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Abstract

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) marks the third
novel 3-coronavirus to cause significant human mortality in the last two decades.
Although vaccines are available, too few have been administered worldwide to keep the
virus in check and to prevent mutations leading to immune escape. To determine if anti-
bodies could be identified with universal coronavirus activity, plasma from convalescent
subjects was screened for IgG against a stabilized pre-fusion SARS-CoV-2 spike S2
domain, which is highly conserved between human 3-coronavirus. From these subjects,
several S2-specific human monoclonal antibodies (hmAbs) were developed that neu-
tralized SARS-CoV-2 with recognition of all variants of concern (VoC) tested (Beta,
Gamma, Delta, Epsilon, and Omicron). The hmAb 1249A8 emerged as the most potent
and broad hmADb, able to recognize all human -coronavirus and neutralize SARS-CoV
and MERS-CoV. 1249A8 demonstrated significant prophylactic activity in K18 hACE2
mice infected with SARS-CoV-2 lineage A and lineage B Beta, and Omicron VoC.
1249A8 delivered as a single 4 mg/kg intranasal (i.n.) dose to hamsters 12 hours follow-
ing infection with SARS-CoV-2 Delta protected them from weight loss, with therapeutic
activity further enhanced when combined with 1213H7, an S1-specific neutralizing
hmAb. As little as 2 mg/kg of 1249A8 i.n. dose 12 hours following infection with SARS-
CoV Urbani strain, protected hamsters from weight loss and significantly reduced upper
and lower respiratory viral burden. These results indicate in vivo cooperativity between
S1 and S2 specific neutralizing hmAbs and that potent universal coronavirus
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neutralizing mAbs with therapeutic potential can be induced in humans and can guide
universal coronavirus vaccine development.

Author summary

Coronaviruses are responsible for causing seasonal respiratory illness in humans. Addi-
tionally, SARS-CoV in 2003 and MERS-CoV in 2012, caused significant morbidity and
mortality in humans. And most recently SARS-CoV-2, is responsible for a world-wide
pandemic that has had a dramatic impact on public health and socioeconomic activities.
We have identified antibodies that are present after SARS-CoV-2 infection that recognize
a specific region of the Spike protein, S2, which is highly conserved among different coro-
naviruses. We show that an S2-specific monoclonal antibody can protect from various
SARS-CoV-2 viruses, as well as SARS-CoV, including when delivered directly into the
nose of animals. This antibody can also effectively neutralize MERS-CoV. These results
indicate that antibodies with broad activity against coronaviruses can be generated. Fur-
ther study of such antibodies may aid in the development of improved treatments and
vaccines for coronaviruses.

Introduction

SARS-CoV-2 is the third known emergence of a coronavirus (CoV) with the ability to cause
substantial human morbidity and mortality. The SARS-CoV-2 pandemic has resulted in over
5 million deaths worldwide in two years and painfully highlights the vulnerability of humanity
to novel CoV. Despite the rapid development of vaccines exhibiting high levels of efficacy and
low levels of side effects, global vaccine implementation has been slow. As a result, SARS-CoV-
2 virus has infected many human hosts, allowing for the evolution of new variants that have
the potential to evade the immune response elicited by previous infection or vaccination.

Although first generation SARS-CoV-2 vaccines have been highly effective at preventing
severe disease, including from VoC, the humoral immunity induced by vaccination and natu-
ral infection is overwhelmingly dependent on a neutralizing antibody response targeted to the
Receptor Binding Domain (RBD) of the Spike (S) glycoprotein. The RBD, which mediates the
initial attachment of SARS-CoV-2 to its primary receptor, angiotensin converting enzyme 2
(ACE2), and the S1 domain overall have undergone substantial antigenic diversity since the
initial emergence of SARS-CoV-2. Mutations within RBD and S1 dramatically negate the neu-
tralizing activity of plasma antibodies (Abs) against SARS-CoV-2 VoC that are generated from
vaccinated or infected individuals and enhance the transmissibility and pathogenicity of VoC
[1-4]. A good example of significant immune escape is the emergence of the Omicron VoC,
with numerous mutations in the RBD that contribute to reduced neutralization by therapeutic
human monoclonal antibodies (hmAbs) which are against RBD, and by vaccine and infection
-induced plasma Abs [5,6].

The Spike is assembled as a homotrimer with ~24 molecules located on the surface of each
SARS-CoV-2 virion [7]. While being synthesized, the S protein is initially cleaved by furin or
furin-like proprotein convertase in the Golgi resulting in the S1 domain being non-covalently
linked to the S2 domain (i.e. stalk) of the protein [8]. Mature viruses are released from infected
cells after virus containing vesicles fuse with the cell membrane. CoV S is a class I virus fusion
protein [9], with the S1 domain mediating attachment primarily through its RBD, while the S2
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domain mediates fusion to the host cell membrane and entry. While CoV S1 domains exhibit
substantial variation to allow recognition of different host receptors, CoV S2 domains are
highly conserved overall (90% between SARS-CoV and SARS-CoV-2), which is consistent
with their conserved function. For membrane fusion to occur a highly dynamic transforma-
tion must occur, requiring precise interactions of various S2 subdomains [10], suggesting
there is low tolerance for S2 variation without compromising viral fitness. Antibody responses
to S2 are increased in some individuals following SARS-CoV-2 infection and plasma S2 Ab
response are associated with survival after coronavirus disease 2019 (COVID-19) infection
[11]. However, the development of S2-specific Abs following SARS-CoV-2 natural infection or
standard vaccination is limited compared to those specific for S1 [12,13]. While most S1 Abs
are neutralizing, only a small fraction of S2 Abs are neutralizing [12].

Many SARS-CoV-2 neutralizing antibodies also target the N-terminal domain (NTD) [14-
16]. While neutralizing Abs to NTD have been identified, new SARS-CoV-2 variants such as
Omicron, have gained several mutations in the NTD and RBD of the Spike protein that pro-
mote immune evasion. With the substantial number of people unvaccinated and immuno-
compromised, and emergence of new variants that can evade immune protection, a great need
remains for new therapeutics that neutralize SARS-CoV-2, despite its continued evolution.
Furthermore, there is a potential treatment advantage of combining Abs that inhibit both
ACE2 binding and viral fusion.

Therapeutic mAbs are typically delivered systemically through intravenous infusion or
intramuscular injection, which is highly inefficient and slow in achieving optimal concentra-
tions in the respiratory tract for the treatment of respiratory infections [17], including
SARS-CoV-2 [18]. We have previously demonstrated that direct respiratory delivery of a
SARS-CoV-2 RBD-specific hmAb enables substantial dose-sparing therapeutic activity in
hamsters and here evaluate this delivery mechanism for the treatment of SARS-CoV-2 and
SARS-CoV with a S2-specific hmAb.

To more precisely identify the potential of the SARS-CoV-2 S2 specific B cell response, a
panel of S2-specific hmAbs were isolated and their molecular features, reactivity profiles, and
in vitro and in vivo antiviral activities were defined. Several of these hmAbs demonstrate broad
CoV reactivity, neutralizing, and antibody-dependent phagocytosis activity. With the most
potent and broad S2-specific hmAb, 1249A8 exhibiting prophylactic and therapeutic activity
against SARS-CoV-2 and SARS-CoV in multiple animal models, demonstrating the universal
B-CoV therapeutic potential of S2 hmAb directly. The combination of 1249A8 with the
S1-specific hmAb 1213H7 was evaluated for possible synergistic effects and delivered to the
respiratory tract for improved dose delivery efficiency.

Results
Identification and isolation of S2-specific human B cells

To identify SARS-CoV-2 S2-specific human B cells, two complementary recombinant proteins
were designed and produced; a pre-fusion state stabilized SARS-CoV-2 (S2-STBL) and a
SARS-CoV/SARS-CoV-2 full Spike chimera consisting of SARS-CoV S1 and SARS-CoV-2 S2
(SARS-CoV-1/2 S1S2) (Fig 1A). Initial testing of plasma from COVID-19 convalescent
patients was performed to identify those with high avidity IgG binding titers against S2 (Fig
1B) from which to isolate S2-specific B cells. Using fluorescent S2-STBL and S1S2 chimera tet-
ramers, peripheral blood memory B cells from several subjects were single-cell sorted by flow
cytometry (Fig 1C) and recombinant fully human IgG1 mAbs (hmAbs) were generated. Sev-
enteen hmAbs with reactivity to SARS-CoV-2 S2 protein resulted (Fig 1D). In general, most
hmAbs bound commercial preparations of SARS-CoV-2 S, as well as S2-STBL and
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Fig 1. Isolation of SARS-CoV-2 S2-specific human monoclonal antibodies (hmAbs). (A) Schematic representation of the S2-STBL and S1/S2 chimera
proteins used as baits for ELISA and flow cytometry. (B) Human plasma from either convalescent or healthy subjects was diluted 1:1000 in PBS and tested in
duplicate in an ELISA against indicated proteins; Absorbance at 450 nM is shown. Each row is an individual subject. (C) Representative gating strategy for S2
+ B cell isolation. Initial plots are gated on live CD3-CD4-CD14-annexinV-CD19+CD27+ B cells. (D) hmAbs were tested at 10 and 1 pg/ml in duplicate by
ELISA for binding to indicated protein; area under the curve (AUC) is indicated.

https://doi.org/10.1371/journal.ppat.1010691.9001

SARS-CoV-1/2, as shown in the plasma profiling. Binding to S2-STBL and SARS-CoV-1/2
S$1S2 was more discriminating, as also evident in the plasma profiling. Differential binding
profiles was observed for some plasma and mAbs to S2-STBL and S2 Sino, but the reason for
this remains uncertain. The previously reported S2-specific hmAb CC40.8 [19] was included
as a positive control. Off-target binding to SARS-CoV-2 S1 was not evident.
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$2 hmAbs have in vitro SARS-CoV-2 neutralizing and antibody-dependent
phagocytosis activity

The functional activity of S2 hmAbs against SARS-CoV-2 was tested and previously reported
S2 hmAbs were included as controls. The hmAbs that showed the greatest binding to at least
one S2 protein by ELISA were tested by live virus and pseudovirus-based neutralization assays
(Figs 2A and 2B and S1 and S2). Several hmAbs did not show neutralization capacity, even at
the highest concentration (50 ug/ml). Eight hmAbs demonstrated neutralization of SARS-
CoV-2 D614G pseudovirus (PsV) and were tested further, of which four hmAbs (1249A8,
1242C6, 1250D2, and 1235C10) effectively neutralized both PsV and live virus including Delta
VoC. 1249A8 emerged as having the broadest and most potent neutralizing activity, with com-
parable NTs, (neutralization titer at 50% inhibition) to CV3-25, a previously described S2 neu-
tralizing hmAb [20].

The Fc effector function of the S2 hmAbs was assessed by antibody dependent cellular
phagocytosis (ADCP) of SARS-CoV-2 Wuhan-Hu-1 Spike coated beads (Fig 2C). 1242F4
and 1250E10 had the highest ADCP activity, similar to the previously described S2-specific
hmADb S2P6 [21]. Both 1246C2 and 1246H7 had activity that was only slightly higher than
the isotype control indicating very little Fc effector function, and consistent with their lim-
ited binding and neutralizing activity. 1249A8 had 4.2 fold greater ADCP activity than the
isotype control which was similar to the S2 hmAbs CC40.8 and CV3-25. The SARS-CoV-2
RBD specific mAb 1213H7 [18,22,23], had the greatest (~8 times greater than isotype)
ADCP activity. Together these results suggest S2 hmAbs have the potential to eliminate
SARS-CoV-2 through both neutralization and Fc-dependent effector functions. Based on
the potent neutralizing activity of 1249A8, we sought to determine the location of its bind-
ing to S2. Four S2 protein fragments (S2 Fragl-Frag4) that cover different regions of the
S2 amino acid sequence were produced to approximate the region containing the epitope
of 1249A8 (Fig 2D). S2 fragment binding assays localized the 1249A8 binding epitope to
S2 residues 1131-1171 (S2-Frag4), which contains the conserved stem helix region (resi-
dues 1148-1158) of S2, previously reported to be recognized by mAbs CV3-25 [20],
CC40.8 [19], and S2P6 [21]. Competition surface plasmon resonance (SPR) analysis
revealed that 1249A8 prevents the binding of CV3-25, CC40.8, and SP26 to S-Frag4 (Fig
2E) indicating they recognize an overlapping epitope.

