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Abstract

modulation in vitro.

solubility range of hydrocarbons studied.

hydrocarbon interactions at these sites likely differ.

Background: Many anesthetics modulate 3-transmembrane (such as NMDA) and 4-transmembrane (such as
GABA,) receptors. Clinical and experimental anesthetics exhibiting receptor family specificity often have low water
solubility. We hypothesized that the molar water solubility of a hydrocarbon could be used to predict receptor

Methods: GABA, (a;3,v>s) or NMDA (NR1/NR2A) receptors were expressed in oocytes and studied using standard
two-electrode voltage clamp techniques. Hydrocarbons from 14 different organic functional groups were studied at
saturated concentrations, and compounds within each group differed only by the carbon number at the w-position
or within a saturated ring. An effect on GABA, or NMDA receptors was defined as a 10% or greater reversible
current change from baseline that was statistically different from zero.

Results: Hydrocarbon moieties potentiated GABA, and inhibited NMDA receptor currents with at least some members
from each functional group modulating both receptor types. A water solubility cut-off for NMDA receptors
occurred at 1.1 mM with a 95% Cl =0.45 to 2.8 mM. NMDA receptor cut-off effects were not well correlated
with hydrocarbon chain length or molecular volume. No cut-off was observed for GABA, receptors within the

Conclusions: Hydrocarbon modulation of NMDA receptor function exhibits a molar water solubility cut-off.
Differences between unrelated receptor cut-off values suggest that the number, affinity, or efficacy of protein-

Background
Inhaled anesthetics interact with putative cell receptor
targets in a manner uncharacteristic of most other phar-
macologic agents. They exhibit immobilization efficacy in
all animals, both vertebrates and invertebrates, and even
in protozoa and plants. The inhaled agents range in diver-
sity from single elements to diatomic molecules to com-
plex hydrocarbons and share no conserved size, shape,
or functional groups. Most agents also modulate mul-
tiple phylogenetically unrelated cell targets and generally
inhibit excitatory channels or receptors and potentiate
inhibitory ones, complicating the identification of a
drug-receptor structural motif predictive of anesthetic
molecular action [1].

Attempts to determine how disparate drugs act on so
many unrelated receptors—and to define those targets
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essential to inhaled anesthetic actions—have thus far
proved illusory. Consequently, in the present study, we
posed the opposite question: Why are some anesthe-
tics unable to modulate certain anesthetic-sensitive ion
channels or receptors, even at supra-pharmacologic con-
centrations? To answer this question, we restricted con-
sideration to two unrelated ion channels in particular: the
N-methyl-d-aspartate (NMDA) receptor, a member of the
3-transmembrane (TM3) ion channel family, and the
y-aminobutyric acid type A (GABA,) receptor, a member
of the 4-transmembrane (TM4) ion channel family. Strong
evidence supports the role of both receptors in mediating
various endpoints of general anesthesia, including immo-
bility and amnesia [2-6]. Within the NMDA and GABA
channel proteins, hydrophilic or amphipathic cavities or
pockets have been postulated near the solvent interface
and within transmembrane segments of several subunits
[7,8]. Presumably, such cavities might conceivably contain
solvent molecules or nothing at all, though it should be
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thermodynamically less favorable to maintain a vacuum
within a pocket that is sufficiently large and polar enough
to accommodate water.

The binding affinity of water within each pocket on an
ion channel can be expressed as a standard dissociation
constant, and the ability of a drug to displace water and
either completely or partially fill the pocket can be ex-
pressed as a standard equilibrium constant. Since struc-
tures of phylogenetically unrelated channels are different,
the hydrophilicity of their respective pockets should not
be conserved. Therefore, dissociation constants are ex-
pected to be different for water bound within pockets of
different channels. Consequently, the minimum concen-
tration of drug necessary to displace water within a pocket
capable of inducing a functional conformational change
should be different between unrelated channels. If the
drug cannot reach a concentration within the aqueous
phase sufficient to displace water within the protein mo-
dulatory pocket, then that drug should exert no pharma-
cologic effect on the channel, even when delivered at a
saturated aqueous phase concentration. The physical
property that defines this maximum (saturated) con-
centration of a drug in the aqueous phase is the molar
water solubility.

The effects of a number of conventional (modern and
historic) and experimental anesthetics on NMDA and
GABA, receptors have been studied previously. When
plotted in order of their calculated molar water solubil-
ities (Figure 1), there is an abrupt change in the ability
of compounds to modulate NMDA receptors. Drugs
with water solubility greater than about 1 mM all modu-
late NMDA and GABA , currents when administered in
sufficiently large concentrations. However, drugs with
lower molar water solubility modulate only GABA, or
neither receptor type. These data suggest that molar water
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solubility may predict an NMDA receptor cut-off effect
at values less than 1 mM and are consistent with non-
specific interactions in which water displaced from
modulatory pockets on the NMDA receptor contribute,
at least in part, to molecular mechanisms of action. Com-
pounds unable to reach approximately 1 mM aqueous
concentration may thus be unable to competitively
displace water within any of the NMDA critical modu-
latory sites.

