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ABSTRACT
The effect of hydrophobicity on antibody aggregation is well understood, and it has been shown that 
charge calculations can be useful for high-concentration viscosity and pharmacokinetic (PK) clearance 
predictions. In this work, structure-based charge descriptors are evaluated for their predictive perfor-
mance on recently published antibody pI, viscosity, and clearance data. From this, we devised four rules 
for therapeutic antibody profiling which address developability issues arising from hydrophobicity and 
charged-based solution behavior, PK, and the ability to enrich for those that are approved by the U.S. Food 
and Drug Administration. Differences in strategy for optimizing the solution behavior of human IgG1 
antibodies versus the IgG2 and IgG4 isotypes and the impact of pH alterations in formulation are 
discussed.

ARTICLE HISTORY 
Received 17 May 2021  
Revised 23 August 2021  
Accepted 14 September 2021 

KEYWORDS 
Structure-based; antibody; 
developability; aggregation; 
viscosity; isoelectric point; 
clearance; pharmacokinetics; 
biophysical property 
prediction

Introduction

Substantial efforts to avoid developability risks are now more 
often being made during the candidate discovery, engineering, 
and lead optimization phases of biotherapeutic development. 
Several small-scale biophysical and cell-based assays are now 
available as surrogates for late-stage development issues such as 
aggregation, viscosity, polyspecificity, and thermostability.1 

Antibody discovery groups are more commonly performing 
such tests to help select lead antibody candidates and optimize 
them for improved biophysical properties. In fact, a broad range 
of experimental methods to assess the many facets of develop-
ability for antibody drug candidates are under continuous devel-
opment, and more experimental data has become publicly 
available.1,2

The results of the developability experiments, whose 
underlying driver is hydrophobicity of the molecular sur-
faces, such as hydrophobic interaction chromatography 
(HIC), cross interaction chromatography (CIC), size 
exclusion chromatography (SEC), aggregation, and solubi-
lity, often correlate strongly with one another and are 
coarsely predictable by computational methods.3 The gen-
eral trend observed in these studies is that increasing the 
concentration of hydrophobic patch surface area at the 
complementarity-determining region (CDR) generally 
leads to decreasing developability for the antibody drug 
candidates.4–8

Charge is another important property, as it has been 
shown that charge descriptors can be used to predict high- 
concentration viscosity and can sometimes play a role in 
aggregation. The impact of charge change mutations on 
optimizing viscosity is well summarized by Apgar et al.,9 

who provide viscosity measurements for 38 IgG1 variants 

and compare various viscosity prediction methods. It has 
generally been observed that removing negatively charged 
residues or adding positively charged residues to the CDRs 
can reduce viscosity for IgG1 antibodies and this most 
recent dataset is consistent with that observation, as 
a clear trend is seen where the higher the Fv charge, the 
lower the viscosity.9–13 The methods developed for compu-
tational viscosity prediction in these studies generally 
demonstrate this same premise. For example, Agrawal et -
al.13 devised the spatial charge map (SCM), which showed 
that having larger negatively charged patches on the CDRs 
leads to higher viscosity. The SCM score is calculated using 
the atom forcefield charges, and the greater the extent of 
the negatively charged patches on the Fv molecular surface, 
the greater the predicted viscosity. Sharma et al.11 also 
illustrated with a simple Fv charge calculation that the 
more negative the charge, the higher the viscosity. In addi-
tion, the authors comment that more intricate charge ana-
lysis may be needed to predict viscosity, as their charge 
symmetry parameter, FvCSP, can improve the prediction. 
FvCSP represents the similarity in the net charge states 
between the VL and VH and it correlates to viscosity likely 
since charge asymmetry in the Fv creates self- 
complementing attractive forces. FvCSP improves the visc-
osity prediction when used in conjunction with Fv charge 
in a multi-parameter regression model. Tomar et al.14 built 
multi-parameter scoring functions for viscosity and Apgar 
et al.9 illustrated that all of the methods above are predic-
tive for viscosity to varying degrees for IgG1 mAbs. 
A recent study of the viscosity and colloidal stability of 59 
diverse mAbs indicates that those with higher charge and 
pI values exhibit better solution behavior and reduced 
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viscosity.15 Lastly, Lai et al.16 published viscosity measure-
ments for 27 antibodies for which both the net charge and 
SCM methods were demonstrated to be predictive in 
a manner similar to that in the reports mentioned above. 
The authors also devised a decision tree viscosity predictor 
applying mAb net charge and the overrepresentation of 
hydrophilic residues.

Charge can also have an effect on pharmacokinetic (PK) 
clearance. It has been observed that charge-mediated inter-
actions impair FcRn release and that extremes in Fv charge 
and high-hydrophobicity can be used to filter antibodies 
having short half-lives in cynomolgus monkeys while 
a similar finding has also recently been reported for anti-
bodies in humans.11,17,18 In summary, there is substantial 
evidence for reducing CDR surface hydrophobicity to 
improve developability and a growing number of examples 
demonstrating that avoiding negative charge on the CDR 
surface for IgG1 antibodies, as well as extremes in charge, 
can be beneficial for viscosity and PK, respectively.

Computational therapeutic antibody profiling (TAP) was 
recently performed by Raybould et al.19 who identified five 
rules derived from descriptors for clinical-stage therapeutic 
antibodies (CSTs), two of which enrich for CSTs versus 
arbitrary human antibodies. In this work, a revised set of 
rules is introduced which combines elements from the five 
TAP rules together with observed correlations to develop-
ability experiments. The names of the CSTs included in the 
analysis and the calculated results of the revised rules are 
available in supplementary Table 1.