Molecular characteristics of S2 hmAbs

The most potent neutralizing hmAb, 1249A8 was isolated from an IgG1 expressing B cell and
exhibited substantial somatic hypermutation including 16.7% amino acid mutation from
germline in the heavy chain variable region, and 13.5% amino acid mutation from germline in
the light chain variable region (Table 1). The 1249A8 hmAb is a member of the same clonal
lineage that includes 1242C6, 1250D2, 1242F4, 1249D4, and 1249B7. This shared lineage uti-
lizes VH1-46 heavy chain gene and V«3-20 light chain gene, with all members isolated from
IgG1 expressing B cells and demonstrating substantial somatic hypermutation in the heavy
(15.6-18.8% AA) and light (10.4-13.5% AA) from germline.

1249A8 hmADb protects from SARS-CoV2 infection

The K18 human ACE2 transgenic mouse model was utilized to determine the prophylactic
activity of 1249A8 hmAb. Mice were treated with a single dose of 1249A8 intraperitoneally
(IP), and 12 hours later challenged with both rSARS-CoV-2 WA-1/Venus and rSARS-CoV-2
Beta/mCherry reporter viruses [23]. Infecting animals with both viruses enables efficient
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Fig 2. In vitro neutralization and ADCP of SARS-CoV-2 by S2- specific hmAbs. (A) SARS-CoV-2 neutralization of
S2 hmAbs. Vero E6 cells were infected with SARS-CoV-2 WA-1 or SARS-CoV-2 Delta for 1 h. After 1 h of viral
adsorption, the indicated concentrations of S2 hmAbs were added and at 24 h.p.i., infected cells were fixed for virus
titration by immunostaining assay. Data was expressed as mean and SD of quadruplicates. (B) Summary of viral
neutralization (NTs) using either pseudovirus representing SARS-CoV-2 D614G mutation, or live SARS-CoV-2 WA-
1 or Delta. (C) Ab-dependent cellular phagocytosis (ADCP) assay. SARS-CoV-2 Wuhan-Hu-1 S-coated and BSA-
coated beads were incubated with 5 pg/ml hmAb for 2 h and then added to THP-1 cells. After incubation for 3 h at
37°C, cells were assayed for fluorescent bead uptake by flow cytometry. The ADCP score of each mAb was calculated
by multiplying the percentage of bead positive cells (frequency of phagocytosis) by the mean fluorescence intensity
(MFI) of the beads (degree of phagocytosis) and dividing by 10°. (D) Binding to S2 protein fragments by hmAbs (5 pg/
ml) determined by ELISA. (E). SPR competition assays were performed by capturing S2-Frag4 to the chip surface,
followed by sequential injections of 50 nM of 1249A8 (Injectl) and the various S2 Abs at 50nM concentration (Inject
2). (Inset) Summary of the competition sensorgram data, where Ab binding levels (RU), measured after Injectl (black),
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were normalized to 100, and compared to Ab binding levels after the second injection (Inject 2, red), which occurred
after 1249A8 binding.

https://doi.org/10.1371/journal.ppat.1010691.9002

assessment of in vivo breadth of the mAb activity. 12498 was administered at 10 and 40
mg/kg, doses chosen based on relatively higher NTs, of S2 mAbs compared to well
described RBD-specific mAbs [18]. Mice were also treated alone or in combination with a
modest dose of 1213H7 (5 mg/kg), a broad and potent SARS-CoV-2 RBD specific hmAb
we have previously described [18,22,23]. All mice treated with the isotype control hmAb
had declining body weight following infection that required euthanasia before D9 (Fig 3A
and 3B). Mice treated with 10 mg/kg 1249A8 showed a milder weight loss with 60% of the
mice surviving. Mice treated with 40 mg/kg of 1249A8 prior to infection, as well as those
treated with 1213H7 or the combination of both did not have weight loss and all survived.
Both 10 mg/kg and 40 mg/kg 1249A8 significantly (p<0.05) reduced nasal virus at day (D)
2, with 1249A8 and 1213H7 combination treated mice not having detectable virus, with all
1249A8 treated mice having viral titer below the limit of detection at D4 (Fig 3C), with
viral burden dominated by rSARS-CoV-2 Beta/mCherry (Fig 3E and 3F), as previously
described [23]. Lungs of mice that were treated with the isotype control mAb showed
intense fluorescent radiance for both rSARS-CoV-2 WA-1/Venus and rSARS-CoV-2 Beta/
mCherry in left and right hemispheres by D2 following infection and markedly increased
at D4, and minimally visually evident in the 1249A8, 1213H7, and combination treated
mice (Fig 3G). Lung viral titer was reduced in mice treated with either 1249A8 doses by ~2
log at D2, and to below detection limit at D4 compared to isotype control hmAb treated
mice (Fig 3D). The reduction in viral burden by 1249A8 was for both rSARS-CoV2 WA-1/
Venus and rSARS-CoV2 Beta/mCherry (Fig 3G and 3H and 3I) and was consistent with
significant (p<0.05) reduction in lung pathology (Fig 3J). As expected, overall, the RBD-
specific hmAb 12137H7 was very potent at reducing viral burden alone, resulting in diffi-
culty resolving superiority for the combination. These results do indicate that 1249A8
alone and in combination with the RBD mAb 1213H7 can broadly limit SARS-CoV-2
upper and lower respiratory viral burden and lung pathology, including the original line-

age A and the lineage B Beta VoC.

Table 1. Molecular characteristics of S2 specific hmAbs.

hmAb Native isotype VH DH JH Mutation (% NT/% AA) VL JL Mutation (% NT/% AA)
1249A8 1gG1 VHI1-46 DHI1-26 JH4 9.7/16.7 VK3-20 JK2 7.6/13.5
1242C6 IgG1 VHI1-46 DHI1-26 JH4 9.7/16.7 VK3-20 JK2 6.2/12.5
1250D2 IgG1 VHI1-46 DHI1-26 JH4 9.0/16.7 VK3-20 JK2 5.5/10.4
1242F4 IgG1 VHI1-46 DH3-16 JH4 12.4/18.8 VK3-20 JK2 6.2/10.4
1249D4 IgG1 VHI1-46 DHI1-26 JH4 7.6/15.6 VK3-20 JK2 6.9/12.5
1249B7 IgG1 VHI1-46 DHI1-26 JH4 9.0/17.7 VK3-20 JK2 6.6/13.5
1250E10 1gG1 VH1-46 DHI1-26 JH5 13.4/20.8 VK3-20 JK2 9.7/16.7
1242D11 IgAl VH3-7 DH3-22 JH2 2.0/4.1 VK3-20 JK2 2.1/4.2
1242E6 1gG1 VH3-7 DH3-9 JH5 1.0/1.0 VL2-14 JL1 4.0/6.1
1246C2 1gG3 VH3-21 DH1-26 JH2 7.4/14.3 VK3-11 JK4 6.3/9.5
1232D5 1gG1 VH3-30 DH6-19 JH4 2.7/5.2 VL1-44 JL3 2.4/4.1
1242G6 1gG1 VH3-30 DH3-10 JH4 10.1/19.4 VK1-9 JK5 5.3/10.5
1235C10 IgGl1 VH3-49 DH3-10 JH4 2.0/3.0 VK4-1 JK1 2.0/5.0
1246H7 IgM VH4-39 DH3-16 JH4 4.1/6.1 VL2-11 JL3 3.4/4.1
https://doi.org/10.1371/journal.ppat.1010691.t001
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Fig 3. Prophylactic activity of 1249A8 hmAb against rSARS-CoV-2 WA1-Venus and rSARS-CoV-2 Beta-mCherry in K18 ACE2 transgenic mice model.
Female K18 hACE2 transgenic mice were treated i.p. with 1249A8 (10 mg/kg or 40 mg/kg), 1213H7 (5 mg/kg), alone or in combination, or isotype control
hmAb (40 mg/kg), followed by infection with both rSARS-CoV-2 Venus and rSARS-CoV-2 Beta/mCherry Beta. Body weight (A) and survival (B) were
evaluated at the indicated days post-infection (n = 5 mice/group). Mice that loss >25% of their body weight were humanely euthanized. Error bars represent
standard deviations (SEM) of the mean for each group of mice. Viral titers in the nasal turbinate (C) and lung (D) at 2 and 4 DPI were determined by plaque
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assay in Vero E6 cells (n = 4 mice/group/day). Symbols represent individual mice, bars indicate the mean and SD of lung virus titers. Dotted lines indicate limit
of detection, titers below limit of detection are presented at limit of detection. Proportion of rSARS-CoV-2 WA-1/Venus and rSARS-CoV-2 Beta/mCherry
determined by fluorescence in nasal turbinate (E) and lung (F). (G) At 2 and 4 DPI, lungs were collected to determine Venus and mCherry fluorescence
expression using an Ami HT imaging system. BF, bright field. (H) Venus (Green) and (I) mCherry (Red) radiance values were quantified based on the mean
values for the regions of interest in mouse lungs. Mean values were normalized to the autofluorescence in mock-infected mice at each time point and were used
to calculate fold induction. (J) Gross pathological scores in the lungs of mock-infected and rSARS-CoV-2-infected K18 hACE2 transgenic mice were calculated
based on the percentage of area of the lungs affected by infection. Dotted line indicates limit of detection. * indicates p<0.05 as compared to isotype control
hmAb as determined by one-way ANOVA.

https://doi.org/10.1371/journal.ppat.1010691.9003

S$2 hmAbs have broad B-coronavirus in vitro activity

Given the high conservation of S2 across CoV, the S2 hmAbs were evaluated for their binding
and neutralization breadth against diverse SARS-CoV-2 variants and CoV. Vero E6 cells were
infected with SARS-CoV-2, SARS-CoV-2 variants, SARS-CoV, and MERS-CoV and binding
assessed by immunofluorescence assay (IFA). Six of the hmAbs showed binding to all SARS-
CoV-2 isolates, however the hmAb 1242G6 and 1246C2 bound poorly to SARS-CoV-2
infected cells (Fig 4A), consistent with their weak neutralizing activity. 1242C6, 1242F4,
1249A8 and 1250D2 all bound to SARS-CoV and MERS-CoV infected cells. CV3-25 had lim-
ited binding to SARS-CoV infected cells and no binding to MERS-CoV infected cells.