We hypothesized that hydrocarbon molar water solu-
bility below this critical cut-off value is associated with
loss of NMDA receptor modulation, but not GABA,
receptor modulation. As tests agents, we considered
14 different series of normal hydrocarbon chains or
rings, where molecules within each series differed only
by the length of the Q chain or substitutent alkyl groups
(Table 1). Because different functional groups differ in
hydrophilicity, the length and volume of the hydrocarbon
chain needed to achieve a given molar water solubility will
likewise differ. Thus, if the hypothesis is correct, then ob-
served cut-off responses should correlate with hydrocar-
bon molar water solubility rather than hydrocarbon size.

Although generally advocated to study anesthetic ef-
fects at clinically-relevant concentrations, we proposed
to test this hypothesis at saturated aqueous drug concen-
trations for 3 reasons. First, because an aqueous binding
site is postulated, it is important to study drug effects at
an interfacial concentration that can be directly related
to a bulk aqueous concentration. However, anesthetics
do not distribute equally through the lipid bilayer. Halo-
thane shows a preference for the phospholipid head-
group interface [27]. Xenon atoms prefer regions at the
lipid-water interface and the central region of the bilayer
[28]. The anesthetics cyclopropane, nitrous oxide, desflur-
ane, isoflurane, and 1,1,2-trifluoroethane all preferentially

-
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Figure 1 Summary of ion channel modulation as a function of calculated anesthetic molar solubility in unbuffered water at 25°C
(values from SciFinder Scholar). Drugs that modulate 4-transmembrane receptors (TM4) or neither receptor type are shown as open circles
(o, A-F) below the dotted horizontal solubility line. Drugs that modulate both 3-transmembrane (TM3) and TM4 receptors are shown as small
black circles (e, G-U) above the dotted horizontal solubility line. A =nonane (unpublished data), B = midazolam [9], C = diazepam [10], D = undecanol
[11], E=etomidate [12], F = 1,2-dichlorohexafluorocyclobutane [13], G = sevoflurane [14-17], H= propofol [18,19], | = ketamine [12,16,20], J = isoflurane
[14-16,21,22], K= enflurane [15,23], L = dizocilpine [20,24], M = desflurane [16,17], N = halothane [14,22,23], O = cyclopropane [22,25], P = chloroform
[22], Q = 2,6-dimethylphenol [26], R = methoxyflurane [14,15,23], S = diethyl ether [15,23], T = nitrous oxide [21,22], U = ethanol [21].
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Table 1 Source, purity and physical properties of study compounds
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Compound CAS# MW (amu) Pyap (MmHg) Solubility (M) Carbon (#) Volume (R3) Source Purity (%)
Alcohols

1-decanol 112-30-1 158.28 148x 1072 65%x 10 10 317 Aldrich >99

1-undecanol 112-42-5 510%107° 17x107" 1 344 Acros 98

1-dodecanol 112-53-8 17231 186.33 209% 1072 41x107° 12 372 TCl 99
Alkanes

butane 106-97-8 58.12 1.92x10° 14x107° 4 156 Matheson 99.99

pentane 109-66-0 72.15 527%10° 43%x10°° 5 184 >99

hexane 110-54-3 86.18 151 %10 12x107* 6 211 Aldrich Acros >99
Aldehydes

octanal 124-13-0 128.21 207x10° 54x107° 8 262 Aldrich 99

nonanal 124-19-6 14224 532x10° 23%107° 9 289 Aldrich 95

decanal 112-31-22 15627 ! 98x 107" 10 316 Aldrich 98

undecanal 112-44-7 17029 207%x107'832x107%  42x107* 11 344 Aldrich 97
Alkenes

1-pentene 109-67-1 7013 6.37x10° 14x107° 5 176 Aldrich 99

T-hexene 592-41-6 84.16 1.88x 10 42x10°° 6 203 Aldrich >99

Alkynes

1-hexyne 693-02-7 82.14 135x10° 29%107° 6 184 Aldrich 97

1-heptyne 628-71-7 96.17 435% 10 66x10°* 7 212 Acros 99

1-octyne 629-05-0 1102 144 %10’ 19%x10°* 8 239 Acros 99
Amines

1-octadecanamine 124-30-1 269.51 488x107° 13x107° 18 546 TCl 97

1-eicosanamine 10525-37-8 297.56 896x107° 27%x107* 20 601 Rambus 95
Benzenes

1,3-dimethylbenzene  108-38-3 106.17 761x10° 12x107° 8 202 Aldrich >99

1,3-diethylbenzene 141-93-5 134.22 115%10° 66x107° 10 257 Fluka >99
Cycloalkanes

cyclopentane 287-92-3 70.13 3.14x10° 33%x10°° 5 147 Aldrich >99

cyclohexane 110-82-7 84.16 937x10' 10x107° 6 176 Aldrich >99.7
Ethers

dibutylether 142-96-1 13023 710x10° 16x107° 8 277 Aldrich 993

dipentylether 693-65-2 1.00x 10° 30x 1073 10 331 Fluka >085

dihexylether 112-58-3 15828 18633 148x 107" 58%x 107" 12 386 Aldrich 97
Esters

ethyl heptanoate 106-30-9 15824 6.02x 107" 54x107° 9 299 MP Bio 99

ethyl octanoate 106-32-1 224%107" 21%107° 10 327 Aldrich >99

ethyl decanoate 110-38-3  172.26 200.32 339% 1072 44%x107° 12 381 TCl 98
Haloalkanes