Results

Antibody pI calculations

pI values determined by imaged capillary isoelectric focusing 
(icIEF) for 23 CSTs were published in 2017.20 Full-length anti-
body models were created for 22 of these for which the full 
sequences were provided and their pI values were calculated by 
three different methods: a sequence-based method (pI_seq), 
the PROPKA 3D method (pI_3D), and by forcefield charge 
(ens_pI).21 The models were sampled for sidechain conforma-
tions and protonation states over a pH value range from 4.4 to 
10.4. The pI_3D descriptor was calculated by averaging the 
PROPKA based pI_3D values over this ensemble of 300 con-
formations, and the ens_pI descriptor is calculated by deter-
mining the pH at which the forcefield charge (ens_charge) of 
the full antibody model is zero on average, after sampling 
conformations and protonation states over the range of pH 
values. The correlations between the predictions and the 
experiments are shown in Figure 1(a,b). The pI_seq and 
pI_3D descriptors have equally high Pearson correlations 
(0.97, matching the performance of the pI calculations per-
formed in the work), but pI_3D has a lower standard error 
(0.07 in exp_pI units). It is important to note that this set of 
antibodies has variations in the constant region, and it is 
crucial that they are modeled in order to generate accurate pI 
predictions. For this reason, modeling the Fv or antigen- 
binding fragment (Fab) alone was not sufficient for making 
absolute or relative pI predictions in this case, and modeling 
the full-length antibody tetramer was needed.

Figure 1. (a) Correlation matrix of experimental pI values with three different pI calculations for 22 CSTs (r is the Pearson correlation and s is the standard error). (b) 
Scatter plot of the relationship between the pI_3D predictions and the experimental pI values.20 (c) Correlation matrix of experimental pI values with three different pI 
calculations for 17 related IgG4 antibodies. (d) Scatter plot of the relationship between the pI_3D prediction and the experimental pI values.3 The lines drawn on the 
scatter plots are the result of a least-squares polynomial fit.
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HzATNP is a humanized anti-trinitrophenyl IgG4 anti-
body that forms large amounts of aggregates upon storage, 
and thus was optimized for improved developability.3,22 In 
addition to developability experiments such as HIC and 
CIC, pI measurements are also provided in the work. We 
created full-length antibody models for the 17 IgG4 anti-
bodies studied and the correlations between the pI values 
and predictions are shown in Figure 1(c,d). The pI_3D 
descriptor has the highest correlation (r = 0.95) and a rela-
tively low standard error (s = 0.07).

Antibody viscosity calculations

An antibody viscosity dataset containing 38 variants of an IgG1 
antibody, with viscosity data in the form of concentration (mg/ 
mL) that leads to a viscosity of 20 cP, has recently been made 
available.9 The variable domains of each antibody were modeled 
and various 3D descriptors were calculated. The ens_charge 
descriptor has the highest correlation to the viscosity measure-
ments, with a Pearson coefficient of 0.72. A scatter plot of this 
relationship is shown in Figure 2; the ens_charge calculated on 
Fv models at neutral pH is henceforth called ens_charge_Fv. The 
correlation illustrates that distinct charge change mutants form 
two clusters where those in the lower charge group have more 
severe viscosity, but there is no correlation within the two 
individual groups. The relationship between ens_charge_Fv 
and the viscosity measurements is similar to that of the predic-
tions described by Apgar et al.9 including SCM, and the viscosity 
predictions from Sharma et al.11 and Tomar et al.14 The 
patch_cdr_pos and pI_3D descriptors also have a similar corre-
lation to these predictions. The experiments were performed at 
pH 5.8, and there is no improvement to the correlation when 
ens_charge_Fv is calculated at pH 5.8 (rather than the default pH 
of 7.4). This dataset can be classified by the ens_charge_Fv 
descriptor with 87% overall accuracy if 102 mg/mL is used as 
the cutoff for viscosity at 20 cP (see Table 1). Well-behaved 

variants have an ens_charge_Fv of +2 or higher, therefore, hav-
ing a more positively charged variable domain is critical for 
improved viscosity for these 38 IgG1 variants.

Viscosity measurements for an additional 27 antibodies 
approved by the U.S. Food and Drug Administration (FDA) 
have recently been published.16 This dataset consists of 21 
IgG1, four IgG2, and two IgG4 antibodies with viscosity 
measurements at several concentrations for each. In this 
study, the Fv region of each antibody was modeled and 
the ens_charge_Fv was calculated and compared to the 
viscosity (cP) reported at 150 mg/ml. Once again, the 
lower the ens_charge_Fv, the more viscous the antibody, 
with a Pearson coefficient of 0.55. Furthermore, removing 
the IgG2 and IgG4 antibodies improves the correlation to 
0.63 (see Figure 3), since two of the non-IgG1 antibodies 
have low viscosity despite having a neutral Fv region. The 
cutoff of +2 for ens_charge_Fv established within the exam-
ple above eliminates 2 of the 5 highly viscous antibodies 
(40%) while retaining 15 of the 16 non-viscous antibodies 
(94%). The correlation reported in Figure 3, having an r2 

value of 0.40, is the lowest deemed to be significant in this 
work, and contains relatively few (21) datapoints. A two- 
tailed paired t-test on this relationship returns a p-value of 
0.0085 and the leave-one-out cross-validation r2 is 0.21. The 
data corresponding to Figures 2 and 3 is provided in 
supplementary Tables 2 and 3, respectively.