The breadth of the S2 binding activity of 1249A8 was further evaluated by avidity ELISA in
the presence of urea, confirming its binding to SARS-CoV and MERS-CoV Spike, and also
demonstrating its binding to OC43 and HKU-1 seasonal 3-CoV (Fig 4B). No binding to the
seasonal a-CoV 229E or NL63 Spike proteins was detected (S3 Fig). 1249A8 uniquely had sub-
stantial broad binding to recombinant S proteins from MERS-CoV, OC43, and HKU1 com-
pared to CV3-25 and CC40.8 which did not recognize MERS-CoV S, and S2P6 which had
lower reactivity to HKU-1 S compared to 1249A8 (Fig 4B). Consistent with the ELISA data,
SPR/BLI studies show 1249A8 exhibits high affinity for SARS-CoV-2 (KD = 1.8 nM), SARS-
CoV (KD = 3.2 nM) and MERS-CoV (KD = 0.58 nM) Spikes. 1249A8 had higher affinity to
SARS-CoV-2 and MERS-CoV Spikes as compared to S2P6, as a result of a S2P6 having a faster
off-rate (kd) (Figs 4C and S4). 1249A8 effectively neutralizes both live SARS-CoV (NTs, = 570
ng/ml) and MERS-CoV (NTs, = 5,830 ng/ml) (Fig 4D). As expected based on binding activity,
CV3-25 did not neutralize MERS-CoV. Additionally, 1249A8 has ADCP activity against
MERS-CoV Spike coated beads (Fig 4E). These results indicate that several SARS-CoV-2 S2
specific hmAbs have broad beta-CoV reactivity, with 1249A8 demonstrating universal -CoV
functional activity.

In vitro and in vivo activity of combined S1 and S2 neutralizing mAbs
against SARS-CoV-2 Omicron

The emergence of the SARS-CoV-2 Omicron VoC and its substantial evasion of neutralizing
antibodies [2,5,6] necessitated testing of 1249A8. 1249A8 retains high affinity (KD = 0.52 nM)
for the SARS-CoV-2 Omicron Spike (Fig 5A) and neutralizing activity (NTsq = 2407 ng/ml)
against live SARS-CoV-2 Omicron virus (Fig 5B). We also observed potent SARS-CoV-2
Omicron neutralization of 1213H7 (NTs, = 64 ng/ml). As clinical development of an S2 mAb
would likely include a RBD specific mAb, and as these mAbs target distinct Spike domains (S1
and S2) and steps in the infection process (attachment and fusion) we sought to determine
their combinatorial activity. In the presence of 50 ng/ml 1213H7, the NTs, of 1249A8 against
SARS-CoV-2 Omicron was reduced to 1338 ng/ml, and complementarily, in the presence of
2000 ng/ml of 1249A8 the NTs, of 1213H7 was reduced to 26 ng/ml, with similar effect
observed for SARS-CoV-2 WA-1 (S5 Fig), suggesting co-operative activity of the S2 and RBD
mAbs in neutralizing SARS-CoV-2. Treatment of K18 hACE2 mice with 1249A8 alone i.p. (40
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Fig 4. Universal B-coronavirus in vitro activity of 1249A8 hmAb. (A) Confluent monolayers of Vero E6 cells were infected (MOI 0.1)
with SARS-CoV-2 WA-1, Beta (B.1.351), Gamma (P.1), or Epsilon (B.1.427/B.1.429). Mock-infected cells (bottom) were included as
control. In a separate experiment, confluent monolayers of Vero E6 cells were infected (MOI 0.1) with SARS-CoV (Urbani v2163) or
MERS-CoV (recombinant MERS-CoV-RFP delta ORF5 ic). Cells were incubated with the indicated primary S2 hmAb (1 ug/ml) and
developed with a FITC-conjugated secondary anti-human Ab. 4,6-Diamidino-2-phenylindole (DAPI; blue) was used for nuclear stain.
As internal control, mock and SARS-CoV-2 WA-1 infected cells were stained with a SARS-CoV cross-reactive NP mAb (1C7C7) or a
-MERS NP pAb. Scale bars indicate 50 um. (B) Binding of hmAb 1249A8 and other known S2-specific mAbs at 5, 0.5, and 0.05 pg/ml
to the Spike proteins of B-coronaviruses as determined by ELISA in the presence or absence of 8M urea. (C) Summary table of Surface
Plasmon Resonance (SPR) and Biolayer Interferometry (BLI) of 1249A8 against the Spike protein of SARS-CoV-2, MERS-CoV, and
SARS-CoV. (D) Viral neutralization by 1249A8 and CV3-25. Vero E6 cells were infected with 100 PFU of SARS-CoV (Urbani v2163)
or MERS-CoV (recombinant MERS-CoV-RFP delta ORF5 ic) for 1 h. After 1 h of viral adsorption, the indicated concentrations of S2
hmAbs were added. At 24 h.p.i,, infected cells were fixed for virus titration by immunostaining assay. (E) ADCP of S2-specific mAb
against MERS-CoV Spike coated beads.

https://doi.org/10.1371/journal.ppat.1010691.9004
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Fig 5. Neutralization and prophylactic in vivo activity of 1249A8 and 1213H7 against SARS-CoV-2 Omicron. (A) Binding of 1249A8 (60, 40, 27, 18, 12
nM) to SARS-CoV-2 Wuhan and Omicron Spike protein determined by BLI. (B) Vero AT cells were infected with 600 pfu SARS-CoV-2 Omicron (BEIR)
and after 1 h of viral adsorption, the indicated mAb(s) was added and at 24 h.p.i infected cells were fixed for virus titration by immunostaining assay.
1213H7 and 1249A8 were tested alone (open symbols) and together keeping 1213H7 constant (C) (50 ng/ml) or 1249A8 constant (2 pug/ml) and titrating the
reciprocal mAb (closed symbols). Resulting NTs, (ng/ml) are indicated. K18 hACE2 mice were treated with 1249A8 (40 mg/kg), 1213H7 (10 mg/kg), or
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isotype control mAb (40 mg/kg) either alone or in combination i.p. or i.n. as indicated and 24 h later challenged i.n. with 10° PFU SARS-CoV-2 Omicron
(BEIR) and virus titer in nasal turbinates (C) and lungs (D) determined at 2 and 4 dpi by plaque assay and gross lung pathology measured (E) (n = 4 mice/
group/day). Each symbol represents an individual animal. Dotted line indicates limit of detection, titers below limit of detection are presented at limit of
detection. *indicates p<0.05 compared to isotype control group as determined by one-way ANOVA.

https://doi.org/10.1371/journal.ppat.1010691.9005

mg/kg) prior to challenge with 10> plaque forming units (PFU) of SARS-CoV-2 Omicron sig-
nificantly reduced upper and lower respiratory viral burden compared to isotype control
treated mice (Fig 5C and 5D). Treatment with 1213H7 alone i.p. (10 mg/kg) significantly
reduced upper respiratory viral burden. The combination of 1249A8 and 1213H7 significantly
reduced viral burden, being more pronounced when the hmAbs were administered directly to
the respiratory tract through intranasal (i.n.) delivery, with 50% of the mice not having detect-
able virus in the nasal turbinate at D2 and D4, and lungs at D2. None of the mice treated i.n.
with the 1249A8 and 1213H7 combination had detectable virus in the lungs at D4. This was
consistent with the significant reduction in lung pathology in these mice (Fig 5E). These
results indicate that direct respiratory administration of the RBD and S2 mAb cocktail of
1213H7 and 1249A8, respectively significantly reduce SARS-CoV-2 Omicron viral burden.

Direct respiratory administration of 1249A8 has broad p-coronavirus
therapeutic activity

Given the broad B-CoV activity of 1249A8 in vitro and its demonstrated prophylactic activity
against SARS-CoV-2 WA-1, Beta, and Omicron in K18 hACE2 mice, we evaluated its thera-
peutic potential in hamsters when delivered directly to the respiratory tract. Hamsters were
infected with SARS-CoV-2 Delta and 12 h p.i. were treated with a single dose of hmAb deliv-
ered intranasally. Isotype control hmAb treated and untreated hamsters exhibited ~15% body
weight loss within 6 days post infection (d p.i.), with minimal weight loss in hamsters treated
with the 1249A8 or 1213H?7 alone, or in combination (Fig 6A). Treatment with 1249A8 alone
had minimal impact on nasal virus titer at D3, although 1213H7 alone as expected, and com-
bined treatment with 8 mg/kg of 1249A8 and 2 mg/kg 1213H7 significantly reduced upper
respiratory viral burden by ~3 logs (Fig 6B) and lower respiratory viral burden by ~6 logs (Fig
6C and 6D) compared to control groups.

To assess pan -CoV therapeutic activity, hamsters were infected with SARS-CoV, Urbani
strain, and then 12 h p.i. treated similarly with a single dose of hmAb delivered intranasally.
1213H7 has minimal binding to SARS-CoV Spike [18], but the combination therapy group
was included as it may represent a future clinical formulation. As expected, untreated hamsters
and those treated with isotype control hmAb lost 15 to 20% of body weight by 7 d p.i.. Ham-
sters treated with 2, 4 or 8 mg/kg of 1249A8 had <5% weight loss, and those treated with 8
mg/kg 1249A8 alone or in combination with 2 mg/kg of 1213H7 actually gained weight by 7 d
p.i. (Fig 7A). A significant reduction in upper respiratory viral burden between D1-D3 as
determined by oropharyngeal swabbing daily was evident in animals treated with 2 or 8 mg/kg
of 1249A8 alone and in combination with 2 mg/kg of 1213H7 (Fig 7B). At D3 minimal reduc-
tion in nasal turbinate virus (Fig 7C) was evident, although a reduction in lung viral titer was
evident in hamsters treated with 1249A8 alone and in combination with 1213H?7 that was sig-
nificant in the cranial lung (Fig 7D), but not as apparent in the caudal lung (Fig 7E). These
results indicate the S2 hmAb 1249A8 has broad B-CoV in vivo therapeutic activity.

Discussion

SARS-CoV-2 marks the third time in the last two decades a B-CoV has caused significant mor-
tality in humans. SARS-CoV was originally discovered in Guangdong Province of China in
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Fig 6. Therapeutic activity of intranasal 1249A8 and 1213H7 in hamsters infected with SARS-CoV-2 Delta. Golden Syrian hamsters were infected i.n. with
10* CCIDs SARS-CoV-2 Delta and 12 h p.i. treated i.n. with a single dose of indicated mAb(s). n = 4-8 per group. (A) Body weight was measured daily.

Mean + SEM indicated. Nasal turbinate (B), cranial lung (C), and caudal lung (D) viral titers were measured at 3 d p.i. by plaque assay. Each symbol represents
an individual animal. Dotted line indicates limit of detection, titers below limit of detection are presented at limit of detection. *indicates p<0.05 compared to
isotype control group as determined by one-way ANOVA.

https://doi.org/10.1371/journal.ppat.1010691.9006

2002 and spread to five continents but no new cases have been detected since 2004. In 2012
MERS-CoV emerged in the Arabian Peninsula and continues to circulate today. SARS-CoV-2
has caused the most infections and deaths worldwide, new variants pose the risk of evading the
immune system even in vaccinated and previously infected individuals, and there remains the
potential for other genetically distinct CoV to emerge as new pandemic strains in the future.
For these reasons, finding new therapeutic and prophylactic drugs, and vaccine strategies that
have universal activity against CoV is essential for protecting humanity.

In SARS-CoV-2 infection, the RBD is immunodominant, having several antigenic sites that
account for 90% of the neutralizing activity of convalescent plasma [24]. Unfortunately, B-CoV
cross-reactive Spike S1/RBD neutralizing antibodies are rare and most S1/RBD mAbs have a
very narrow specificity. The Spike protein S2 domain is more highly conserved across p-CoV,
and here we have identified several hmAbs from convalescent patients that are highly cross
reactive for all variants of SARS-CoV-2 tested. Further, four of these hmAbs also showed cross
reactivity to SARS-CoV and MERS-CoV, with 1249A8 hmAb also effectively neutralizing
SARS-CoV and MERS-CoV and mitigating SARS-CoV-2 and SARS-CoV infection in animals.