1-fluoropentane 592-50-7 90.14 184x10° 39%x107° 5 193 Aldrich 98

1-fluorohexane 373-14-8 104.17 6.06% 10 12x1072 6 220 Acros >99

1-fluoroctane 463-11-6 132.22 7.09 % 10° 13x10°* 8 275 Aldrich 98
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Table 1 Source, purity and physical properties of study compounds (Continued)

Ketones
2-decanone 693-54-9 156.27 248x 107"
2-undecanone 112-12-9 978x107°
2-dodecanone 6175-49-1  170.29 184.32 396 %1072
Sulfides
1-(ethylthio)-hexane  7309-44-6 146.29 816%x 107"
1-(ethylthio)-octane  3698-94-0 17435 108x 107"
Thiols
1-pentanethiol 110-66-7 104.21 142x10
1-hexanethiol 111-31-9 118.24 450%10°

32x107° 10 316 TCl >99
14x107° 11 343 Acros 98
58x107* 12 371 TCl 95
28%x107° 8 289 Pfaltz 97
50% 107 10 344 Pfaltz 97
15%107° 5 207 Aldrich 98
51x107* 6 235 TCl %

Chemical Abstracts Service number (CAS#), molecular weight (MW), vapor pressure at 25°C (P,,;), molar solubility in pure water at pH =7, and molecular volume
are calculated estimates (rather than measured values) referenced by SciFinder Scholar.

concentrate at the interface between water and hexane,
[29] but the nonimmobilizer perfluoroethane does not ex-
hibit a hydrophilic-hydrophobic interfacial maxima [29].
Nonetheless, even without knowing the membrane dis-
tribution profile of an anesthetic, the interfacial concen-
tration can be assumed maximal at a saturating aqueous
phase concentration at equilibrium; thus drug responses
are compared at their respective relative maximum inter-
facial concentrations.

Second, different anesthetic endpoints are achieved at
different drug concentrations. Thus, a drug could exhibit
relative receptor specificity; that is to say, a drug may act
preferentially at one receptor to achieve one endpoint—
such as amnesia—but act on additional receptors when
administered at higher concentrations to achieve other
endpoints—such as immobility. Failure to modulate a re-
ceptor when a drug is delivered at a saturated concentra-
tion implies a null receptor response at lower drug
concentrations and for any therapeutic endpoint.

Third, the drug concentrations that produce different
anesthetic endpoints—amnesia, unconsciousness and im-
mobility—are unknown for many experimental com-
pounds. Some anesthetic endpoints may not even be
achievable with some compounds, such as the nonim-
mobilizers. Absolute receptor specificity means that
there is also relative specificity for any drug effect pro-
duced. Accordingly, comparisons of receptor effects
using saturated concentrations in vitro are not preposi-
tioned upon knowledge of in vivo drug anesthetic effects.

Hence, this study aimed to test whether NMDA versus
GABA, receptor modulation was correlated with calcu-
lated molar water solubility “cut-off” values for diverse
series of hydrocarbon functional groups.

Methods

Oocyte collection and receptor expression

An ovary from tricaine-anesthetized Xenopus laevis frogs
was surgically removed using a protocol approved by the

Institutional Animal Care and Use Committee at the
University of California, Davis (Protocol #12030). Fol-
lowing manual disruption of the ovarian lobule septae,
the ovary was incubated in 0.2% Type I collagenase
(Worthington Biochemical, Lakewood, NJ) to defollicu-
late oocytes which were washed and stored in fresh and
filtered modified Barth’s solution composed of 88 mM
NaCl, 1 mM KCI, 24 mM NaHCO;, 20 mM HEPES,
0.82 mM MgSO,, 0.33 mM Ca(NOs3),, 0.41 mM CaCl,,
5 mM sodium pyruvate, gentamycin, penicillin, strepto-
mycin, and corrected to pH =7.4. All salts and antibiotics
were A.C.S. grade (Fisher Scientific, Pittsburgh, PA).
Clones used were provided as a gift from Dr. R.A. Harris
(University of Texas, Austin) and were sequenced and
compared to references in the National Center for Biotech-
nology Information database to confirm the identity of
each gene. GABA, receptors were expressed using clones
for the human GABA4 ol and the rat GABA, 2 and y2s
subunits in pCIS-II vectors. Approximately 0.25-1 ng total
plasmid mixture containing either a; [, or y, genes in
a respective ratio of 1:1:10 was injected intranuclearly
through the oocyte animal pole and studied 2—4 days later.
These plasmid ratios ensured incorporation of the y sub-
unit into expressed receptors, as confirmed via receptor
potentiation to 10 uM chlordiazepoxide or insensitivity to
10 M zinc chloride during co-application with GABA. In
separate oocytes, glutamate receptors were expressed using
rat NMDA NRI1 clones in a pCDNA3 vector and rat
NMDA NR2A clones in a Bluescript vector. RNA encoding
each subunit, prepared using a commercial transcription
kit (T7 mMessage mMachine, Ambion, Austin, TX), was
mixed in a 1:1 ratio, and 1-10 ng of total RNA was
injected into oocytes and studied 1-2 days later. Oocytes
injected with similar volumes of water served as controls.

GABA, receptor electrophysiology studies
Oocytes were studied in a 250 pL linear-flow perfusion
chamber with solutions administered by syringe pump at



Brosnan and Pham BMC Pharmacology and Toxicology 2014, 15:62
http://www.biomedcentral.com/2050-6511/15/62

1.5 ml/min with gastight glass syringes and Teflon tub-
ing. Oocyte GABA, currents were studied using stan-
dard two-electrode voltage clamping techniques at a
holding potential of -80 mV using a 250 pL channel
linear-flow perfusion chamber with solutions adminis-
tered by syringe pump at 1.5 mL/min.

