ �1 1 � 1 1 0 �ðK ¼ 4Þ and C ¼
½ �1 1 � 1 1 � 1 1 0 �ðK ¼ 6Þ for HRF?1.d. and

HRF?2.d., respectively. Table 4 demonstrates that

HRF?2.d. and HRF?1.d. were able to detect more chan-

nels showing statistical significance than HRF-solo, and

there was a small difference in AIC values. Although the

results in Table 4 show similar tendencies for both

HRF?1.d. and HRF?2.d., we speculate that HRF?2.d.

was more desirable because the AIC value for HRF?2.d.

was smaller than that for the HRF?1.d. model.

Taking the results of Sects. 3.1–3.3 together, the optimal

guidelines for analyzing NIRS–SPM data for rCBF con-

taminated with motion artifacts can be summarized as

follows:

• Type of rCBF for SPM analysis: deoxy-Hb.

• Prefilter for rCBF: an HPF with cutoff frequencies of

.014 Hz.

• Method: boxcar-function-based Gaussian convolution

method.

• GLM: a linear model consisting of an HRF computed

using a Gaussian kernel function and its first- and

second-derivative terms.

• Modifications: correction for non-autocorrelation by the

Cochrane–Orcutt method and the use of effective DoF.
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Note that these guidelines were obtained by considering a

range of issues involved in other NIRS–SPM methods, as

described in Introduction. Issue 1 (the unsatisfied

assumption of normal distribution in measured data) was

attenuated by optimization of statistical procedure using

AIC and DW indices in Steps 1–3. Issue 2 (the non-auto-

correlation problem) was resolved with Modification 1,

using the Cochrane–Orcutt method in Step 3. Finally, Issue

3 (related to noise reduction) was resolved in Step 2.

4 Analysis of statistical parametric maps

The spatial distribution of brain activity associated with BS

modification was investigated by focusing on the NIRS–

SPM results obtained using the optimal conditions derived

in Sect. 3.3. Figure 4 shows z-map images based on the

results shown in Table 4. A z-map computed using the

optimal conditions obtained in Step 3 is shown in Fig. 4c.

This map is a visualization of the z-values that were

described by blue numbers in Table 4. Images (a) and

(b) are other z-maps based on results obtained in Steps 1

and 2 using the corresponding quasi-optimal conditions.1

The images shown in Fig. 4 are montages of a brain

surface image created with the BrainBrowser Surface

Viewer (v2.3.0) [49] and the colored z-maps. The colored

z-map was drawn by interpolating z-values with a scattered

data interpolation function (in MATLAB R2015a) after

deforming the positions of the NIRS channel grid with

reference to C3(4) and T3(4) positions on the MNI coor-

dinate system [50]. Circles and numbers drawn on the z-

map image indicate the position and index of the

measurement channels, respectively. Labels of Brodmann’s

area numbers are provided to indicate several channels

where strong significant differences were confirmed. First,

Fig. 4c shows that the right hemisphere was dominant.

Specifically, significant differences were confirmed in

channels 1, 4, 8–10, and 12 (zð15Þ[ 2:33; p\:01).

Channel 19, which solely indicates significant differences

in the left hemisphere, is close to an area near S1(BA1),

which corresponds to the tip of the finger in the cortical

homunculus. This finding is in accord with the experi-

mental circumstances, since participants used their right

hand in Task 2 (while holding a long stick) more strongly

than in Task 1 (which only involved one finger). Examin-

ing the positions of these significant channels revealed that

the following four contiguous areas of the brain were sig-

nificantly activated during Task 2: Ar1) somatosensory

association cortex (BA7: z ¼ 3:49; p\:001); Ar2) supra-

marginal gyrus (BA40: z ¼ 2:93; p\:01); Ar3) associative

visual cortex (BA19: z ¼ 3:79; p\:0001); and Ar4) middle

temporal gyrus (BA21: z ¼ 3:46; p\:001). Although a

similar activation pattern at Ar1–Ar4 can be seen in Fig. 4b

which was obtained in Step 2, the effects in Step 2 were

likely to be overestimated because the z-values obtained in

Step 2 were larger than that in Step 3, despite the larger

AIC values in Step 3. Therefore, it seems reasonable to

conclude that the pattern in the z-map image (c) obtained

by Step 3 is a feature of the BS modification related to the

hand-tracing task.

Areas BA7 and BA40 related to Ar1 and Ar2 are part of

the parietal association cortex. It has been found that

damage to these areas causes spatial perception impair-

ment [51]. The parietal association cortex forms the pari-

etal lobe in combination with the S1 area, and the right

parietal lobe has been closely linked to spatial

skills [52, 53]. Specifically, a bimodal neuron responding

to both visual and somatic senses has been reported to exist

in the intraparietal sulcus (which is located near BA7) in

Table 3 Durbin–Watson ratios and AICs when a boxcar-function-based Gaussian convolution method was applied at Step 3. (Color table online)

†p<.0001

†p<.0001

M SD M SD M SD

0.0017 0.0047 –5167 2560 –15590 3485
0.0025 0.0050 –5589 2516 –15654 3503
0.0026 0.0052 –5661 2509 –15698 3513
0.0034 0.0067 –7387 2772 –17253 4093
0.0044 0.0072 –7788 2746 –17299 4109
0.0046 0.0075 –7863 2745 –17334 4112
0.0010 0.0024 –4593 2678 –15309 3547
0.0018 0.0025 –5069 2629 –15389 3566
0.0019 0.0026 –5146 2622 –15445 3573

Deoxy
HRF-solo

HRF+1. derivative
HRF+1&2. deriv.

AIC
No AR AR(1)

Total
HRF-solo

HRF+1. derivative
HRF+1&2. deriv.