A few S2-specific hmAbs with broad activity have been reported in the literature, and we
have included them where possible for comparison in our in vitro assessments of 1249A8.
1249A8 is distinct from CV3-25 in its more potent neutralization of SARS-CoV-2 WA-1 con-
sistent with its more potent protection from weight loss and death in K18 hACE2 mice [25],
increased binding to OC43 and HKU-1 §, and its ability to bind and neutralize MERS-CoV
[26]. 1249A8 is distinct from S2P6 in its higher affinity for SARS-CoV-2 S and MERS-CoV S,
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Fig 7. Therapeutic activity of intranasal 1249A8 and 1213H7 in hamsters infected with SARS-CoV. Golden Syrian hamsters were infected i.n. with 10* pfu
SARS-CoV (SARS-Urbani) and 12 h p.i. treated i.n. with a single dose of indicated mAb(s). n = 4-8 per group. (A) Body weight was measured daily.

Mean + SEM indicated. (B) Oropharyngeal swabs were collected days 1, 2, and 3 p.i. and sum of daily virus titer for each animal indicated. Nasal turbinate (C),
cranial lung (C), and caudal lung (E) viral titers were measured at 3 d p.i. by plaque assay. Each symbol represents an individual animal. *indicates p<0.05
compared to isotype control group as determined by one-way ANOVA.

https://doi.org/10.1371/journal.ppat.1010691.9007

increased binding to HKU-1 S2, and ability to significantly prevent viral burden from SARS-
CoV-2 Beta VoC infection [21]. 1249A8 is distinct from CC40.8 in its ability to bind MERS-
CoV S [19]. Together these findings suggest that 1249A8 is a uniquely broad and potent S2
hmADbD that universally recognizes all human B-CoV. 1213H7 demonstrated remarkable
breadth for an RBD-specific hmAb in its ability to neutralize all SARS-CoV-2 variants tested
including recent Omicron VoC, which evaded many of the hmAbs that were being used clini-
cally for treating COVID-19 [27]. This suggests that 1213H?7 is well suited for the S1 targeting
component of an S1/S2 hmAb cocktail for the treatment and prevention of SARS-CoV-2.

Our results suggest that 1249A8 recognizes a yet undefined epitope within stem-helix/HR2
region of S2, and crystallography efforts to precise determine the epitope are ongoing. The
ability of 1249A8 to directly neutralize B-CoV infection in vitro suggests its binding directly
inhibits the post-attachment fusion process, however it remains to be determined at which
step(s) such as fusion peptide insertion or 6-helix bundle formation it acts to prevent success-
ful membrane fusion. Finer resolution of the mechanisms of S2 Ab mediated direct inhibition
of fusion, and resolution of S2 epitope dynamics in native conformations is needed to ade-
quately identify key B-CoV vulnerabilities.

Although direct inhibition of the viral attachment or fusion is most desired for the anti-
viral activities of Abs, through Fc fragment engagement, antibodies which may not neces-
sarily bind to neutralizing motifs on infected cells can contribute to overall viral clearance.
Antibodies against the S2 portion of the S protein tend to be of lower neutralizing potency
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than antibodies targeting either the NTD or RBD, so Fc effector function may be of greater
importance overall to the S2 Ab response. Although we demonstrated that 1249A8 (as well
as others) has ADCP activity against SARS-CoV-2 and MERS-CoV, we do not know to
what extent effector function plays in viral clearance. To limit effector function, Ullah et al.
[25] introduced the LALA mutation into CV3-25 and found an increase in viral replication,
invasion of the brain and body weight loss, while the GASDALIE mutation, which increases
Fc effector function, decreased viral dissemination, provided 100% protection, leading to
transient body weight loss, decreased viral titers and inflammatory cytokines. Likewise,
when S2P6 was expressed as a hamster IgG because human IgG activates Fc receptors
poorly in the hamster infection model, Pinto et al. [21] found that the hybrid mAb reduced
replicating viral titers to a greater degree than the human counterpart. This context suggests
that the Fc-effector function of 1249A8 may contribute to in vivo viral clearance and war-
rants definitive assessment.

The substantial somatic hypermutation that is observed in 1249A8 including 16.7% VH
and 13.5% Vx amino acid mutation from germline is higher than would be expected after a
primary viral infection. Given its cross-reactivity with seasonal CoV OC43 and HKU-1 sug-
gests that 1249A8 arose from a pre-existing memory B cell that was present in this individual
prior to SARS-CoV-2 infection, with this lineage likely originating as a naive B cell responding
to a seasonal B-CoV infection that was expanded further as a consequence of SARS-CoV-2
infection. Given the sequence conservation in S2 among B-CoV, and in light of recent work by
Pinto et al., demonstrating S2P6 likely arose from an OC43-specific naive B cell [21], it
remains to be determined if there are constraints in the development of de novo S2 memory B
cells and Ab responses following SARS-CoV-2 primary infection or vaccination. Determining
whether such constraints are a consequence of a lifetime of seasonal B-CoV imprinting or lim-
ited immunogenicity of de novo SARS-CoV-2 S2 epitopes will be fundamental for developing
universal S2-based CoV vaccines that robustly and reproducibly confer protection in humani-
ties landscape of variable CoV pre-existing immunity.

CoV utilize a variety of host receptors to gain entry, infect, and disseminate. The seasonal
CoV including B-CoV OC43 and HKU1 infect through S1 binding to ubiquitous 9-O-acetyl
sialic acid residues on host glycoproteins and lipids, o-CoV 229E utilizes S1 binding to amino-
peptidase N (CD13), and a-CoV NL63 entry using both ACE2 and heparin sulfate proteogly-
cans; and B-CoV MERS-CoV uses dipeptidyl peptidase 4 (DPP4). Amongst the CoV,
including B-CoV OC43 and HKUI, the precise binding sites for attachment receptors has still
not been conclusively defined [28-30], suggesting possible heterogeneity or fluidity in the evo-
lution of CoV as they adapt to humans. Although SARS-CoV-2 RBD binds with high affinity
to ACE2, facilitating attachment to host cell and ultimate infection, and to date SARS-CoV-2
entry and pathology appears highly dependent on ACE2, some reports have described
ACE2-independent SARS-CoV-2 infection in vitro. This has included acquisition of the ability
for heparin sulfate mediated infection of an ACE2-negative human lung epithelial as a result of
the E484D mutation in the RBD [31], indeed in vitro evolution of SARS-CoV-2 to higher
infectivity through more efficient binding to heparin sulfate has been reported [32], and in
vivo reduction of intestinal ACE2 expression did not impact SARS-CoV-2 infection or severity
[33], further suggesting the contribution of other cellular entry mechanisms. Several other
receptors have been reported to facilitate ACE2-independent SARS-CoV-2 infection, includ-
ing the tyrosine-protein kinase receptor UFO (AXL) [34], LDLRAD3, and CLEC4G [35].
While it is almost certain that the current SARS-CoV-2 VoC ravaging humanity are highly
dependent on ACE2, as the high level of viral burden among the world’s population continues,
increasingly in people with pre-existing Abs to SARS-CoV-2 through prior infection or
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vaccination, S2 hmAbs may provide protection against possible future variations in attach-
ment receptor utilization by CoV.

Numerous SARS-CoV-2 RBD specific hmAbs have been approved for clinical use, and
unfortunately several became irrelevant with their inability to neutralize VoC, including Omi-
cron, highlighting the perilous future of RBD only based mAb therapeutics against CoV. The
ability of 1249A8 given as a single dose to mitigate SARS-CoV-2 pathology and viral burden
against all VoC tested when used either prophylactically or therapeutically, along with the
added benefit of combining with a broad and potent RBD-specific hmAb substantiate its clini-
cal potential. Further we demonstrated that direct respiratory delivery of hmAb results in
potent in vivo activity, consistent with our and others previous finding of its more rapid and
efficient distribution of mAb to the airways compared to systemic administration [18,36]. The
demonstrated activity of 1249A8 against all B-CoV further highlights its clinical potential
against future SARS-CoV-2 VoCs, novel B-CoVs, as well as seasonal f-CoV. A limitation of
this study was the minimal evaluation of Fc-effector function of S2 mAbs, which may be par-
ticularly important for those that lack direct neutralizing activity. Another limitation was only
modest testing of differing in vivo mAb doses. Clinically used SARS-CoV-2 hmAbs which tar-
get RBD and may be inherently more potent than S2 mAbs, are given ~5-20 mg/kg, while
most of the experiments here were conducted at 40 mg/kg of 1249A8, although therapeutic
activity against SARS-CoV-2 Delta and SARS-CoV was evident at 8 mg/kg. Additional testing
of S2 mAb dosing, particularly via direct respiratory administration would likely further dis-
cern their clinical potential. With recent advances in half-life extension of clinical mAbs, for-
mulations as stabilized dry-powder, and easy inhaled delivery; a 1249A8 and 1213H7 hmAb or
similar S2 and S1 hmAb cocktail could have substantial clinical potential for 3-CoV prevention
and treatment. Additionally, such a prophylactic cocktail may be beneficial for immunocom-
promised populations that do not mount strong durable responses to current COVID-19 vac-
cines. The increasing availability of oral SARS-CoV-2 antivirals such as nirmatrelvir/ritonavir
(paxlovid) and molnupiravir are anticipated to significantly reduce SARS-CoV-2 hospitaliza-
tions and severe infections and ultimate health care burdens of the current pandemic. Their
requirements for multiple doses, short half-life, and unknown potential for occurrence of resis-
tant viruses may limit some aspects of their clinical utility. Further, a long-acting inhaled
1249A8 and 1213H7 cocktail may be an advantageous manner of passive immunization for
the substantial population that remains vaccine hesitant and those that are severely
immunocompromised.

Overall, we describe a potent pan-B-CoV neutralizing S2 specific human mAb, 1249A8,
and demonstrated its remarkable in vivo activity in multiple animal models against multiple
SARS-CoV-2 VoC and SARS-CoV. We further demonstrate the clear clinical potential of
1249A8 including in combination with a potent SARS-CoV-2 RBD-specific hmAb, 1213H7,
and value direct respiratory delivery. Its occurrence indicates that universal f-CoV neutraliz-
ing hmAbs that mitigate all B-CoVs including seasonal OC43 and HKU1 can be induced and
suggests further studies of such mAbs can critically inform universal CoV vaccine
development.

Materials and methods
Ethics statement

All procedures and methods involving human samples were approved by the Institutional
Review Board for Human Use at the University of Alabama at Birmingham (IRB-160125005).
Written or oral informed consent was obtained from the participants. All experiments were
performed in accordance with relevant guidelines and regulations.
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Human subjects, sample collection, and B cell isolation

Peripheral blood was collected at the University of Alabama at Birmingham from adult conva-
lescent patients approximately 1 month following PCR confirmed infection with SARS-CoV-
2. Peripheral blood mononuclear cells (PBMC) were isolated by density gradient
centrifugation and cryopreserved. S2-STBL and a SARS-CoV-1 / SARS-CoV-2 chimera (S1/
S2) were used to generate tetramers for B-cell isolation. S2-STBL consists of the SARS-CoV-2
amino acid sequence (Wuhan-1) residues 696-1211, with mutations Q774C, L864C, S884C,
A893C, K986P, and V987P. The prefusion S1S2 chimera contains SARS-CoV-1 S residues 13-
634 (uniprot P59594) and SARS-CoV-2 Wuhan-1 (PODTC2) S residues 635-1211. The S1S2
sequence contains mutations R682S, R683-A, K986P, and V987P. The C-termini of both pro-
teins contain C-terminal T4 fibritin trimerization domains, his8 tags and biotinylation tags.
The proteins were expressed in insect cells and purified by nickel affinity chromatography.
The proteins were confirmed to have the correct sizes by Western blot and presence of SARS-
CoV-1 S1 by ELISA. The purified proteins were biotinylated using biotin ligase (BIRA, https://
www.avidity.com/) and then used to form S2-STBL and S1S2 streptavidin tetramers for B cell
isolation experiments. Cryopreserved cells were thawed and then stained for flow cytometry
similar as previously described [18], using anti- CD19-APC-Cy7 (SJ25C1, BD Biosciences),
HIV gp140-AlexaFluor488, S2-STBL-BV421, S1/52 chimera-AlexaFluor647, CD3-BV510
(OKT3, Biolegend), CD4-BV510 (HI30, Biolegend), CD14-BV510 (63D3, Biolegend),
CD27-PE (CLB-27/1,Life Technologies), Annexin V-PerCP-Cy5.5 (Biolegend), SA-BV421
(Biolegend), SA-AlexaFluor647 (Biolegend), and Live/Dead aqua (Molecular Probes).