Frog Ringer’s (FR) solution composed of 115 mM
NaCl, 2.5 mM KCl, 1.8 mM CaCl,, and 10 mM HEPES
prepared in 18.2 MQ H,O and filtered and adjusted to
pH =7.4 was used to perfuse oocytes. Agonist solutions
also contained 20-to-40 puM, equal to an ECjg_5g, of 4-
aminobutanoic acid (FR-GABA) [30-32]. After FR perfu-
sion for 5 min, oocytes were exposed to 30 sec FR-GABA
followed by another 5 min FR washout; this was repeated
until stable GABA ,-elicited peaks were obtained. Next,
FR containing a saturated solution of the study drug
(Table 1)—or for gaseous study compounds a vapor pres-
sure equal to 90% of barometric pressure with balance
oxygen—was used to perfuse the oocyte chamber for
2 min followed by perfusion with a FR-GABA solution
containing the identical drug concentration for 30 sec.
ER was next perfused for 5 min to allow drug washout,
and oocytes were finally perfused with FR-GABA for
30 sec to confirm return of currents to within 10% of
the initial baseline response.

NMDA receptor electrophysiology studies
Methods for measurement of whole-cell NMDA recep-
tor currents have been described [33,34]. Briefly, baseline
perfusion solutions were the same as for GABA, with
the substitution of equimolar BaCl, for calcium salts
and the addition of 0.1 mM EGTA; this constituted bar-
ium frog Ringer’s solution (BaFR). Agonist solutions for
NMDA studies also contained 0.1 mM glutamate (E)
and 0.01 mM glycine (G) to constitute a BaFREG solu-
tion that produced a NMDA receptor current > ECqq.
The syringe pump and perfusion chamber apparatus as
well as the clamp holding potential and baseline-agonist
exposure protocols were identical to that described for the
GABA, studies. The same test compounds, concentra-
tions, and preparative methods were used in NMDA volt-
age clamp studies as in the GABA, voltage clamp studies
(Table 1).

Response calculations and data analysis

Modulating drug responses were calculated as the per-
cent of the control (baseline) peak as follows: 1006—’;7
where I and Ig were the peak currents measured during
agonist + drug and agonist baseline perfusions, respect-
ively. When present, direct receptor activation by a drug
was similarly calculated as a percent of the agonist re-
sponse. Average current responses for each drug and
channel were described by mean + SD. A lack of receptor
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response (cut-off) was defined as a <10% change from
baseline current that was statistically indistinguishable
from zero using a two-tailed Student t-test. Hence, drug
responses >110% of the baseline peak showed potentiation
of receptor function, and drug responses <90% of the
baseline peak showed inhibition of receptor function.

The log;o of the calculated solubility (log;oS) for com-
pounds immediately below and above the cut-off for each
hydrocarbon functional group were used to determine the
receptor cut-off. For each hydrocarbon, there was a “grey
area” of indeterminate solubility effect (Figure 2) between
sequentially increasing hydrocarbon chain lengths. Mean
solubility cut-offs were calculated as the average log; S for
the least soluble compound that modulated receptor func-
tion and the most soluble neighboring compound for
which no effect was observed. From this result, a 95% con-
fidence interval for log;oS was calculated for receptor
solubility cut-offs.

Results

Hydrocarbon effects on NMDA and GABA, receptors
are summarized in Table 2, and sample recordings are
presented in Figure 2. All of the compounds tested posi-
tively modulated GABA, receptor function, and a few of
the 5-to-6 carbon compounds caused mild direct GABA,
receptor activation, particularly the 1-fluoroalkanes and
thiols. Mild direct receptor activation also occurred with
dibutylether. With the exception of the aldehydes, alkynes,
and cycloalkanes, GABA, receptor inhibition tended to
decrease with increasing hydrocarbon chain length. No
water solubility cut-off effect was observed for GABA, re-
ceptors for the compounds tested.

In contrast, NMDA receptors currents were decreased
by the shorter hydrocarbons within each functional group
(Table 1), but lengthening the hydrocarbon chain eventu-
ally produced a null response—a cut-off effect. No direct
hydrocarbon effects on NMDA receptor function were de-
tected in the absence of glutamate and glycine agonist.

The cut-off effect for NMDA receptor current mo-
dulation was associated with a hydrocarbon water solu-
bility of 1.1 mM with a 95% confidence interval between
0.45 mM and 2.8 mM (Figure 3). More soluble hydro-
carbons consistently inhibited NMDA receptor currents
when applied at saturated aqueous concentrations, and
hydrocarbons below this range had no appreciable effect
on NMDA receptor function. Moveover, during the
course of the study, water solubility was sufficiently pre-
dictive of an NMDA receptor cut-off so as to require
identify and testing of only single pair of compounds
bracketing this critical solubility value, as occurred with
the alkenes, amines, cyclic hydrocarbons, and sulfur-
containing compounds.