Figure 2. Relationship between the Fv charge (ens_charge_Fv) and viscosity 
measurements of 38 IgG1 antibody variants.9 Using a cutoff of +2 for 
ens_charge_Fv, correct prediction zones are colored green and false predictions 
in red if 102 mg/mL is used as the cutoff for viscosity at 20 cP. There is an overall 
correlation (Pearson coefficient of 0.72), however, the data separates into two 
distinct clusters within each of which there is no correlation.

Table 1. Confusion matrix and accuracy of ens_charge_Fv viscosity classification.

Viscosity 20 cP > 102 mg/ml True pos True neg All

Pred. pos/non-viscous 17 3
Pred. neg/viscous 2 16
Accuracy 89% 84% 87%

Using a cutoff of 102 mg/ml at 20 cP, 19 antibodies fall in the non-viscous 
category (true pos), 17 of which are correctly predicted by ens_charge_Fv. 16 
of the 19 viscous antibodies are correctly predicted as true negatives, giving an 
overall accuracy of 87%.

Figure 3. Relationship between the Fv charge (ens_charge_Fv) and viscosity 
measurements at 150 mg/mL for 21 FDA-approved IgG1 antibodies.16
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Antibody PK predictions

Kraft et al.17 proposed heparin as a surrogate for highly nega-
tively charged glycocalyx components on endothelial cells and 
heparin chromatography as a method to measure potential 
pinocytotic uptake and degradation. The authors provided 
heparin retention times in minutes for 130 antibodies which, 
in this study, were modeled in similar fashion to the viscosity 
datasets above. The ens_charge_Fv descriptor correlates to the 
heparin retention times with a Pearson coefficient of 0.72 (see 
Figure 4) where the higher the charge, the longer the retention 
time in the negatively charged heparin lined column.

The clearance values of 64 CSTs in humans were calcu-
lated and recently published by Grinshpun et al.18 In that 
study, the Fv domains were modeled and 3D properties 
were calculated for each in similar fashion to the datasets 
presented here. The calculated property with the highest 
linear correlation to the data is pI_3D, with a Pearson 
coefficient of 0.32. The pI_3D descriptor alone is able to 
modestly enrich for slow versus fast clearance if a cutoff 
window of 6.7 to 9.05 is applied. These cutoffs retain 66% 
of the antibodies while retaining 85% of those that are 
slow-clearing (less than 2.5 mL/d/Kg) and only 38% of 
the fast-clearing (more than 5.4 mL/d/Kg) antibodies. The 
patch_cdr_hyd descriptor is able to filter out an additional 
fast-clearing antibody with the cutoff set to 530 A2 and 
retains 100% of the slow-clearing antibodies. If both 
descriptors are used simultaneously with these cutoffs, 
75% of the antibodies are retained, including 85% of the 
slow-clearing antibodies and only 31% of those that clear 

faster than 5.4 mL/d/Kg. The confusion matrix for this 
prediction is shown in Table 2, where a 67% overall accu-
racy is observed for the classification of slow versus normal 
clearance.

Antibody CST profiling

A total of 629 CSTs available from the Therapeutic Structural 
Antibody Database (Thera-SAbDab) at the time of this work 
were modeled.23 The patch_cdr_hyd, ens_charge_Fv, and the 
CDR length (cdr_len) descriptors were used to profile the 
CSTs. This covers hydrophobicity, charge, and size in similar 
fashion to the TAP rules from Raybould et al.19 but the patches 
of positive charge (PPC) and negative charge (PNC) are 
replaced by ens_charge_Fv since ens_charge_Fv is a single 
parameter shown to correlate to viscosity measurements and 
because it is strongly correlated to pI_3D, which has proven 
useful for distinguishing antibodies with better PK.18

The fifth TAP rule is based on charge separation using 
a descriptor called SFvCSP, which takes the product of the 
individual VL and VH surface charges. It is a structural surface- 
adapted version of FvCSP that has been shown to correlate to 
viscosity measurements, and it has a similar correlation to 
ens_charge_Fv (Pearson coefficient of 0.63, values available in 
supplementary Table 1).11 However, there are detrimental 
effects associated with taking the product of the VL charge 
and the VH charge to calculate charge separation. For example, 
two antibodies with large differences in VL and VH charge 
separation can have the same value when multiplying the VL 
and VH charges together: a value of +9 could either be from an 
antibody with a VL charge of +1 and VH charge of +9 or from 
an antibody with VL and VH charges both being +3. 
Furthermore, an antibody with a neutral VL charge of zero and 
a VH charge of −9 would result in a value of zero, even though 
the antibody arguably has a high level of VL VH charge separa-
tion and would be expected to have poor solution behavior. 
Instead, charge separation in this work is calculated by taking 
the difference between the VH and VL charges, or “Fv charge 
heavy minus light” (Fv_chml = VH charge – VL charge). A large 
positive value means that the VH has a much more positive 
charge than the VL and a large negative value means that the VL 
has a much more positive charge than the VH. The Fv_chml, 
which will be used as the fourth profiling rule, correlates to the 
viscosity data from Apgar et al.9 and Lai et al.16 with Pearson 
coefficients of 0.61 and 0.37, respectively (data not shown). In 
both cases, the higher the value representing charge separation, 
the more severe the viscosity.