Biosafety

All in vitro and in vivo experiments with live SARS-CoV-2, SARS-CoV, and MERS-CoV were
conducted in appropriate biosafety level (BSL) 3 and animal BSL3 (ABSL3) laboratories at
Texas Biomedical Research Institute and Colorado State University. Experiments were
approved by the Texas Biomedical Research Institute and Colorado State University Biosafety
and Animal Care and Use (IACUC) committees.

Monoclonal antibody production

Single B cells were sorted using a FACSMelody (BD Biosciences) into 96-well PCR plates con-
taining 4 pl of lysis buffer as previously described [37]. Plates were immediately frozen at
—80°C after sorting until thawed for reverse transcription and nested PCR performed for IgH,
Igh, and Igx variable gene transcripts as previously described [37,38]. Paired heavy and light
chain genes were cloned into IgG1 expression vectors and were transfected into HEK293T
cells and culture supernatant was concentrated using 100,000 MWCO Amicon Ultra centrifu-
gal filters (Millipore-Sigma, Cork, Ireland), and IgG captured and eluted from Magne Protein
A beads (Promega, Madison, WI) as previously described [37,38]. Inmunoglobulin sequences
were analyzed by IgBlast (www.ncbi.nlm.nih.gov/igblast) and IMGT/V-QUEST (http://www.
imgt.org/IMGT_vquest/vquest) to determine which sequences should lead to productive
immunoglobulin, to identify the germline V(D)] gene segments with the highest identity, and
to scrutinize sequence properties. CV3-25, S2P6, and CC40.8 were previously described [19-
21] and heavy and light chain variable regions synthesized by IDT based on reported
sequences (GenBank: MW681575.1, GenBank: MW681603.1 and [21]) and cloned into IgG1
expression vector for production in HEK293T cell. 1249A8 hmAD used for in vivo experiments
was modified to increase half-life with M252Y/S254T/T256E (YTE) mutations [39].
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Cells and viruses

African green monkey kidney epithelial cells (Vero E6, CRL-1586) were obtained from the
American Type Culture Collection. A Vero E6 cell line expressing human ACE2 and
TMPRSS2 (Vero AT) was obtained from BEI Resources (NR-54970). Cells were maintained in
Dulbecco’s modified Eagle medium (DMEM) supplemented with 5% (vol/vol) fetal bovine
serum (FBS, VWR) and 1% penicillin—streptomycin—glutamine (PSG) solution (Corning).
SARS-CoV-2 WA-1 (NR-52281), SARS-CoV-2 Beta (NR-54008), SARS-CoV-2 Gamma (NR-
54982), SARS-CoV-2 Delta (NR-55611), and SARS-CoV-2 Omicron (NR-56461); SARS-CoV,
Urbani strain icSARS-CoV (NR-18925); and MERS-CoV, icMERS-CoV-RFP-AORF5 (NR-
48813) were obtained from BEI Resources. SARS-CoV-2 Epsilon was kindly provided by Dr.
Charles Chiu, UCSF. The recombinant reporter-expressing SARS-CoV-2 were generated pre-
viously [23,40]. All natural isolate and recombinant SARS-CoV-2 viral stocks were completely
sequenced as previously described [23,40-45].

Binding characterization

ELISA plates (Nunc MaxiSorp; Thermo Fisher Scientific, Grand Island, NY) were coated with
recombinant CoV proteins at 1 pg/ml. Recombinant proteins used include SARS-CoV-2 S2
(40590-V08B), SARS-CoV-2 S1 (40591-V08H3), SARS-CoV-2 S1+S2 (40589-V08B1), MERS-
CoV §2 (40070-V08), OC43 S2 (40607-V08B1), HKU1 S2 (40021-V08B) (Sino Biological,
Wayne, PA), and SARS-CoV S (BEI Resources). Human plasma or purified hmAbs were
diluted in PBS, and binding was detected with HRP-conjugated anti-human IgG (Jackson
ImmunoResearch, West Grove, PA). In select ELISAs, 8M urea were added to the ELISA plate
and the plates incubated for 15 min at room temperature prior to washing with PBS plus
0.05% Tween20 and detection with anti-IgG-HRP to evaluate avidity. Immunofluorescence
assay was used to determine hmAb binding to SARS-CoV-2, SARS-CoV, or MERS-CoV
infected cells. Briefly, confluent monolayers of Vero E6 cells were mock infected or infected
with the indicated virus. At 24 hours post infection (hpi), cells were fixed with 4%
paraformaldehyde (PFA) for 30 minutes and permeabilized with 0.5% Triton X-100-PBS for
15 min at room temperature, and blocked with 2.5% Bovine Serum Albumin at 37°C for 1 h.
Cells were then incubated for 1 h at 37°C with 1 pg/ml of indicated hmAb. Then, cells were
incubated with fluorescein isothiocyanate (FITC)-conjugated secondary anti-human Ab
(Dako) for 1 h at 37°C. Images were captured using a fluorescence microscope and camera
with a 10X objective.

Bio-layer interferometry (BLI)

Experiments for BLI were performed on a Gator Prime instrument at 30°C with shaking at
400-1000 rpm. All loading steps were 300s, followed by a 60s baseline in KB buffer (1X PBS,
0.002% Tween 20, and 0.02% BSA, pH 7.4), and then a 300s association phase and a 300s disso-
ciation phase in K buffer. For the binding BLI experiments, mAbs were loaded at a concentra-
tion of 0.5 pug/mL in PBS onto Anti-Human IgG Fc capture (HFc) biosensors for a shift of 0.3
nm. After baseline, probes were dipped into five two-fold serial dilutions of Spike protein from
SARS-CoV-2, SARS-CoV, or MERS (all from Acro Biosystems, Newark, DE) starting at 50
nM and a 0 nM for the association phase.

Surface plasmon resonance (SPR)

SPR experiments were performed on a Biacore T200 (Cytiva) at 25°C using a running buffer
consisting of 10mM HEPES, 150mM NaCl, 0.0075% P20. Competition SPR studies were
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performed by coupling S2-Frag4-murineFC protein to a CM-5 chip using a murine antibody
capture kit (cytiva). Simultaneous injections (inject 1, inject 2) of hmAbs were performed at
50nM each for 200 seconds at 20 pL/min. Binding responses were measured 60 seconds after
inject 1 and inject 2. Raw hmAb sensorgram binding data (RU) collected during inject 1 were
normalized to the amount of S2-Frag4-murineFC coupled (rubind/ rucoupled) and defined as
100%. Raw RU hmAb binding after inject 2 was normalized as described above and defined as
a percentage of hmAD binding recorded after inject 1. Kinetic binding analysis for 1249A8,
CC40.8, S2P6, and CV3-25 were performed by capturing the hmAbs to the chip surface of
CM-5 chips using a human antibody capture kit (cytiva). The binding kinetics for the interac-
tion between hmAbs and SARS-CoV-2 Spike protein (R&D Systems, 10549-cv) was deter-
mined by injecting four concentrations of SARS-CoV-2 Spike (25 nM highest concentration)
with a contact time of 240 seconds and a 300 second dissociation phase. The same parameters
were used to characterize MERS-CoV S2 (Sino Biologicals, 40070-V08) binding to the hmAbs.
All SPR experiments were double referenced (e.g., sensorgram data was subtracted from a con-
trol surface and from a buffer blank injection). The control surface for all experiments con-
sisted of the capture antibody. Sensorgrams were globally fit to a 1:1 model, without a bulk
index correction, using Biacore T-200 evaluation software version 1.0.

CoV neutralization

hmAbs were tested for neutralization of live SARS-CoV-2, SARS-CoV, and MERS-CoV as previ-
ously described [46]. Vero E6 cells (96-well plate format, 4 x 10* cells/well, quadruplicate) were
infected with 100-200 PFU/well of SARS-CoV-2. SARS-CoV-2 Omicron neutralization was per-
formed in Vero AT using 600 PFU/well. After 1 h of viral adsorption, the infection media was
changed with the 100 pl of post-infection media containing 1% Avicel and 2-fold dilutions, start-
ing at 25 pug/ml of hmAb (or 1:100 dilution for human serum control). At 24 h p.i,, infected cells
were fixed with 10% neutral formalin for 24 h and were immune-stained using the anti-NP
monoclonal antibody 1C7C7 [46]. Virus neutralization was evaluated using 3-4 replicates per
mADb concentration and quantified using ELISPOT, and the percentage of infectivity calculated
using sigmoidal dose response curves. The formula to calculate percent viral infection for each
concentration is given as [(Average # of plaques from each treated wells-average # of plaques
from “no virus” wells)/(average # of plaques from “virus only” wells—average # of plaques from
“no virus” wells)] x 100. A non-linear regression curve fit analysis over the dilution curve can be
performed using GraphPad Prism to calculate N'Tso Mock-infected cells and viruses in the
absence of hmAb were used as internal controls. hmAbs were also tested using a SARS-CoV-2
Spike protein pseudotyped virus (PsV) expressing firefly luciferase. Virus neutralization was mea-
sured by the reduction of luciferase expression. VeroE6/TMPRSS2 cells were seeded at 2 x 10*
cells/well in opaque plates (Greiner 655083). The next day, PsV corresponding to 1-10 x 10°
luciferase units was mixed in Opti-MEM with dilutions of hmAbs and incubated at RT for 1 h.
Media was removed from the cells and 100 pl/well of the hmAb/PsV mix was added in triplicates.
After 1 h incubation at 37°C and 5% CO,, another 100 uL of Opti-MEM was added, and cells
were incubated for 24 more hours. After this time, luciferase activity was measured using Passive
Lysis Buffer (Promega E1941) and Luciferase substrate (Promega E151A) following the manufac-
turer’s instructions. Neutralization was calculated as the percent reduction of luciferase readings
as compared to no-antibody-controls.

Antibody-dependent cellular phagocytosis (ADCP) assay

ADCEP activity of the mAbs was measured as previously described [38,47] with slight modifica-
tions. Briefly, SARS-CoV-2 Wuhan-Hu-1 Spike protein (NR-53524 BEI Resources) or
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MERS-CoV Spike protein (Sino Biological) was biotinylated with the Biotin-XX Microscale
Protein Labeling Kit (Life Technologies, NY, USA). 0.25 pg of biotinylated Ag or ~0.16 pg of
BSA (used as a baseline control in an equivalent number of Ag molecules / bead) was incu-
bated overnight at 4°C with 1.8 x10° Yellow-Green neutravidin-fluorescent beads (Life Tech-
nologies) per reaction in a 25 uL of final volume. Antigen-coated beads were subsequently
washed twice in PBS-BSA (0.1%) and transferred to a 5 mL Falcon round bottom tube
(Thermo Fisher Scientific, NY, USA). mAbs, diluted at 5 pug/ml, were added to each tube in a
20 pL of reaction volume and incubated for a 2 h at 37°C in order to allow Ag-Ab binding.
Then 250,000 THP-1 cells (human monocytic cell line obtained from NIH AIDS Reagent Pro-
gram) were added to the cells and incubated for 3 h at 37°C. At the end of incubation, 100 uL
4% paraformaldehyde was added to fix the samples. Cells were then assayed for fluorescent
bead uptake by flow cytometry using a BD Biosciences Symphony. The phagocytic score of
each sample was calculated by multiplying the percentage of bead positive cells (frequency) by
the degree of phagocytosis measured as mean fluorescence intensity (MFI) and dividing by
10°. Values were normalized to background values (cells and beads without mAb) and an iso-
type control to ensure consistency in values obtained on different assays. Finally, the phago-
cytic score of the testing mAb was expressed as the fold increase over BSA-coated beads.