Increasing hydrocarbon chain length decreases water
solubility, but also increases molecular size. However,
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when graphed as a function of either carbon number
(Figure 4) or molecular volume (Figure 5), the observed
NMDA receptor cut-off effects show no consistent pat-
tern. For example, the n-alkanes, 1-alkenes, and 1-alkynes
show progressive lengthening of the hydrocarbon chain
cut-off, presumably as a result of the increasing aqueous
solubility conferred by the double and triple carbon
bonds, respectively. There was also tremendous variation
in molecular size of compounds exhibiting NMDA recep-
tor cut-off. Alkanes exhibited NMDA receptor cut-off be-
tween butane and pentane, respectively 4 and 5 carbons in
length, whereas the primary amines exhibited cut-off be-
tween 1-octadecanamine and 1-eicosanamine, respectively
18 and 20 carbons in length. As expected, the molecular
volume of these compounds associated with NMDA re-
ceptor cut-off is also quite different, with the primary
amine being over 3 times larger than the alkane.

Discussion

NMDA receptor modulation is associated with an ap-
proximate 1.1 mM water solubility cut-off (Figure 3). In
contrast, GABA, receptors potentiated all study com-
pounds; this may be because a GABA, cut-off occurs at
a lower water solubility value. Sequentially increasing
hydrocarbon length to find a receptor cut-off effect poten-
tially introduces confounding factors of carbon number
and molecular volume that could in turn be responsible
for the cut-off effect [35-38]. However, an aggregate com-
parison of cut-off values for all hydrocarbon groups as
a function of carbon number (Figure 4) or molecular

volume (Figure 5) shows no discernible pattern, sug-
gesting that these physical properties are unlikely the
primary limiting factors for drug-receptor modulation.
The correlation between molar water solubility and
the NMDA receptor cut-off suggests hydrocarbons com-
pete with water for amphipathic binding pockets within
anesthetic-sensitive ion channels. Most inhaled anesthe-
tics exhibit low-affinity binding on receptors as evidenced
by generally large median effective concentrations for
anesthesia—in the 230-290 puM range for isoflurane and
halothane [39]—as compared to agents that exert narcotic
effects via a singular or primary molecular targets. These
specific interactions—exemplified by ketamine antag-
onism of NMDA receptors [12], etomidate agonism of
GABA, receptors [40], dexmedetomidine agonism of o5-
adrenoreceptors [41], and morphine agonism of p-opioid
receptors [42]—typically require only a few pM or less of
drug and are consistent with high affinity interactions to
resulting in induced fit binding. Instead, volatile anes-
thetics likely bind to pre-existing pockets and surfaces on
or within the protein [43]. Amphipathic pockets likely
contain water molecules; when these are displaced by
amphipathic drugs, fewer strong hydrophilic interactions
and more hydrophobic interactions are possible with
amino acid side chains in the cavity. We propose such
nonspecific binding causes a change in pocket shape and,
in consequence, the larger three-dimensional protein
structure that affects channel gating or conductance.
Hydrocarbons act as hydrogen bond donors—or in the
case of electrophiles, as hydrogen bond acceptors—with
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Table 2 Mean responses (+SEM) produced by 14 different functional groups on NMDA and GABA, receptor
modulation, expressed as a percent of the control agonist peak, using standard two-electrode voltage clamp
techniques with 5-6 oocytes each

Compound NMDA GABA,
% Direct effect % Agonist effect Drug response % Direct effect % Agonist effect Drug response
Alcohols
1-decanol None 70+3 - None 386+ 20 +
1-undecanol None 101+2 0 None 181£13
1-dodecanol None 98+ 1 0 None 177 £4 +
Alkanes
butane None 7+£2 - None 623 £ 68 +
pentane None 94+3 0 None 321+10
hexane None 100£1 0 None 129+5 +
Aldehydes
octanal None 71+3 - 6+3 357+20 +
nonanal None 104+2 0 None 219+29 +
decanal None 97+3 0 None 1595 +
undecanal None 97+8 0 None 299 +29 +
Alkenes
1-pentene None 69+ 1 - 2+3 453 +38 +
1-hexene None 97+0 0 None 13242 +
Alkynes
1-hexyne None 4116 - 5+2 418+ 21
1-heptyne None 68+ 10 - None 172+8 +
1-octyne None 96+ 2 0 None 259+ 11 +
Amines
1-octadecanamine None 73+4 - None 146£5 +
1-eicosanamine None 108 + 1 0 None 166 +7 +
Benzenes
1,3-dimethylbenzene None 58+3 - None 366+ 21
1,3-diethylbenzene None 101 %2 0 None 305+ 24
Cycloalkanes
cyclopentane None 8342 - 342 196+ 11 +
cyclohexane None 101+2 0 None 421+17 +
Ethers
dibutylether None 59+4 - 14+13 347 +33 +
dipentylether None 97+2 0 None 21119
dihexylether None 112+4 0 None 11341
Esters
ethyl heptanoate None 78+3 - None 370+ 34 +
ethyl octanoate None 90£1 - None 285+18
ethyl decanoate None 98£1 0 None 1372
Haloalkanes
1-fluoropentane None 76 £2 - None 539+ 35
1-fluorohexane None 1011 0 11+4 207£13 +
1-fluoroctane None 98£1 0 None 182+18 +
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Table 2 Mean responses (+SEM) produced by 14 different functional groups on NMDA and GABA, receptor
modulation, expressed as a percent of the control agonist peak, using standard two-electrode voltage clamp

techniques with 5-6 oocytes each (Continued)