As shown in Table 3, 114 of the 629 CSTs have been 
approved by the FDA (18.1%). For patch_cdr_hyd, a cutoff of 
530 Å2 is applied, since that value was useful with human PK 
data, which filters roughly 10% of the candidates. A second rule 
using an ens_charge_Fv range from −2.5 to 8.5 is used, which 
filters about 5% of the CSTs. Using a cdr_len window from 61 
to 75 filters 41 antibodies of which only five have been 
approved. For Fv_chml charge separation, a window from −4 
to +4 is used, which filters out 83 antibodies, only 11 of which 
are approved, and this represents the best enrichment for 
approved antibodies of the four rules. If the cutoffs of all 
four rules are applied, only 25 of the 184 antibodies that 

Figure 4. Relationship between the Fv charge (ens_charge_Fv) of 130 antibodies 
and their heparin chromatography retention times.

Table 2. Accuracy of slow clearance classification using pI_3D and patch_cdr_hyd.

Clearance ≤ 5.4 mL/d/Kg True pos True neg All

Pred. pos/normal 32 5
Pred. neg/fast 16 11
Accuracy 67% 69% 67%

Using a cutoff of 5.4 mL/d/Kg, 48 antibodies fall in the normal clearance category 
(true pos), 32 of which are correctly predicted by the pI_3D and patch_cdr_hyd 
cutoffs. 11 of the 16 fast-clearing antibodies (> 5.4 mL/d/Kg) are correctly 
predicted as true negatives, giving an overall accuracy of 67%.
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break at least one rule are approved (13.6%), while 18.1% of 
the overall set of 629 antibodies are approved. Therefore, 
an antibody that breaks one of the rules is less likely to fall 
in the approved subset. As shown in Figure 5, the four 
descriptors do not correlate to one another and each of 
them has a distribution where proportionately fewer 
approved antibodies lie at the tails of their distributions. 
The overlapping distributions in Figure 6 demonstrate 
visually the number of CSTs each rule filters out.

mAb isotype charge differences

The majority of published data for aggregation, viscosity, 
and PK pertains to antibodies expressed as the human IgG1 
isotype. In order to determine if concepts learned from 
such data can be transferred across isotypes, it is important 
to understand the charge differences of the constant regions 
of IgG1, IgG2, and IgG4. For this, full-length antibody 
models were built and domain net charges were calculated 
by taking the forcefield charge of the atoms comprising the 
region, protonated at pH 7, the results of which are sum-
marized in Table 4.

The constant region of IgG1 is positively charged, 
whereas the constant regions of IgG2 and IgG4 are nega-
tively charged. The positive charge on the IgG1 constant 
region is the result of a + 2 charge on each CH1 domain 

for a total charge of +4. The IgG2 scaffold gets its negative 
charge from the CH1 domains and the Fc domain while 
IgG4 has neutral CH1 domains and a substantially negative 
Fc domain. The charge of the Fv varies depending on the 
antibody's germline and on the epitope targeted by the 
CDRs. The median IgG1 ens_charge_Fv of the 629 CSTs 
is +4, which is similar to the charge on the C1 domains, 
preventing the creation of a strong intramolecular dipole. 
The median ens_charge_Fv of the IgG2 and IgG4 CSTs are 
+4 and +3, respectively. The N-termini contribute +2 to the 
ens_charge_Fv, forming a substantial portion of the positive 
charge observed on the Fv region. Likewise, the C-termini 
of the light chains contribute a charge of −1 to each C1 

Table 3. Data corresponding to the four proposed CST profiling rules.

Set # CSTs which pass approved

All CSTs 629 114 (18.1%)
patch_cdr_hyd ≤ 530 569 106 (18.6%)
−2.5 ≤ ens_charge_Fv ≤ 8.5 595 109 (18.3%)
61 ≤ cdr_len ≤ 75 588 109 (18.5%)
−4 ≤ Fv_chml ≤ 4 546 103 (18.9%)
Pass all 4 rules 445 89 (20.0%)
Don’t pass all 4 rules 184 25 (13.6%)

Of the 629 CSTs modeled, 114 were approved by the FDA as of April 2021. The 
Fv_chml rule filters the most antibodies and has the highest enrichment for FDA 
approval. Of the 184 CSTs that fail at least one of the four rules, only 25 have 
been approved.

Figure 5. Matrix of scatter plots and distributions of the four proposed CST profiling rules. 629 CSTs are included; FDA-approved products are colored orange while those 
at any other clinical-stage are colored blue.
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domain and the C-termini of the heavy chains contribute 
a charge of −2 to the Fc domains. The charges mapped 
onto the 3D models are shown in Figure 7.

Tilegenova et al.24 reported that when combining an 
anti-IL-13 IgG4 antibody and an anti-IL-17 IgG1 antibody, 
each having good solution behavior in terms of viscosity, 
into a bispecific construct where the Fv domain from the 
IgG1 antibody is grafted in place of one Fv domain of the 
IgG4 antibody, the resulting bispecific antibody exhibits 
severe viscosity (also shown in Figure 7). This result is an 
indication that positive charge requirements for the Fv 
domain may apply only to IgG1 antibodies, since grafting 
a positively charged Fv in place of a neutral Fv resulted in 
an increased viscosity for this IgG4 antibody.