K18 hACE2 transgenic mice experiments

All animal protocols involving K18 hACE2 transgenic mice were approved by the Texas Bio-
medical Research Institute IACUC (1718MU). Five-week-old female K18 hACE2 transgenic
mice were purchased from The Jackson Laboratory and maintained in the animal facility at
Texas Biomedical Research Institute under specific pathogen-free conditions and ABSL3 con-
tainment. Mice were treated with a single dose of mAb delivered either i.p. or i.n. 1 day prior
to viral challenge. For virus infection, mice were anesthetized following gaseous sedation in an
isoflurane chamber and inoculated with viral dose of 10° PFU per mouse, intranasally. For ex
vivo imaging of lungs, mice were humanely euthanized at 2 and 4 d p.i. to collect lungs. Fluo-
rescent images of lungs were photographed using an IVIS (AMI HTX), and the brightfield
images of lungs were taken using an iPhone 6s (Apple). Nasal turbinate and lungs from mock
or infected animals were homogenized in 1 mL of PBS for 20 s at 7,000 rpm using a Precellys
tissue homogenizer (Bertin Instruments). Tissue homogenates were centrifuged at 12,000 x g
(4°C) for 5 min, and supernatants were collected and titrated by plaque assay and immunos-
taining as previously described. For the body weight and survival studies, five-week-old female
K18 hACE2 transgenic mice were infected intranasally with 10° PFU per animal following gas-
eous sedation in an isoflurane chamber. After infection, mice were monitored daily for mor-
bidity (body weight) and mortality (survival rate) for 11 d. Mice showing a loss of more than
25% of their initial body weight were defined as reaching the experimental end point and
humanely euthanized. K18 hACE2 transgenic mice experiments were conducted once.

Golden Syrian hamster experiments

Experiments using Syrian hamsters were approved for use by the Colorado State University
IACUC. For each experiment, forty female Syrian hamsters (Envigo Corporation, Indianapo-
lis, IN, USA) were housed in ventilated cages in separate rooms under ABSL3 containment.
They were acclimated for 7-14 days after arrival and inoculated with virus at 6 weeks of age.
Animals were challenged with virus under ketamine-xylazine anesthesia by intranasal instilla-
tion of 100 ul of virus diluted in PBS to achieve a dose of 10* cell culture infectious dose 50%
(CCIDsg) ((rSARS-CoV-2 Delta B.1.617.2 (hCoV-19/USA/CA-VRLC086/2021) BEI Resources
(Manassas, VA, USA) or plaque-forming units (SARS-CoV, Urbani Strain; BEI Resources);

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010691  July 21, 2022 20/25


https://doi.org/10.1371/journal.ppat.1010691

PLOS PATHOGENS

Universal beta-coronavirus S2 monoclonal antibody

the inocula were back-titrated after completion of the challenge to confirm dose delivered.
Antibody therapies were administered as summarized in Figs 6 and 7 at 12 hours following
virus inoculation, again under ketamine-xylazine anesthesia and by intranasal instillation of
100 ul. Oropharyngeal swabs were collected daily from all hamsters on days 1, 2 and 3 post-
virus inoculation. Swabs were broken off into 1 ml of BA1 medium (Tris-buffered minimal
essential medium containing 1% BSA) supplemented with 5% fetal bovine serum (BA1-FBS)
and stored at -80°C until assay. Half of the hamsters inoculated with virus were euthanized on
day 3 and half on day 7 post-challenge. For the animals euthanized on day 3, samples of nasal
turbinates and cranial and caudal right lung were homogenized in BA1-FBS using a mixer mill
and stainless-steel balls to obtain ~10% tissue homogenates. Infectious virus in tissue homoge-
nates and oropharyngeal swabs was titrated by double-overlay plaque assay. Briefly, 10-fold
serial dilutions of samples were prepared in BA1 medium with antibiotics, inoculated onto
confluent monolayers of Vero cells in 6-well plates, incubated with rocking for 45 minutes,
and then overlaid with 0.5% agarose in phenol-red free MEM supplemented with antibiotics.
Plates were incubated for one (SARS CoV) or two (SARS-CoV-2) days and second overlay
containing neutral red dye was added. Plaques were counted 1 day after the second overlay.
The limit of detection for this assay was 10 PFU/swab and 100 PFU/gram of tissue. For each
animal, the viral titer from their D1, D2, and D3 oropharyngeal swabs was combined to pro-
vide a summed value. Golden Syrian hamster experiments were conducted once.

Statistical analysis

Significance was determined using GraphPad Prism, v8.0. One way analysis of variance
(ANOVA) with Bonferroni’s multiple comparisons test was applied for evaluation of the
results between treatments. Significance was declared at p<0.05. For statistical analysis viral
titers were log transformed and undetectable virus was set to the limit of detection.

Supporting information

S1 Fig. Neutralization of live SARS-CoV-2. Vero E6 cells were infected with SARS-CoV-2
WA-1 (A) or SARS-CoV-2 Delta (B), and 1 hour after viral adsorption mAb was added at indi-
cated concentrations in triplicate. At 24 h p.i. cells were fixed, stained with anti-NP mAb
1C7C7 and quantified using ELISPOT.

(TIF)

S2 Fig. Comparison of pre- and post- mAb treatment in neutralization assay. For pre-treat-
ment (top), 100 PFU/well of SARS-CoV-2 WA-1 containing indicated concentrations of
mAbs were mixed and incubated for 1h. Vero HL cells were infected with virus-mAb mixture
as virus adsorption for 1h, followed by changing media. For post-treatment (bottom), Vero
HL cells were infected with 100 PFU/well of SARS-CoV-2 WA-1. After 1 h of viral adsorption,
the media was changed with indicated concentrations of mAb. At 24 h p.i., infected cells were
fixed, immunostained using anti-NP mAb 1C7C7, and quantified using ELISPOT.

(TIF)

S3 Fig. Analysis of 1249A8 binding to CoV Spikes. 1249A8 was tested at indicated concen-
trations by ELISA for binding to indicated Spike proteins.
(TIF)

$4 Fig. Surface Plasmon Resonance Binding. Using a Biacore T200, mAbs were immobilized
and the binding kinetics for the interaction between mAbs and Spike protein was determined
by injecting four concentrations of SARS-CoV-2 S1S2 (top) or MERS-CoV S2 (bottom).

(TIF)
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S5 Fig. Neutralization of SARS-CoV-2 WA-1 by combined 1213H7 and 1249A8. Vero AT
cells were infected with SARS-CoV-2 WA-1 and after 1 h of viral adsorption, the indicated
mAD(s) was added and at 24 h.p.i infected cells were fixed for virus titration by immunostain-
ing assay. 1213H7 and 1249A8 were tested alone (open symbols) and together keeping 1213H7
constant (C) (50 ng/ml) or 1249A8 constant (2 pg/ml) and titrating the reciprocal mAb (closed
symbols). Resulting NTs, (ng/ml) are indicated.

(TIF)

Acknowledgments

We are grateful for the clinical research staff that enabled this project and for the technical
assistance provided by Christopher Bates, the technical guidance provided by Justin Roth, the
virology expertise provided by Ilya Frolov, and the assistance of the University of Alabama at
Birmingham (UAB) Center for AIDS Research and its Flow Cytometry Core Facility under the
direction of Olaf Kutsch and the UAB Multidisciplinary Molecular Interaction Core Facility
under the direction of Randall Davis. We thank Alexander Rosenberg and Christopher Fucile
for providing immunoglobulin sequence analysis software. We thank Rachel Maison and Airn
Hartwig for valuable assistance in conducting the hamster experiments. We thank BEI
Resources for reagents provided. We are most grateful for the participation of the study
volunteers.

Author Contributions

Conceptualization: Jennifer Woo, Philip Lovalenti, Vu L. Truong, Richard A. Bowen, Mark
R. Walter, Luis Martinez-Sobrido, James J. Kobie.

Investigation: Michael S. Piepenbrink, Jun-Gyu Park, Ashlesha Deshpande, Andreas Loos,
Chengjin Ye, Madhubanti Basu, Sanghita Sarkar, Ahmed Magdy Khalil, David Chauvin,
Richard A. Bowen, Mark R. Walter, Luis Martinez-Sobrido, James J. Kobie.

Resources: Nathaniel B. Erdmann, Paul A. Goepfert.

Supervision: Vu L. Truong, Richard A. Bowen, Mark R. Walter, Luis Martinez-Sobrido, James
]. Kobie.

Writing - original draft: Michael S. Piepenbrink, Vu L. Truong, Richard A. Bowen, Mark R.
Walter, Luis Martinez-Sobrido, James J. Kobie.

Writing - review & editing: Michael S. Piepenbrink, Ashlesha Deshpande, Andreas Loos,
Chengjin Ye, Madhubanti Basu, Sanghita Sarkar, Ahmed Magdy Khalil, David Chauvin,
Jennifer Woo, Philip Lovalenti, Nathaniel B. Erdmann, Paul A. Goepfert, Vu L. Truong,
Richard A. Bowen, Mark R. Walter, Luis Martinez-Sobrido, James J. Kobie.

References

1. FocosiD, Maggi F, Franchini M, McConnell S, Casadevall A. Analysis of Immune Escape Variants from
Antibody-Based Therapeutics against COVID-19: A Systematic Review. Int J Mol Sci. 2021; 23(1).
Epub 20211221. https://doi.org/10.3390/ijms23010029 PMID: 35008446.

2. Cele S, Jackson L, Khoury DS, Khan K, Moyo-Gwete T, Tegally H, et al. Omicron extensively but
incompletely escapes Pfizer BNT162b2 neutralization. Nature. 2021. Epub 20211223. https://doi.org/
10.1038/s41586-021-04387-1 PMID: 35016196.

3. Papanikolaou V, Chrysovergis A, Ragos V, Tsiambas E, Katsinis S, Manoli A, et al. From delta to Omi-
cron: S1-RBD/S2 mutation/deletion equilibrium in SARS-CoV-2 defined variants. Gene. 2022;

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010691  July 21, 2022 22/25


http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1010691.s005
https://doi.org/10.3390/ijms23010029
http://www.ncbi.nlm.nih.gov/pubmed/35008446
https://doi.org/10.1038/s41586-021-04387-1
https://doi.org/10.1038/s41586-021-04387-1
http://www.ncbi.nlm.nih.gov/pubmed/35016196
https://doi.org/10.1371/journal.ppat.1010691

PLOS PATHOGENS

Universal beta-coronavirus S2 monoclonal antibody

10.

11.

12.

13.

14.

15.

16.

17.

18.

814:146134. Epub 20220104. https://doi.org/10.1016/j.gene.2021.146134 PMID: 34990799; PubMed
Central PMCID: PMC8725615.

Thakur V, Bhola S, Thakur P, Patel SKS, Kulshrestha S, Ratho RK, et al. Waves and variants of SARS-
CoV-2: understanding the causes and effect of the COVID-19 catastrophe. Infection. 2021. Epub
20211216. https://doi.org/10.1007/s15010-021-01734-2 PMID: 34914036; PubMed Central PMCID:
PMC8675301.