Ketones
2-decaNone None 811
2-undecaNone None 98+2
2-dodecaNone None 97+3
Sulfides
1-(ethylthio)-hexane None 87+ 1
1-(ethylthio)-octane None 101 +1
Thiols
1-pentanethiol None 85+4
1-hexanethiol None 102+£3

- None 476 +52 +
0 None 230+ 16
0 None 325+ 30 +
- None 350+ 57
0 None 120+ 3
- 22+8 466 + 57 +
0 8+2 290 + 41 +

The % Direct Effect is the drug response without co-administration of the receptor agonist. The % Agonist Effect is the drug response with co-administration of
agonist (glutamate and glycine for NMDA receptors; y-aminobutyric acid for GABA, receptors). The Drug Response denotes inhibition (=) for drug + agonist
responses less than the control agonist peak, potentiation (+) for drug + agonist responses greater than the control agonist peak, and no response (0) for drug +

agonist responses that differ by <10% from the control agonist peak.

amino acid residues on anesthetic-sensitive receptors,
resulting in displacement of water molecules from these
binding pockets and alteration of protein function
[44-46]. These low energy anesthetic-protein interac-
tions are postulated to be enthalpically favorable since
the displaced water molecules should be better able to
hydrogen bond with like molecules in the bulk solvent
rather than with amino acids [44,46]. Halothane and iso-
flurane both have been shown to bind in water accessible

pockets formed between o-helices in &-subunits of
the nicotinic acetylcholine receptor [47], a member of the
4-transmembrane receptor superfamily that includes the
GABA, receptor. Models of nicotinic acetylcholine re-
ceptors and GABA, receptors further suggest that en-
dogenous agonist or anesthetic binding might increase
water accumulation in hydrophilic pockets and increase
the number and accessibility of hydrophilic sites that are
important for channel gating [48,49]. However, molecules
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Alkenes
Alkynes
Amines
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Cycloalkanes
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Ethers
Fluorides
Ketones
Sulfides
Thiols
95% Cl

0.0001

0.00001

represent solubility values for which no data exist.

Molar Solubility

Figure 3 Summary of receptor cut-off effects as a function of molar water solubility for compounds tested in Tables 1 and 2. For each
hydrocarbon functional group, white bars represent compounds that modulate both GABAA and NMDA receptors, and black bars represent
compounds that modulate GABA, receptors but have no effect on NMDA receptors at a saturating concentration. Intervening grey bars
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Figure 4 Summary of receptor cut-off effects as a function of the number of drug carbon atoms for compounds tested in Tables 1 and 2.
For each hydrocarbon functional group, white bars represent compounds that modulate both GABA, and NMDA receptors, and black bars represent
compounds that modulate GABA, receptors but have no effect on NMDA receptors at a saturating concentration. Intervening grey bars represent
solubility values for which no data exist. No receptor cut-off pattern is evident as a function of the number of drug carbon atoms.
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that are insufficiently water soluble may not be able to dis-
place enough water molecules at enough critical sites in
order to modulate channel function.

NMDA receptor modulation by inhaled anesthetics

at least in part—at hydrophilic agonist binding sites
[33,50]. However, data from the present study show that
less hydrophilic drugs—those with lower molar water sol-
ubilities—are still able to modulate GABA 4 receptor cur-

such as isoflurane, xenon, and carbon dioxide occurs—  rents even when NMDA receptor efficacy is lost. Since

Alcohols [
Aldehydes | ] —
Alkanes - =il
Alkenes ] [
Alkynes i [
Amines i
Benzenes [ 1
Cycloalkanes | ;
Esters ] [ ]
Ethers ] ! [
Fluorides ] [
) ]
Ketones [ ]
Suffides | — ———
Thiols | i e ——
100 200 300 400 500 600

Molecular Volume (A3)

Figure 5 Summary of receptor cut-off effects as a function of the calculated molecular volume of each drug for compounds tested in
Tables 1 and 2. For each hydrocarbon functional group, white bars represent compounds that modulate both GABAA and NMDA receptors, and
black bars represent compounds that modulate GABA, receptors but have no effect on NMDA receptors at a saturating concentration. Intervening
grey bars represent solubility values for which no data exist. No receptor cut-off pattern is evident as a function of molecular volume.
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these receptors belong to different and phylogenetically
distinct superfamilies, it seems likely that either the num-
ber of displaced water molecules required to effect modu-
lation, the relative affinities of the hydrocarbon versus
water molecule for a critical hydrophilic protein pocket,
and/or the number of hydrophilic sites necessary for allo-
steric modulation should also be different between pro-
teins. Simply stated, there is no reason to suppose that
unrelated channels are likely to have conserved affinity
constants for water within protein cavities capable of in-
ducing an effect on ion conductance. As evidence, GABA
receptors currents, but not those of NMDA receptors, can
be modulated by compounds with molar aqueous solu-
bilities much less than 1.1 mM. Presumably, the water
dissociation constant in the NMDA receptor binding
site is lower than that in the analogous GABA, receptor
binding site.