When investigating the four properties identified for 
profiling by isotype, no major differences in the medians 
of the property values between IgG1, IgG2, and IgG4 anti-
bodies are observed (supplementary Table 4). This is 
expected because the values are obtained on Fv models, 
and the majority of the differences among isotypes are 
found on the constant region. Of the 629 CSTs studied, 
85% belong to the kappa light chain subclass; therefore, the 
rules we derived contain bias for kappa antibodies. The 
lambda subset of antibodies have a median cdr_len of 69, 
which is three residues more than that of the kappa sub-
class, and this likely arises from the shorter CDR 1 com-
monly present in VK germlines. The lambda antibodies 
have a median ens_charge_Fv of +2.4, and patch_cdr_hyd 
of 441 Å2, while the respective medians for kappa antibo-
dies are +4.0 and 382 Å2. Therefore, the lambda antibodies 
generally have more hydrophobic surface area and less 
positive charge on the Fv than the kappa antibodies. The 
nearest matching VH germline family was determined for 
each of the 629 CSTs by identifying the family of the 
human germline sequence with the highest amino acid 
identity for the framework region, excluding the CDRs. 

Figure 6. Matrix of scatter plots and distributions of the four proposed CST profiling rules. 629 CSTs are included and those which pass all four rules are colored blue 
while those which fail at least one rule are colored orange.

Table 4. The net charges of the constant domains for human IgG isotypes.

IgG1 IgG2 IgG4
Constant region +4 −6 −6

CH1 +4 (+2 x2) −2 (−1 x2) 0
Hinge −2 (−1 x2) 0 0
Fc +2 (+1 x2) −4 (−2 x2) −6 (−3 x2)

The constant region is made up of the CH1 domains, hinge regions, and Fc 
domain, which itself consists of the CH2 and CH3 domains.
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The three most prominent VH germline families are 
IGVH1-69, IGHV3-66, and IGVH3-23, and their median 
deviations for the four properties from the overall dataset is 
smaller than that observed for the lambda subset (data 
summarized in supplementary Table 1, and in supplemen-
tary Figures 1 and 2).

Discussion

Our results demonstrate that sequence and structure-based pI 
calculations can accurately predict experimental values for 
human IgG1 and IgG4 antibodies. If there are mutations in 
the constant region, then incorporating these regions of the 
sequence/structure, rather than using Fv alone, is required for 
relative pI calculations, and if full-length sequences/models are 
used, accurate absolute pI value predictions can be made. The 
pI_3D descriptor, which is structure-based, has the highest 
correlation to the experimental measurements, but its correla-
tion is not significantly higher than that of the sequence-based 
method tested. We also observe that calculating pI by titrating 
and sampling homology model conformations using 
a forcefield and implicit solvent model to determine the pH 
at which the protein is neutral (has an average forcefield charge 
of zero) delivers accurate predictions on recently published 
antibody pI data. The results do not suggest that this method 
is preferred over established sequence and structure-based 
methods for calculating pI, rather, they provide evidence that 
the method produces accurate charge calculations on 
antibodies.

The ens_charge_Fv descriptor is predictive of viscosity for 
two independent sets of IgG1 antibodies, where the lower the 
ens_charge_Fv, the higher the viscosity. This single value para-
meter describing the charge of the Fv is as predictive for the set 

of 38 antibodies as the multi-parameter models tested in the 
study.9,11,14 The SCM parameter is also a single descriptor with 
similar performance to ens_charge_Fv on this data and on the 
more recent set of 21 IgG1 antibodies.13,16 The six non-IgG1 
antibodies were removed from the Lai et al.16 dataset in 
Figure 3 because the constant region is not being modeled 
and because they make up only a small portion of the data. 
On the IgG1 Fv models, ens_charge_Fv has a similar perfor-
mance to SCM and to the net charges calculated by Lai et al.16 

using PROPKA. The authors also trained a decision tree clas-
sifier model applying mAb net charge and the overrepresenta-
tion of hydrophilic residues on the Fv to accurately classify the 
27 mixed isotype antibodies for viscosity. They tested this 
decision tree classifier on the Apgar et al.9 set and the best 
accuracy reported at three concentrations is 87%, which is 
similar to the result we obtain using a single descriptor, 
ens_charge_Fv, with a cutoff of +2 and without the need to 
model the full Ig tetramer. Therefore, ens_charge_Fv can serve 
as a coarse predictor of IgG1 mAb viscosity, while a more 
elaborate model, such as that proposed by Lai et al.16 is needed 
when working with other isotypes or formats.

Sharma et al.11 reported their viscosity predictions using the 
Fv charge calculated at pH 5.5 in order to match experimental 
conditions. When calculating ens_charge_Fv, lowering the pH 
from the neutral default to the experimental pH generally shifts 
the charge values higher and does not improve the predictions 
on the Apgar et al.9 dataset or the Lai et al.16 dataset. There is 
therefore likely no need to adjust the pH setting when such 
calculations are performed unless it is shown in a validation 
that such an adjustment improves the prediction. Another 
ambiguity is whether the N-terminal backbone charges are 
included: having pKa values ranging from just above 7 up to 
9, they are generally positively charged at neutral and lower pH 
values and including them in the calculation shifts the resulting 
charges up by two units. Therefore, ens_charge_Fv does gen-
erally include the +2 resulting from the charged N-terminal 
backbone amine groups and this effect alone represents about 
half of the median +4 positive charge that is needed on the 
IgG1 Fv domain to prevent high viscosity. The C-termini are 
amidated and capped with methyl groups in order to represent 
peptide bonds to the hypothetical continuation of the protein 
chains and eliminate the spurious negative charges of the 
unrealistic C-termini resulting from cleaving the C1 domains 
from the Fv. The N and C-termini do not necessarily cancel out 
since the charge of a chemical moiety depends both on the pH 
and the 3D environment. Although the N-termini generally 
add two charge units, there are exceptions where the 
N-terminal backbone amine group can be neutralized by 
a nearby positive charge, and this effect should be incorporated 
into the models to best represent the structure for net charge 
and pI calculations. Likewise, histidines do not have constant 
charges since their imidazole groups have protonation states 
that also vary considerably depending on pH and 3D environ-
ment. The sampling method used in this work accounts for 
these effects and it should be made clear how such groups are 
dealt with during antibody modeling and charge calculations. 
This subtlety, however, does not necessarily need to be mod-
eled for broad predictive performance, as we do not observe 
that doing so improves results for the datasets studied.