Oxy
HRF-solo

HRF+1. derivative
HRF+1&2. deriv.

Elements in
 design matrix

Type
of CBF

DW

1 The quasi-optimal condition at Step 1 was ‘‘rCBF type: deoxy, time

interval of integral: 10 s’’ because the z-values under this condition

were largest, as shown in Table 1. The quasi-optimal condition found

in Step 2 was ‘‘rCBF type: deoxy, HPF: .014 Hz’’ because the AIC

values under this condition were smallest, as shown in Table 3.
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the right parietal lobe [54]. In addition, the intraparietal

sulcus was reported to be associated with the BS in a study

of the RHI [55]. These previous findings regarding the

right-hemisphere dominance of the parietal lobe are con-

sistent with the current SPM results shown in Fig. 4c.

Taken together, these results suggest that the brain areas

involved in spatial perception may have been activated

when BS extension was required during the use of a long

stick in the current study. In addition, the inferior parietal

lobule consists of BA40 and the angular gyrus (BA39),2

and the right inferior parietal cortex is related to own-body

perception and the illusion of motion [56, 57]. Interest-

ingly, it has been reported that out-of-body experi-

ences [58, 59] and phantom sensations [60] can be induced

by stimulating the angular gyrus, one of the areas associ-

ated with the BS.

BA19 (in Ar3) is involved in the recognition of the

shape and color of objects [61]. In the present study, we

speculate that this area may have become active when

participants visually examined the characters traced by

their fingers. This characteristic may be a feature of the BS

extension because the BS is visually dominant [62]. Acti-

vation in this area, however, does not necessarily indicate

general BS extension because the cognitive processing

involved in recognizing Hiragana characters might have

also caused neural responses in this region. Moreover,

BA21 (in Ar4) is reported to be activated when subjects are

engaged in contemplating distance [63]. In the current

study, this brain area may have been activated during the

estimation of the distance from their own body to the tip of

the stick, which would be required to extend the BS

spatially.

Taken together, this evidence suggests that the brain

activation we observed in contiguous areas in BA7–BA40–

BA21 may be related to BS extension during a hand-trac-

ing task.

5 Conclusions and future research

This study described an optimized statistical analysis pro-

cedure for NIRS–SPM analysis that involves dealing with

rCBF data contaminated by motion artifacts. In addition,

we identified the spatial distribution of brain activity

associated with BS modification using a hand-tracing task

that involved an extension of the BS. Three methodological

options were evaluated in turn to determine the optimal

conditions for NIRS–SPM analysis: a model-free method

in Step 1, a convolution matrix method in Step 2, and a

boxcar-function-based Gaussian convolution method in

Step 3.

In Step 1, it was found that the actual rCBF waveform

during this task could be approximated by a rounded

trapezoidal waveform similar to the convolved response of

a boxcar with a Gaussian function. Moreover, deoxy-Hb

was found to be appropriate for the NIRS–GLM in this

Table 4 Results of statistical test using a boxcar-function-based Gaussian convolution method in Step 3: z-values in a second-level analysis for

three kinds of design matrices, df ¼ 15

AIC:AR(1)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 M

–1.81 – 0.96 – 0.95 –1.20 0.91 – 0.62 1.29 2.42 0.33 0.36 0.95 0.28 0.10 0.21 – 0.15 – 0.32 – 0.31 – 0.61 1.28 –0.29 0.18 0.84 0.46 1.04 –17253
– 0.14 2.43 1.58 2.09 2.20 0.73 2.39 3.00 2.92 2.88 1.79 3.24 1.37 1.55 1.72 1.25 –1.08 1.21 3.60 2.08 0.53 1.94 0.96 –0.06 –17299
2.74 0.90 2.13 2.37 1.79 1.15 1.99 3.49 2.93 3.46 1.81 3.79 1.43 1.31 1.46 1.43 – 0.19 1.07 2.65 2.26 1.49 1.83 2.00 1.28 –17334

Elements in
 design matrix

HRF-solo
HRF +1. derivative
HRF +1&2. deriv.

Channel number

Blue cells show z[ 2:33 ðp\:01Þ, and red cells show z[ 3:09 ðp\:001Þ. (Color table online)

(a)

(b)

(c) BA7

BA40

BA19
BA21

BA1

1

2

3

4
6

7

8

9

11

12

14

13
15

16

18

19

20

21

23

24

6
5
4
3
2
1

Z-value

5

10

C3: -57, -13, 54 mm (SD=5,13,6)
T3: -70, -12, -8 mm (SD=4,10,9) 

Fig. 4 Statistical parametric maps (z-map images, df ¼ 15): a model-

free method (Step 1); b convolution matrix method (Step 2); c a

boxcar-function-based Gaussian convolution method (Step 3). (Color

figure online)

2 The BA39 area was out of the measurable range of this NIRS

setting.
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experiment, as indicated by the results of diagnostic

screening indices concerning individual variance and AIC,

which was confirmed in Step 3. In Step 2, to enhance

statistical accuracy, conditions for eliminating low-fre-

quency noise and modifying the DoF for statistical testing

were investigated using the AIC. In Step 3, correction of

non-autocorrelation with derivative components of HRF

was applied to a GLM for SPM, by calculating the DW

ratio and AIC values. Finally, credible SPM guidelines for

NIRS data were obtained. Examination of the best SPM

results confirmed that contiguous areas in BA7–BA40–

BA21 (BA7: somatosensory association cortex; BA40:

supramarginal gyrus; BA21: middle temporal gyrus) in the

right hemisphere became significantly active (p\:001,

p\:01, and p\:001, respectively) during the hand-tracing

tasks, potentially representing BS modification.

Future research could incorporate the NIRS–SPM

method described here to exogenously enhance the ability

of BS extension using electrical stimuli.
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