The locations within NMDA receptor subunits respon-
sible for anesthetic-mediated modulation of protein func-
tion remain unresolved. However, it is likely that volatile
anesthetics bind at multiple extracellular and transmem-
brane interfacial sites and cavities, as has been observed
with nicotinic acetylcholine receptors [47,51], Gloeobacter
ligand-gated ion channels [52], and voltage-gated sodium
channels [53]. Whether an anesthetic positively or ne-
gatively modulates an ion channel may be a function of
competing drug interactions at different sites within the
protein [54]. The protein cavities must to some extent be
hydrophilic so that they are occupied by water in the na-
tive state. However, if these sites are too hydrophilic, then
the energy necessary for a low-affinity drug to displace the
water molecules becomes too great, requiring either very
high drug concentrations that alter cell effects due to
changes in serum osmolality or highly polar or charged
drugs which, by virtue of these properties, are imperme-
able to the cell membrane and therefore cannot access
critical transmembrane modulatory sites.

Although the present study assessed the association
between water solubility and drug efficacy on anesthetic-
sensitive ion channels, a relationship between solubility
and potency may exist as well. For example, site-directed
mutagenesis of the Ala825 residue on the M4 domain of
the NR2A subunit, a region at which alcohols bind and
can negatively modulate NMDA receptor currents [55,56],
affects potency of the slightly water-soluble hypnotic
agent tribromoethanol. In fact, the hydrophobicity of
the substituted amino acid negatively correlates with
tribromoethanol potency as an NMDA receptor inhibi-
tor [57]. Interestingly, except when replaced by the ex-
tremely hydrophobic tryptophan residue, which may
change binding or access of water itself to the cavity,
mutagenesis at this same site had no effect on the infin-
itely water-soluble anesthetic ethanol. Perhaps the small
and highly polar ethanol molecule mimics many of the
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intramolecular forces, such as hydrogen bonding, of the
water molecules it displaces within the binding site,
thus extreme changes within the pocket are required to
affect potency.

Water and lipid solubility also affect drug potency for
wild-type receptors. Increasing chain length of straight-
chain alcohols or diols increases hydrophobicity and is
initially associated with increased inhibitory potency of
NMDA receptors [58,59]. Similarly, the magnitude of
GABA, receptor positive modulation in the present
study tended to increase as hydrocarbon chains length-
ened within any functional group. This is consistent with
the Meyer-Overton prediction of increased anesthetic po-
tency as a function of increasing hydrophobicity [60,61].
The probability of a hydrocarbon passively entering a lipid
cell membrane is parabolically related to hydrocarbon
hydrophobicity; more hydrophobic molecules—up to a
point—may be able to more easily access transmem-
brane modulatory sites [62]. However, drug solubility in
the lipid membrane should not affect drug concentra-
tion in the amphipathic protein pocket, since the net
energy involved in moving into and out of the lipid
membrane are equal and opposite. The change in state—
in this case, drug diffusion in a reversible path from
perfusate to lipid membrane to protein pocket—is ther-
modynamically defined only by the initial state (free en-
ergy in perfusate) and final state (free energy of receptor
binding), and the change in free energy is independent of
the membrane path between these two states [63]. How-
ever, increasingly hydrophobic molecules should differ
more in their intermolecular interactions with surround-
ing amino acid side chains compared to the water mole-
cules they displaced. Therefore, if they can successfully
access this amphipathic pocket, increasingly hydrophobic
molecules may be capable of producing larger conform-
ational changes in the protein and greater modulation of
protein function. However, as molecules become even
more hydrophobic and water solubility falls below the cut-
off value, there are simply insufficient molecules in the
aqueous phase to successfully compete with water at hy-
drophilic modulation or transduction sites on a receptor
to alter its function. There is progressive loss of modula-
tory efficacy at sites with higher cut-offs that reduces the
maximum drug-effect magnitude. Finally, when the drug
water solubility becomes such that it is insufficient in con-
centration to out-compete the water in the lowest-cut-off
site, the drug effect is reduced to zero.

Likewise, in the whole animal, this plausibly explains
why transitional compounds and nonimmobilizers pre-
dicted by the Meyer-Overton correlation to produce anes-
thesia either have lower than expected potency or lack
anesthetic efficacy altogether. As with the NMDA cut-off
hydrocarbons presented in the present study, transitio-
nal compounds and nonimmobilizers all share a common
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property of low aqueous solubility [64]. Nonimmobilizers
such as 1,2-dichlorohexafluorocyclobutane fail to de-
press GABA-dependent pyramidal cells [65] or NMDA-
dependent CA1l neurons [66] in the hippocampus, and
likely lack these effects elsewhere in the central nervous
system. With decreasing water solubility, there is differen-
tial loss of receptor effects—such as occurred with NMDA
receptors versus GABA, receptors in the present study.
The anesthetic cut-off effect in whole animal models cor-
relates with agent water solubility, and might be explained
by the loss of one or more anesthetic-receptor contribu-
tions to central nervous system depression. Conversely,
receptor molar water solubility cut-off values may be used
to define those ion channels that are not essential for vola-
tile anesthetic potency. Inhaled agents likely act via low af-
finity interactions with multiple cell receptors and ion
channels to decrease neuronal excitability in the brain and
spinal cord, but a loss or inadequate contribution from
certain targets—perhaps GABA, or glycine receptors—as
water solubility decreases may render a drug a nonimmo-
bilizer. Additionally, agents having a water solubility below
the cut-off value for some anesthetic-sensitive receptors
may also produce undesirable pharmacologic properties,
such as seizures following the loss of GABA, receptor
modulation [67]. In contrast, NMDA receptors can con-
tribute to immobilizing actions of conventional volatile
anesthetics [3], but they are not as a general principle es-
sential for inhaled anesthetic action since an agent like
pentane does not modulate NMDA receptors—even at a
saturated aqueous concentration (Table 2)—yet has a
measurable minimum alveolar concentration [68,69].