Shah M, Woo HG. Omicron: A Heavily Mutated SARS-CoV-2 Variant Exhibits Stronger Binding to
ACEZ2 and Potently Escapes Approved COVID-19 Therapeutic Antibodies. Front Immunol. 2021;
12:830527. Epub 20220124. https://doi.org/10.3389/fimmu.2021.830527 PMID: 35140714; PubMed
Central PMCID: PMC8819067.

Wratil PR, Stern M, Priller A, Willmann A, Aimanzar G, Vogel E, et al. Three exposures to the spike pro-
tein of SARS-CoV-2 by either infection or vaccination elicit superior neutralizing immunity to all variants
of concern. Nat Med. 2022. Epub 20220128. https://doi.org/10.1038/s41591-022-01715-4 PMID:
35090165.

Ke Z, Oton J, Qu K, Cortese M, Zila V, McKeane L, et al. Structures and distributions of SARS-CoV-2
spike proteins on intact virions. Nature. 2020; 588(7838):498-502. Epub 20200817 . https://doi.org/10.
1038/s41586-020-2665-2 PMID: 32805734; PubMed Central PMCID: PMC7116492.

Hoffmann M, Kleine-Weber H, Pohimann S. A Multibasic Cleavage Site in the Spike Protein of SARS-
CoV-2 Is Essential for Infection of Human Lung Cells. Mol Cell. 2020; 78(4):779-84 e5. Epub
20200501. https://doi.org/10.1016/j.molcel.2020.04.022 PMID: 32362314; PubMed Central PMCID:
PMC7194065.

Bosch BJ, van der Zee R, de Haan CA, Rottier PJ. The coronavirus spike protein is a class | virus fusion
protein: structural and functional characterization of the fusion core complex. J Virol. 2003; 77
(16):8801—11. https://doi.org/10.1128/jvi.77.16.8801-8811.2003 PMID: 12885899; PubMed Central
PMCID: PMC167208.

Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol
Cell Biol. 2022; 23(1):3—20. Epub 20211005. https://doi.org/10.1038/s41580-021-00418-x PMID:
34611326; PubMed Central PMCID: PMC8491763.

Kaplonek P, Wang C, Bartsch Y, Fischinger S, Gorman MJ, Bowman K, et al. Early cross-coronavirus
reactive signatures of humoral immunity against COVID-19. Sci Immunol. 2021; 6(64):eabj2901. Epub
20211015. https://doi.org/10.1126/sciimmunol.abj2901 PMID: 34652962.

Crowley AR, Natarajan H, Hederman AP, Bobak CA, Weiner JA, Wieland-Alter W, et al. Boosting of
Cross-Reactive Antibodies to Endemic Coronaviruses by SARS-CoV-2 Infection but not Vaccination
with Stabilized Spike. medRxiv. 2021. Epub 20211028. https://doi.org/10.1101/2021.10.27.21265574
PMID: 34729565; PubMed Central PMCID: PMC8562549.

Pannus P, Neven KY, De Craeye S, Heyndrickx L, Vande Kerckhove S, Georges D, et al. Poor antibody
response to BioNTech/Pfizer COVID-19 vaccination in SARS-CoV-2 naive residents of nursing homes.
Clin Infect Dis. 2021. https://doi.org/10.1093/cid/ciab998 PMID: 34864935

Suryadevara N, Shiakolas AR, VanBlargan LA, Binshtein E, Chen RE, Case JB, et al. An antibody tar-
geting the N-terminal domain of SARS-CoV-2 disrupts the spike trimer. J Clin Invest. 2022. Epub
20220426. https://doi.org/10.1172/JCI1159062 PMID: 35472136.

Suryadevara N, Shrihari S, Gilchuk P, VanBlargan LA, Binshtein E, Zost SJ, et al. Neutralizing and pro-
tective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike pro-
tein. Cell. 2021; 184(9):2316-31 e15. Epub 20210316. https://doi.org/10.1016/j.cell.2021.03.029 PMID:
33773105; PubMed Central PMCID: PMC7962591.

Wang Z, Muecksch F, Cho A, Gaebler C, Hoffmann HH, Ramos V, et al. Analysis of memory B cells
identifies conserved neutralizing epitopes on the N-terminal domain of variant SARS-Cov-2 spike pro-
teins. Immunity. 2022. Epub 20220407. https://doi.org/10.1016/j.immuni.2022.04.003 PMID:
35447092; PubMed Central PMCID: PMC8986478.

Magyarics Z, Leslie F, Bartko J, Rouha H, Luperchio S, Schorgenhofer C, et al. Randomized, Double-
Blind, Placebo-Controlled, Single-Ascending-Dose Study of the Penetration of a Monoclonal Antibody
Combination (ASN100) Targeting Staphylococcus aureus Cytotoxins in the Lung Epithelial Lining Fluid
of Healthy Volunteers. Antimicrob Agents Chemother. 2019; 63(8). Epub 20190725. https://doi.org/10.
1128/AAC.00350-19 PMID: 31138568; PubMed Central PMCID: PMC6658777.

Piepenbrink MS, Park JG, Oladunni FS, Deshpande A, Basu M, Sarkar S, et al. Therapeutic activity of
an inhaled potent SARS-CoV-2 neutralizing human monoclonal antibody in hamsters. Cell Rep Med.
2021; 2(3):100218. Epub 2021/03/03. hitps://doi.org/10.1016/j.xcrm.2021.100218 PMID: 33649747;
PubMed Central PMCID: PMC7904445.

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010691  July 21, 2022 23/25


https://doi.org/10.1016/j.gene.2021.146134
http://www.ncbi.nlm.nih.gov/pubmed/34990799
https://doi.org/10.1007/s15010-021-01734-2
http://www.ncbi.nlm.nih.gov/pubmed/34914036
https://doi.org/10.3389/fimmu.2021.830527
http://www.ncbi.nlm.nih.gov/pubmed/35140714
https://doi.org/10.1038/s41591-022-01715-4
http://www.ncbi.nlm.nih.gov/pubmed/35090165
https://doi.org/10.1038/s41586-020-2665-2
https://doi.org/10.1038/s41586-020-2665-2
http://www.ncbi.nlm.nih.gov/pubmed/32805734
https://doi.org/10.1016/j.molcel.2020.04.022
http://www.ncbi.nlm.nih.gov/pubmed/32362314
https://doi.org/10.1128/jvi.77.16.8801-8811.2003
http://www.ncbi.nlm.nih.gov/pubmed/12885899
https://doi.org/10.1038/s41580-021-00418-x
http://www.ncbi.nlm.nih.gov/pubmed/34611326
https://doi.org/10.1126/sciimmunol.abj2901
http://www.ncbi.nlm.nih.gov/pubmed/34652962
https://doi.org/10.1101/2021.10.27.21265574
http://www.ncbi.nlm.nih.gov/pubmed/34729565
https://doi.org/10.1093/cid/ciab998
http://www.ncbi.nlm.nih.gov/pubmed/34864935
https://doi.org/10.1172/JCI159062
http://www.ncbi.nlm.nih.gov/pubmed/35472136
https://doi.org/10.1016/j.cell.2021.03.029
http://www.ncbi.nlm.nih.gov/pubmed/33773105
https://doi.org/10.1016/j.immuni.2022.04.003
http://www.ncbi.nlm.nih.gov/pubmed/35447092
https://doi.org/10.1128/AAC.00350-19
https://doi.org/10.1128/AAC.00350-19
http://www.ncbi.nlm.nih.gov/pubmed/31138568
https://doi.org/10.1016/j.xcrm.2021.100218
http://www.ncbi.nlm.nih.gov/pubmed/33649747
https://doi.org/10.1371/journal.ppat.1010691

PLOS PATHOGENS

Universal beta-coronavirus S2 monoclonal antibody

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Zhou P, Yuan M, Song G, Beutler N, Shaabani N, Huang D, et al. A protective broadly cross-reactive
human antibody defines a conserved site of vulnerability on beta-coronavirus spikes. bioRxiv. 2021.
https://doi.org/10.1101/2021.03.30.437769 Epub 20210331. PubMed Central PMCID: PMC8020973.

Jennewein MF, MacCamy AJ, Akins NR, Feng J, Homad LJ, Hurlburt NK, et al. Isolation and characteri-
zation of cross-neutralizing coronavirus antibodies from COVID-19+ subjects. Cell Rep. 2021; 36
(2):109353. Epub 20210622. https://doi.org/10.1016/j.celrep.2021.109353 PMID: 34237283; PubMed
Central PMCID: PMC8216847.

Pinto D, Sauer MM, Czudnochowski N, Low JS, Tortorici MA, Housley MP, et al. Broad betacoronavirus
neutralization by a stem helix-specific human antibody. Science. 2021; 373(6559):1109-16. Epub
20210806. https://doi.org/10.1126/science.abj3321 PMID: 34344823.

Deshpande A, Harris BD, Martinez-Sobrido L, Kobie JJ, Walter MR. Epitope Classification and RBD
Binding Properties of Neutralizing Antibodies Against SARS-CoV-2 Variants of Concern. Front Immu-
nol. 2021; 12:691715. Epub 20210604. https://doi.org/10.3389/fimmu.2021.691715 PMID: 34149735;
PubMed Central PMCID: PMC8212047.

Chiem K, Morales Vasquez D, Silvas JA, Park JG, Piepenbrink MS, Sourimant J, et al. A Bifluorescent-
Based Assay for the Identification of Neutralizing Antibodies against SARS-CoV-2 Variants of Concern
In Vitro and In Vivo. J Virol. 2021; 95(22):e0112621. Epub 20210908. https://doi.org/10.1128/JVI.
01126-21 PMID: 34495697; PubMed Central PMCID: PMC8549516.

Piccoli L, Park YJ, Tortorici MA, Czudnochowski N, Walls AC, Beltramello M, et al. Mapping Neutralizing
and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided
High-Resolution Serology. Cell. 2020; 183(4):1024—42 e21. Epub 20200916. https://doi.org/10.1016/j.
cell.2020.09.037 PMID: 32991844; PubMed Central PMCID: PMC7494283.

Ullah I, Prevost J, Ladinsky MS, Stone H, Lu M, Anand SP, et al. Live imaging of SARS-CoV-2 infection
in mice reveals that neutralizing antibodies require Fc function for optimal efficacy. Immunity. 2021; 54
(9):2143-58 e15. Epub 20210818. https://doi.org/10.1016/j.immuni.2021.08.015 PMID: 34453881;
PubMed Central PMCID: PMC8372518.

Hurlburt NK, Homad LJ, Sinha |, Jennewein MF, MacCamy AJ, Wan Y-H, et al. Structural definition of a
pan-sarbecovirus neutralizing epitope on the spike S2 subunit. bioRxiv. 2021:2021.08.02.454829.
https://doi.org/10.1101/2021.08.02.454829

Gruell H, Vanshylla K, Tober-Lau P, Hillus D, Schommers P, Lehmann C, et al. mMRNA booster immuni-
zation elicits potent neutralizing serum activity against the SARS-CoV-2 Omicron variant. Nat Med.
2022. Epub 20220119. https://doi.org/10.1038/s41591-021-01676-0 PMID: 35046572; PubMed Central
PMCID: PMC8767537.

Hulswit RJG, Lang Y, Bakkers MJG, Li W, Li Z, Schouten A, et al. Human coronaviruses OC43 and
HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain
A. Proc Natl Acad Sci U S A. 2019; 116(7):2681-90. Epub 20190124. https://doi.org/10.1073/pnas.
1809667116 PMID: 30679277; PubMed Central PMCID: PMC6377473.

Szczepanski A, Owczarek K, Bzowska M, Gula K, Drebot I, Ochman M, et al. Canine Respiratory Coro-
navirus, Bovine Coronavirus, and Human Coronavirus OC43: Receptors and Attachment Factors.
Viruses. 2019; 11(4). Epub 20190405. https://doi.org/10.3390/v11040328 PMID: 30959796; PubMed
Central PMCID: PMC6521053.