Figure 7. Full-length models of human IgG1, IgG2, IgG4 and a bispecific antibody. 
The IgG1 antibody binds to IL-17, the IgG4 antibody binds to IL-13 and the 
bispecific construct contains the anti-IL-13 IgG4 antibody with one of its Fv 
domains replaced by that from the anti-IL-17 IgG1 antibody. Positively charge 
regions are blue, neutral regions are white, and negatively charged regions are 
red.
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In terms of PK, ens_charge_Fv correlates to the heparin 
chromatography retention times; therefore, antibodies with 
an extremely high value for ens_charge_Fv have a high like-
lihood of undergoing pinocytotic uptake and degradation. 
Using a human clearance dataset consisting of 64 antibodies, 
restricting the pI_3D to a window from 6.7 to 9.05 for the Fv 
models was shown to modestly select for fast-clearing antibo-
dies and retain slow-clearing antibodies.18 A patch_cdr_hyd 
cutoff off 530 Å2 retains all slow-clearing antibodies and filters 
out three fast-clearing antibodies. This confirms that extremes 
in hydrophobicity and charge are to be avoided in order to 
reduce the likelihood of having poor PK. These cutoffs are 
more sensitive than those applied for the viscosity prediction 
accuracy, as one can see from the scatter plot in Grinshpun 
et al.’s Figure 6(c)18 that small changes in the cutoffs will affect 
the accuracy. In short, the computational clearance predictions 
are less reliable, but are nonetheless useful if applied carefully 
and provide further evidence justifying the use of Fv charge 
and hydrophobicity descriptors in antibody profiling. pI_3D 
correlates strongly to ens_charge_Fv (Pearson r ~ 0.97), and 
pI_3D cutoffs of 6.7 and 9.05 roughly correspond to 
ens_charge_Fv cutoffs of 3 and 7. However, since many 
approved CSTs have ens_charge_Fv values lower than 3, the 
cutoff used for the rule was lowered to −2.5. It should be noted 
that experimental methods can often provide more useful 
information. For example, the polyspecificity reagent binding 
assay was shown to provide better enrichment for normal 
human clearance than any computational descriptor and the 
computational predictions described are only 67% accurate 
and have cutoffs applied that are sensitive to small changes.18 

It was also reported that experimental diffusion interaction 
parameter measurements are predictive for antibody viscosity, 
while the computed TAP parameters were not helpful for 
predicting solution behavior.15,16

Four CST profiling rules derived from the patch_cdr_hyd, 
ens_charge_Fv, cdr_len, and Fv_chml descriptors are pro-
posed. cdr_len was shown to separate CSTs from a large set 
of human antibody sequences, but since PPC and PNC do not 
appear to distinguish CSTs from that set of arbitrary antibodies 
and since there appears to be limited evidence of their consis-
tent utility in predicting solution behavior, there is rationale to 
replace them with ens_charge_Fv.19 patch_cdr_hyd and 
ens_charge_Fv are included because they are useful for aggre-
gation, solution behavior, and PK predictions; however, other 
useful parameters such as SAP, CamSOL, SCM or validated 
charge and pI calculators could potentially serve as 
substitutes.5,7,13 SFvCSP (and FvCSP) has been shown to be 
predictive for viscosity, but it correlates to the ens_charge_Fv 
descriptor, which already accounts for viscosity risk.11 Also, 
certain inconsistencies arise from taking the product of the VL 
and VH charges, therefore it is justified to take the difference 
between the VH and VL charge (Fv_chml) and use it as the 
fourth rule, especially since Fv_chml provides the best enrich-
ment for FDA-approved CSTs. Each rule individually still only 
provides a trace preference for approved antibodies but, when 
taken together, they provide a modest enrichment. patch_cdr_-
hyd is likely the most important descriptor, due to its consis-
tent role in aggregation, chromatography behavior, and PK. 
Given that patch_cdr_hyd and ens_charge_Fv do not provide 

a strong enrichment for approved CSTs, it would appear that 
a number of antibodies with relatively poor biophysical prop-
erties have been approved by the FDA.