As shown in Figure 3, the different hydrocarbon series
exhibit small variability about the 1.1 mM cut-off. Some
variability is due simply to the lack of compounds of
intermediate solubility within a functional group series.
For example, pentanethiol inhibited NMDA receptors,
whereas the 1-carbon longer hexanethiol did not (Table 2).
This pre-cut-off thiol is nearly 3-times more soluble in
water than its post-cut-off cognate; yet it is not possible to
obtain a more narrowly defined cut-off delineation for
1-thiols. Even larger variability was observed with the
dialkylbenzene series, to which 1 additional carbon was
added to each 1- and 3-alkyl group. The solubility ratio
between the NMDA antagonist 1,3-dimethylbenzene
and its cut-off cognate 1,3-diethylbenzene is more than
18 (Table 2).

Variability about the molar water solubility NMDA re-
ceptor cut-off may also have arisen from the use of cal-
culated, rather than measured, values for hydrocarbon
molar water solubility. Aqueous solubility is difficult to
measure accurately, particularly for poorly soluble sub-
stances. Calculated solubilities are more accurate for small
uncharged compounds, but still can have an absolute
error within 1 log unit [70]. However, even predicted
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values for nonpolar n-alkanes may show large deviations
from experimental data as the hydrocarbon chain length
increases [71].

Furthermore, the molar solubility values used in the
present study were calculated for pure water at 25°C and
at pH =7.0. These were not the conditions under which
drug-receptor effects were studied. Ringer’s oocyte per-
fusates contained buffers and physiologic concentra-
tions of sodium, potassium, and chloride resulting in a
250 mOsm solution. The solubility of haloether and
haloalkane anesthetic vapors vary inversely with osmo-
larity [72], as do the water-to-saline solubility ratio of
benzenes, amines, and ketones [73]. The presence of
salts could have caused overestimation of aqueous solu-
bility for some compounds when using values calculated
for pure water. Likewise, solubility is also temperature-
dependent. Studies were conducted at 22°C; solubility of
gases in water should be greater than values calculated at
25°C. In contrast, most solutes used in the present study
have negative enthalpy for dissolution [74], so solubility
should be decreased at the lower ambient temperature.
The reverse should occur for exothermic solutions, as pre-
dicted by the Le Chatelier principle. As for hydronium ion
concentration, the solubility of most study compounds is
trivially affected at pH values between 7-to-8. However,
hydrocarbons containing an amine group have pK, values
that are closer to physiologic pH, and the calculated aque-
ous solubility of 1-eicosanamine and 1-octadecanamine
(Table 1) decreases by about 66% as pH increases from 7
to 8. Calculated molar water solubilities for the amines
in this study were probably modestly overestimated at a
physiologic pH equal to 7.4.

Only water solubility reliably predicted the NMDA re-
ceptor cut-off. Yet, molecular size and shape still likely
influence this effect to some lesser degree. Most of the
hydrocarbons examined in the present study had func-
tional groups located on the 1- or 2-carbon position.
However, the ethers were all 1,1'-oxybisalkanes; each
member of the ether consisted of symmetrical 1-carbon
additions to alkyl groups on either side of the oxygen
atom (Table 1). Consequently, this electron-rich oxygen
atom allowing hydrogen bonding with water molecules
or amino acid residues with strong partial positive
charges lies buried in the middle of the ether. For hydro-
carbons with equivalent molar water solubilities, it may
be more difficult for dialkyl ether to form hydrogen bonds
in hydrophilic receptor pockets compared to a long pri-
mary amine (Table 1) that might more easily insert its nu-
cleophilic terminus into the anesthetic-binding pocket
while the long hydrophobic carbon chain remains in the
lipid membrane. This may explain why ethers in this study
appear to exhibit an NMDA cut-off that is slightly greater
than hydrocarbons with other functional groups. Perhaps
if a methyl-alkyl ether series were used instead of a dialkyl



Brosnan and Pham BMC Pharmacology and Toxicology 2014, 15:62
http://www.biomedcentral.com/2050-6511/15/62

ether series, the apparent molar water solubility cut-off
for this group would have been lower. Nonetheless, the
cut-off variability is sufficiently small to allow a priori
predictions of low-affinity hydrocarbon modulation of
NMDA receptors. It remains to be shown whether other
anesthetic-sensitive ion channels exhibit distinct cut-off
effects that may also be predicted by a single physical
property: molar water solubility.

Conclusion

Cut-off responses for NMDA receptor inhibition by
diverse hydrocarbons occurs when drug molar water
solubility is less than approximately 1.1 mM. However,
hydrocarbons having lower molar water solubilities are
still able to potentiate GABA, receptors. This finding
supports a hypothesis that volatile compounds, such as
inhaled anesthetics, access one or more amphipathic
“pockets” within a protein, such as the NMDA receptor,
to displace resident water molecules and induce a con-
formational change. Volatile anesthetics and other com-
pounds with insufficient molar water solubility can never
achieve sufficient concentration at the amphipathic pocket
site to displace water and modulate protein function—
even when such compounds are administered at a satu-
rated aqueous phase concentration.
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