Ou X, Guan H, Qin B, Mu Z, Wojdyla JA, Wang M, et al. Crystal structure of the receptor binding domain
of the spike glycoprotein of human betacoronavirus HKU1. Nat Commun. 2017; 8:15216. Epub
20170523. https://doi.org/10.1038/ncomms 15216 PMID: 28534504; PubMed Central PMCID:
PMC5529671.

Puray-Chavez M, LaPak KM, Schrank TP, Elliott JL, Bhatt DP, Agajanian MJ, et al. Systematic analysis
of SARS-CoV-2 infection of an ACE2-negative human airway cell. bioRxiv. 2021. https://doi.org/10.
1101/2021.03.01.433431 Epub 20210301. PMID: 33688646; PubMed Central PMCID: PMC7941617.

Shiliaev N, Lukash T, Palchevska O, Crossman DK, Green TJ, Crowley MR, et al. Natural and Recom-
binant SARS-CoV-2 Isolates Rapidly Evolve In Vitro to Higher Infectivity through More Efficient Binding
to Heparan Sulfate and Reduced S1/S2 Cleavage. J Virol. 2021; 95(21):e0135721. Epub 20210818.
https://doi.org/10.1128/JV1.01357-21 PMID: 34406867; PubMed Central PMCID: PMC8513475.

Hsieh CL, Werner AP, Leist SR, Stevens LJ, Falconer E, Goldsmith JA, et al. Stabilized coronavirus
spike stem elicits a broadly protective antibody. Cell Rep. 2021; 37(5):109929. Epub 20211016. https:/
doi.org/10.1016/j.celrep.2021.109929 PMID: 34710354; PubMed Central PMCID: PMC8519809.

Wang S, QiuZ, Hou Y, Deng X, Xu W, Zheng T, et al. AXL is a candidate receptor for SARS-CoV-2 that
promotes infection of pulmonary and bronchial epithelial cells. Cell Res. 2021; 31(2):126—40. Epub
20210108. https://doi.org/10.1038/s41422-020-00460-y PMID: 33420426; PubMed Central PMCID:
PMC7791157.

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010691  July 21, 2022 24/25


https://doi.org/10.1101/2021.03.30.437769
https://doi.org/10.1016/j.celrep.2021.109353
http://www.ncbi.nlm.nih.gov/pubmed/34237283
https://doi.org/10.1126/science.abj3321
http://www.ncbi.nlm.nih.gov/pubmed/34344823
https://doi.org/10.3389/fimmu.2021.691715
http://www.ncbi.nlm.nih.gov/pubmed/34149735
https://doi.org/10.1128/JVI.01126-21
https://doi.org/10.1128/JVI.01126-21
http://www.ncbi.nlm.nih.gov/pubmed/34495697
https://doi.org/10.1016/j.cell.2020.09.037
https://doi.org/10.1016/j.cell.2020.09.037
http://www.ncbi.nlm.nih.gov/pubmed/32991844
https://doi.org/10.1016/j.immuni.2021.08.015
http://www.ncbi.nlm.nih.gov/pubmed/34453881
https://doi.org/10.1101/2021.08.02.454829
https://doi.org/10.1038/s41591-021-01676-0
http://www.ncbi.nlm.nih.gov/pubmed/35046572
https://doi.org/10.1073/pnas.1809667116
https://doi.org/10.1073/pnas.1809667116
http://www.ncbi.nlm.nih.gov/pubmed/30679277
https://doi.org/10.3390/v11040328
http://www.ncbi.nlm.nih.gov/pubmed/30959796
https://doi.org/10.1038/ncomms15216
http://www.ncbi.nlm.nih.gov/pubmed/28534504
https://doi.org/10.1101/2021.03.01.433431
https://doi.org/10.1101/2021.03.01.433431
http://www.ncbi.nlm.nih.gov/pubmed/33688646
https://doi.org/10.1128/JVI.01357-21
http://www.ncbi.nlm.nih.gov/pubmed/34406867
https://doi.org/10.1016/j.celrep.2021.109929
https://doi.org/10.1016/j.celrep.2021.109929
http://www.ncbi.nlm.nih.gov/pubmed/34710354
https://doi.org/10.1038/s41422-020-00460-y
http://www.ncbi.nlm.nih.gov/pubmed/33420426
https://doi.org/10.1371/journal.ppat.1010691

PLOS PATHOGENS

Universal beta-coronavirus S2 monoclonal antibody

35.

36.

37.

38.

39.

40.

M,

42,

43.

44,

45.

46.

47.

Zhu S, Liu'Y, Zhou Z, Zhang Z, Xiao X, Liu Z, et al. Genome-wide CRISPR activation screen identifies
candidate receptors for SARS-CoV-2 entry. Sci China Life Sci. 2021. Epub 20210820. https://doi.org/
10.1007/s11427-021-1990-5 PMID: 34431042; PubMed Central PMCID: PMC8384091.

Parray HA, Shukla S, Perween R, Khatri R, Shrivastava T, Singh V, et al. Inhalation monoclonal anti-
body therapy: a new way to treat and manage respiratory infections. Appl Microbiol Biotechnol. 2021;
105(16—-17):6315-32. Epub 20210823. https://doi.org/10.1007/s00253-021-11488-4 PMID: 34423407
PubMed Central PMCID: PMC8380517.

Nogales A, Piepenbrink MS, Wang J, Ortega S, Basu M, Fucile CF, et al. A Highly Potent and Broadly
Neutralizing H1 Influenza-Specific Human Monoclonal Antibody. Sci Rep. 2018; 8(1):4374. Epub 2018/
03/14. https://doi.org/10.1038/s41598-018-22307-8 PMID: 29531320; PubMed Central PMCID:
PMC5847613.

Basu M, Piepenbrink MS, Francois C, Roche F, Zheng B, Spencer DA, et al. Persistence of HIV-1 Env-
Specific Plasmablast Lineages in Plasma Cells after Vaccination in Humans. Cell Rep Med. 2020; 1(2).
Epub 2020/06/25. https://doi.org/10.1016/j.xcrm.2020.100015 PMID: 32577626; PubMed Central
PMCID: PMC7311075.

Robbie GJ, Criste R, Dal’'acqua WF, Jensen K, Patel NK, Losonsky GA, et al. A novel investigational
Fc-modified humanized monoclonal antibody, motavizumab-YTE, has an extended half-life in healthy
adults. Antimicrob Agents Chemother. 2013; 57(12):6147-53. Epub 20130930. https://doi.org/10.1128/
AAC.01285-13 PMID: 24080653; PubMed Central PMCID: PMC3837853.

Ye C, Chiem K, Park JG, Silvas JA, Morales Vasquez D, Sourimant J, et al. Analysis of SARS-CoV-2
infection dynamic in vivo using reporter-expressing viruses. Proc Natl Acad Sci U S A. 2021; 118(41).
https://doi.org/10.1073/pnas.2111593118 PMID: 34561300; PubMed Central PMCID: PMC8521683.

Ye C, Chiem K, Park JG, Oladunni F, Platt RN, 2nd, Anderson T, et al. Rescue of SARS-CoV-2 from a
Single Bacterial Artificial Chromosome. MBio. 2020; 11(5). Epub 20200925. https://doi.org/10.1128/
mBio.02168-20 PMID: 32978313; PubMed Central PMCID: PMC7520601.

Oladunni FS, Park JG, Pino PA, Gonzalez O, Akhter A, Allue-Guardia A, et al. Lethality of SARS-CoV-2
infection in K18 human angiotensin-converting enzyme 2 transgenic mice. Nat Commun. 2020; 11
(1):6122. Epub 20201130. https://doi.org/10.1038/s41467-020-19891-7 PMID: 33257679; PubMed
Central PMCID: PMC7705712.

Chiem K, Morales Vasquez D, Park JG, Platt RN, Anderson T, Walter MR, et al. Generation and Char-
acterization of recombinant SARS-CoV-2 expressing reporter genes. J Virol. 2021. Epub 20210111.
https://doi.org/10.1128/JV1.02209-20 PMID: 33431557; PubMed Central PMCID: PMC8092710.

Jangra S, Ye C, Rathnasinghe R, Stadlbauer D, Personalized Virology Initiative study g, Krammer F,

et al. SARS-CoV-2 spike E484K mutation reduces antibody neutralisation. Lancet Microbe. 2021; 2(7):
e283—e4. Epub 20210407. https://doi.org/10.1016/S2666-5247(21)00068-9 PMID: 33846703; PubMed
Central PMCID: PMC8026167.

Silvas JA, Vasquez DM, Park JG, Chiem K, Allue-Guardia A, Garcia-Vilanova A, et al. Contribution of
SARS-CoV-2 Accessory Proteins to Viral Pathogenicity in K18 Human ACE2 Transgenic Mice. J Virol.
2021; 95(17):e0040221. Epub 20210810. https://doi.org/10.1128/JV1.00402-21 PMID: 34133899;
PubMed Central PMCID: PMC8354228.

Park JG, Oladunni FS, Chiem K, Ye C, Pipenbrink M, Moran T, et al. Rapid in vitro assays for screening
neutralizing antibodies and antivirals against SARS-CoV-2. J Virol Methods. 2021; 287:113995. Epub
2020/10/18. https://doi.org/10.1016/j.jviromet.2020.113995 PMID: 33068703; PubMed Central PMCID:
PMC7554492.

Ackerman ME, Moldt B, Wyatt RT, Dugast AS, McAndrew E, Tsoukas S, et al. A robust, high-through-
put assay to determine the phagocytic activity of clinical antibody samples. J Immunol Methods. 2011;
366(1-2):8—-19. Epub 20101227. https://doi.org/10.1016/}.jim.2010.12.016 PMID: 21192942; PubMed
Central PMCID: PMC3050993.

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1010691  July 21, 2022 25/25


https://doi.org/10.1007/s11427-021-1990-5
https://doi.org/10.1007/s11427-021-1990-5
http://www.ncbi.nlm.nih.gov/pubmed/34431042
https://doi.org/10.1007/s00253-021-11488-4
http://www.ncbi.nlm.nih.gov/pubmed/34423407
https://doi.org/10.1038/s41598-018-22307-8
http://www.ncbi.nlm.nih.gov/pubmed/29531320
https://doi.org/10.1016/j.xcrm.2020.100015
http://www.ncbi.nlm.nih.gov/pubmed/32577626
https://doi.org/10.1128/AAC.01285-13
https://doi.org/10.1128/AAC.01285-13
http://www.ncbi.nlm.nih.gov/pubmed/24080653
https://doi.org/10.1073/pnas.2111593118
http://www.ncbi.nlm.nih.gov/pubmed/34561300
https://doi.org/10.1128/mBio.02168-20
https://doi.org/10.1128/mBio.02168-20
http://www.ncbi.nlm.nih.gov/pubmed/32978313
https://doi.org/10.1038/s41467-020-19891-7
http://www.ncbi.nlm.nih.gov/pubmed/33257679
https://doi.org/10.1128/JVI.02209-20
http://www.ncbi.nlm.nih.gov/pubmed/33431557
https://doi.org/10.1016/S2666-5247%2821%2900068-9
http://www.ncbi.nlm.nih.gov/pubmed/33846703
https://doi.org/10.1128/JVI.00402-21
http://www.ncbi.nlm.nih.gov/pubmed/34133899
https://doi.org/10.1016/j.jviromet.2020.113995
http://www.ncbi.nlm.nih.gov/pubmed/33068703
https://doi.org/10.1016/j.jim.2010.12.016
http://www.ncbi.nlm.nih.gov/pubmed/21192942
https://doi.org/10.1371/journal.ppat.1010691