At neutral pH, the median VH charge of the 629 CSTs is 
+3 and the median VL charge is +2 (data not shown) and, 
as can be seen in Figure 5, the Fv_chml follows a normal 
distribution with most of the approved antibodies falling 
between −4 and +4. In this respect, there is no apparent 
regular charge separation observed between the VL and VH 
domains of CSTs. Interestingly, there is a general charge 
separation observed within the CDRs of the 629 CSTs: 
when annotated using the Kabat scheme, the light chain 
CDRs have a median CDR charge of +1 while the heavy 
chain CDRs have a median charge of −1. However, when 
annotating using the Kabat scheme, CDR H2 and CDR H3 
both have a conserved arginine adjacently connected in the 
sequence, and this alone adds two units to the VH CDR 
charge and cancels out the observed CDR charge separa-
tion. Furthermore, when annotating with the IMGT 
scheme, the adjacent Arg residue actually becomes part of 
the CDR H3, and eliminates the perceived charge separa-
tion. Authors should therefore be cautious when reporting 
CDR-specific findings and provide precise details. 
patch_cdr_hyd applies the CCG annotation scheme, but is 
averaged over a conformational ensemble and is not sensi-
tive to the CDR definition used.

It is possible during formulation to mitigate non-ideal 
biophysical properties. When a negatively charged Fv is 
used with a positively charged IgG1 Fc, lowering the storage 
pH neutralizes the Fv domain, which circumvents the dipole 
creation and leads to improved solution behavior. Lowering 
the formulation pH can likewise neutralize the negatively 
charged Fc of IgG2 and IgG4 making it possible for those 
isotypes to tolerate positively charged Fv domains.24,25 

However, aggregation-prone antibodies having undesirable 
hydrophobic and/or charged binding epitopes present 
a greater risk for fast clearance and immunogenicity.26 

Therefore, there is rationale for selecting candidates that 
pass the CST profiling rules and for optimizing them toward 
passing the rules. If an IgG1 scaffold will be used, it would be 
best if the Fv domain were positively charged, and with 
relatively lower hydrophobicity and CDR length. IgG2 and 
IgG4 CSTs have median ens_charge_Fv values of +4 and +3, 
respectively, but their constant regions are negatively charged 
at neutral pH. Two of the six IgG2/IgG4 antibodies reported 
had acceptable viscosity despite having a lower charge (neu-
tral) Fv domains, and it has been shown that an IgG4 anti-
body with a neutral Fv exhibits low viscosity, but becomes 
viscous when a positively charged Fv is grafted.16,24 

Therefore, it could be possible that IgG2 and IgG4 antibodies 
are safer with neutral or negatively charged Fv regions or, if 
negatively charged Fv domains appear in the antibodies from 
target affinity screening, a strategy could be to use IgG2 or 
IgG4 as the scaffold to prevent dipole induced poor solution 
behavior, but more work is needed to verify this. In addition 
to formulation pH alterations, various buffers or excipients 
can also serve to mitigate poor biophysical properties. The 
methods presented for property calculations apply an implicit 
solvent model that can be tuned for a specific pH or salt 
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concentration, but cannot explicitly model excipients. The 
results provide a possible explanation for the pH-dependent 
solution behavior of mAbs, but thus far these methods have 
not been evaluated for their ability to predict biophysical 
properties measured experimentally at different pH values 
or salt concentrations.

The number of FDA-approved antibodies will continue 
increasing, as will the overall number of CSTs. With 114 anti-
bodies already approved to date, we do not expect major changes 
to their property profiles in the near future, but the cutoffs used to 
enrich for approved antibodies may need adjusting as more CSTs 
are approved. With respect to isotypes, more clinical data and full 
antibody modeling are likely needed in order to perform isotype- 
specific profiling, as Fv model profiling does not capture isotype 
differences. One can expect an increase in patch_cdr_hyd and 
cdr_len values when working with lambda antibodies, while the 
VH germline family appears to play a smaller role. However, 
a potential strategy could be to avoid germlines that lead to 
more hydrophobic Fv models. Overall, we believe that there is 
sufficient data to use predictive performance on experiments and 
the ability to enrich for antibodies that have progressed further in 
the clinic when determining CST profiling rules. The four rules 
proposed here describe the antibodies in terms of Fv hydropho-
bicity, charge, CDR length, and charge separation and are justi-
fied for coarse filtering of candidates because of their usefulness 
in reducing aggregation, viscosity and clearance, as well as their 
ability to modestly enrich for FDA-approved antibodies, all while 
not correlating to one another. Only a modest enrichment is 
expected because approved CSTs are not easily distinguished 
from other candidates that have been optimized for improved 
biophysical properties and because some antibodies with rela-
tively poor biophysical properties have been approved by the 
FDA. Of course, an antibody not passing these rules can still be 
approved by the FDA; therefore, it is not advised to apply them as 
completely rigid filters. Instead, they can be used to create aware-
ness of the risk associated with an antibody that falls outside 
them, thereby potentially avoiding expensive bioprocessing and 
formulation methods that might later be required.

Materials and methods

CST data preparation

The entire Thera-SAbDab dataset,23 consisting of 651 antibodies, 
was downloaded in April 2021. Mouse, canine, feline and single- 
domain antibodies were removed, as were nanobodies. This 
resulted in a set of 629 therapeutics predominantly composed of 
whole mAbs but also containing antibody-drug conjugates, scFvs, 
Fabs, bispecifics and some fusion formats. In the case of bispecifics, 
only the first Fv sequence was used. Of the 629 CSTs, 114 have 
been approved by the FDA, 22 have had license applications 
submitted after completing late-stage clinical trials, and the 
remaining antibodies have entered Phase 1, 2, or 3 clinical studies.

Antibody homology model generation

Homology models of the variable regions of the antibodies for 
all datasets were created using the Antibody Modeler applica-
tion in MOE 2020.0901.27 Using the method described by 

Maier & Labute,28 a homology search of the antibodies in the 
Protein Data Bank was performed to identify the best matching 
framework and CDR templates for both chains. These were 
grafted together to produce high-quality chimeric templates for 
homology modeling. On average, the chimeric light chain 
template percent amino acid identity for the 629 CSTs was 
95%, and that for the chimeric heavy chain templates was 91% 
(93% overall), all having 100% coverage due to the fact that 
they are chimeric templates resulting from CDR grafting. Fv 
sequences were input to the Antibody Modeler, which was run 
in seq mode, guaranteeing that the sequence of the model 
contains the entire variable domain, including capping groups 
that neutralize the Fv C-termini. In the case of the pI calcula-
tions, full antibody models were generated using the Ig mode of 
the Antibody Modeler application, whereby the Fv domain is 
built as described above and the constant region is modeled 
from a solvated MD snapshot of the 1HZH structure for IgG1, 
and the 5DK3 structure for IgG4.

Property calculations on 3D models

The descriptors were calculated using the Protein Properties 
application of MOE 2020.0901 with the Sample feature 
toggled on. This produced 100 conformations of each model 
where the framework is restrained and sidechains are free to 
move using LowModeMD and alternate protonation states 
are sampled from pH 6.4 to 8.4 (centered at pH 7.4) using 
the Protonate 3D method.29,30 The conformational sampling 
applies tethers to the backbone atoms allowing 0.25 Å of free 
movement for the framework, 1 Å of free movement for the 
canonical CDRs, and 2 Å of free movement for the CDR H3 
backbone, while sidechains are unrestricted. This scheme is 
designed to help compensate for the error common in anti-
body modeling. Hydrophobic patches consist of regions 
where a hydrophobic potential equal to or greater than that 
of a methyl group persists over a surface area greater than 50 
Å2. The hydrophobic potential is determined using the SLogP 
method for each atom and mapping the result onto the sur-
face. The patch_cdr_hyd descriptor is the sum of the surface 
areas of the hydrophobic patches involving at least one CDR 
atom as annotated by the CCG CDR definitions, averaged 
over the 100 samples using a Boltzmann weight centered at 
the target pH of the calculation (7.4). Taking the 38 antibody 
Fv models of the Apgar et al.9 dataset as an example, the 
standard deviation of patch_cdr_hyd within the 100 samples, 
on average, is 95 Å2. Charged patches are formed where there 
is excess forcefield charge (Amber10:EHT) sustained over 
a surface area of 40 Å2 and both the patch_cdr_pos and 
patch_cdr_neg descriptors are calculated in similar fashion 
to patch_cdr_hyd. The pI_seq descriptor is the sequence- 
based pI as described by Ribeiro et al.31 and the pI_3D 
descriptor is calculated using the PROPKA method to deter-
mine residue pKa values which are then used in the sequence- 
based pI formula mentioned above.21 The ens_pI descriptor is 
obtained by calculating the forcefield charge (ens_charge) of 
conformations over a range of pH values and determining the 
pH where the average ens_charge is zero. ens_charge_Fv is 
calculated at neutral pH and is the forcefield charge averaged 
over an ensemble of 100 conformations modeled at pH 6.4 to 
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8.4. These descriptors were calculated on Fv models generated 
with the Antibody Modeler in MOE 2020.0901 having both 
C-termini amidated and capped with a methyl group to 
neutralize the effect of producing spurious negative charges 
from clipping the Fv domain from the full structure. Within 
the ensembles generated, the standard deviation of 
ens_charge_Fv for each antibody is, on average, 0.93, as 
calculated for the Apgar et al.9 dataset. We have determined 
that 100 samples is adequate for ensuring that correlations to 
experiments are reproducible when modeling Fv regions on 
different OS and chipsets. Furthermore, taking a random 
n = 50 subset of the 100 samples was found to reproduce 
the results. More samples may be needed to ensure reprodu-
cibility when working with larger structures. The cdr_len 
descriptor is the total number of CDR residues when anno-
tating the antibody sequences with the CCG scheme, which is 
identical to the Kabat scheme except for CDR H1, which 
includes five additional residues in the N-terminal direction. 
The Fv_chml descriptor takes the forcefield charge of the VH 
minus the forcefield charge of the VL applied to the original 
antibody Fv models generated at pH 7 without use of the 
conformational ensembles.
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Abbreviations and symbols

Å Angstrom
CCG Chemical Computing Group
cdr_len Total number of CDR residues annotated with CCG scheme
CIC Cross interaction chromatography
cP Centipoise
CST Clinical-stage therapeutic antibody
ens_charge_Fv Forcefield charge of the Fv averaged on a structural ensemble
Fv Fragment, variable domain of the antibody
Fc Fragment, crystalizable domain of the antibody
FcRn Neonatal Fc receptor
FvCSP Charge separation between light and heavy chain of the Fv
Fv_chml Fv charge heavy minus light
HIC Hydrophobic interaction chromatography
MD Molecular Dynamics
patch_cdr_hyd Surface area of the hydrophobic patches near the CDRs
pI Isoelectric point
pI_3D Structure-based isoelectric point descriptor
PK Pharmacokinetics
PPC Patches of positive charge
PPN Patches of negative charge
SCM Spatial charge map
SEC Size exclusion chromatography
TAP Therapeutic antibody profiler
VH Heavy chain portion of the Fv
VK Kappa light chain portion of the Fv
VL Light chain portion of the Fv
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